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Lecture #16 Notes Summary

Spot checking games, modelling tricks, Computation of Nash and Stackelberg equilibria.

Spot Checking Games

In this lecture, we define the class of spot checking games, which can be used to study and optimize the

control tours of fare inspectors over a transportation network.

Definition 1. A network spot-checking game (NSC game) G = (V,E,K,x,w,σ, P, α,β,Q) is defined

by the following elements:

• A directed graph G = (V,E);

• A set of commodities K ⊂ V × V representing Origin-Destination pairs (sk, dk) of the graph G;

• For all k ∈ K, the number of users xk of commodity k;

• For all e ∈ E, a cost we ≥ 0 for a user taking edge e;

• For all e ∈ E, a reward βe (resp. a penalty if βe < 0) for the controller for each user using edge e;

this βe typically corresponds to a fare for taking edge e.

• For all e ∈ E, the probability σe for an individual passing on e to be controlled, conditionally to

the presence of an inspector on e;

• The amount of the penalty P users must pay each time they are controlled;

• A fraction α ∈ [0, 1] of the penalties to be considered in the controller’s payoff;

• A set Q ⊂ [0, 1]E described by linear inequalities, representing possible distributions of the in-

spectors over the edges of the graph. The quantity qe corresponds to the probability that some

inspector is present on edge e.

Note that in this model, every user that is controlled must pay a fine. This is because the strategies of

the users are completely represented by their paths in the network. In particular, honnest users who pay a

fare chose a (sk, dk)−path P in the graph such that σe = 0 for all e ∈ P (so they are not contolled), but the

user costs we on these edges now comprise the ticket fare.

User flows and payoffs We associate the users of commodity k with a single player (called Player k). Let

Rk denote the set of paths from sk to dk in G = (V,E). Player k can choose any path R ∈ Rk, so his mixed

strategy can be interpreted as the distribution of the k−users over Rk. We denote by p̂kR the proportion of

k−users taking path R ∈ Rk.

The probability to be controlled on an edge e ∈ R is qeσe, and hence the expected number of times

Player k is subjected to a control during a trip on path R is
∑

e∈R qeσe. The total expected cost of Player k

can now be expressed as:

Payoffk(p̂, q) = −
∑

R∈Rk

p̂kR

(∑
e∈R

we + qeσeP

)
, (1)

where the first term accounts for travel and toll costs, while the second is the expected fine. Note that we

do as if evaders could be fined several times; in practice, this is only a simplifying assumption, since in most

toll networks fare evaders can be fined only once (fine receipts count as a valid proof of payment). For a

reasonable number of controllers however, the quantity
∑

e∈R qeσe can be seen as a fair approximation of

the probability πR := 1−
∏

e∈R(1− qeσe) to be controlled over R.
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Inspector’s payoff The total payoff of the controllers is obtained by summing the collected rewards and

penalties, and depend on the parameters α and β defined above:

Payoff0(p̂, q) =
∑
k

xk

∑
R∈Rk

p̂kR

(∑
e∈R

βe + αqeσeP

)
. (2)

The extreme values of α correspond to two important situations. If α = 1, the payoff defined in (2)

corresponds to the total revenues from rewards and penalties, a setting which we denote by MAXPROFIT.

If α = 0, the controller’s payoff comes from the fares only (assuming that the reward βe is a fare for edge e).

This setting, which we call MAXTOLL, might be well suited if the goal is solely to enforce the payment

of a fare. In contrast, with MAXPROFIT it might be advantageous to have a bit of evasion on certain

commodities, in order to earn money from fines. The parameter α may be seen as a parameter weighting

the objectives of MAXTOLL and MAXPROFIT, for the scalarization of a biobjective problem.

If we assume (for simplicity) that Q is the standard simplex ∆E , i.e. q ∈ Q is a probability distribution

over the edges of the graph (which can be well suited if there is a single fare inspector, who controls edge e

with probability qe), we will see in exercise 3 of Worksheet #16 that the game G is a star-shaped polymatrix

game, with the fare inspector as the central player. If we further assume that α = 1 (MAXPROFIT), then

we can rewrite G as a pairwise zero-sum polymatrix game. Hence, it is not surprising that a NE of this game

can be computed by a LP. However, with this approach we would need to enumerate all the paths R ∈ Rk,

which is not a possible option for most realistic networks. We will present a more efficient way to solve this

problem.

Modelling tricks

A public transportation network model

We assume that network users travel over a network G0 = (V0, E0) with edge costs we (representing time)

and conditional inspection risks σe. For a given commodity k = (sk, dk) ∈ K0 ⊂ V0 ×V0, Player k can either

decide to pay a fare τk (and in this case he will take the shortest path from sk to dk), or he can evade the

fare and choose an arbitrary path from sk to dk in G0.

To represent the strategies corresponding to paying the fare, we create an extended graph G with a set

of additional vertices V̄ , containing a node s̄ for every source s ∈ S = {sk : k ∈ K0} and a node ¯̄d for every

destination d ∈ D = {dk : k ∈ K0}, and a set of new edges Ē connecting these new vertices, cf. Figure 1. The

NSC game is obtained by considering the extended graph G = (V,E), where V = V0 ∪ V̄ and E = E0 ∪ Ē,

as well as the set of extended commodities K = {(s̄k, ¯̄dk) : k ∈ K0}.
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w3, σ3
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¯̄e(w1, σ1, 0)

(w2, σ2, 0)
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(w4, σ4, 0)

(0, 0, 0)

(0, 0, 0)(τ[ad] + l[ad](w), 0, τ[ad])

(0, 0, 0)

(τ[ce] + l[ce](w), 0, τ[ce])

(0, 0, 0)

Figure 1: Original transit network G0 (above), and extended structure G of the NSC game (below). The edges of G

are labelled with triples (we, σe, βe). The subset of commodities is K0 = {[ad], [ce]}, which becomes K = {[ad̄], [cē]}
in the extended graph.

We will see in exercise 2 of Worksheet #16 that it is also possible to handle the case where users can buy

a ticket for a part of their trip only.

Page 2 of 7



G. Sagnol & R. Borndörfer LV 19081: Lecture #16 Notes Feb. 12, 2014

S1

S2

S3

S4

S5

S5

S3
Noon

Afternoon

Late

Night

Early morning

Morning

S1

S2

S3

S4

S5

Figure 2: Example for a graph C connecting the control areas (lower right corner) and its associated cyclic duty
graph D (main drawing), for a time discretization of one day with T = 6 time windows. The path highlighted in red
represents the duty of a team controlling S4 during the morning, S5 at noon and S3 during the afternoon.

Spatio-temporal aspects

The models presented so far do not take time into account. This is an important challenge, since the

inspectors must move along edges of the networks and their duties must not exceed a certain length. In

consequence, the set Q = ∆E might not be well-suited to represent all possible marginal strategies of the

controller.

We consider a time discretization T = {0, . . . , T − 1} of the period of interest, typically one day, and

we make the simplifying assumption that every network user starts and ends her trip within the same time

window t ∈ T . We denote by G0 = (E0, V0) the graph representing the static problem (e.g. the public

transportation network model of last section), and we make a time extended graph G = (V,E) which

contains T parallel copies of G0: V = V0×T and E = E0×T . A commodity k in G corresponds to a pair of

nodes (sk, dk) ∈ V 2, such that sk = (u, t) and dk = (v, t) for a pair of nodes (u, v) ∈ V 2
0 and a time window

t ∈ T .

A control area S ∈ S consists of a subset of edges S ⊂ E0 (control areas might overlap). We create a

graph C = (S, A) which connects nearby control areas, i.e. (Si, Sj) ∈ A whenever it is possible for a team of

inspectors to control Si at time t and Sj at t+ 1. Again, we create a time extended version D = (S × T , Ā)

of C, which we call the cyclic duty graph, as follows:

Ā =
{(

(S, t), (S, t+ 1 mod T )
)
: ∀S ∈ S

}
⋃ {(

(S, t), (S′, t+ 1 mod T ) : ∀(S, S′) ∈ A
)}

.

We have depicted in Figure 2 a simple example for a graph C and the corresponding cyclic duty graph D.

The inspectors’ duties can be represented by paths in D. In practice, duties have a prescribed length,

for example 8 hours, which corresponds to paths of a certain length L in D. With a simple construction

(explained during the lecture), it is possible to create a modified duty graph D̃ with start and end depot

nodes ds and dt, that enjoys the property that every (ds, dt)−path corresponds to a path of length L in D.

Hence the mixed strategy of a single inspector can be represented by a (ds, dt)−flow of value one in D̃.

Now, we assume that there are γ teams of inspectors. The controller’s strategy can hence be represented
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by a (ds, dt)−flow q̃ of value γ in D̃ = (Ṽ , Ã):

∀v ∈ Ṽ ,
∑

a′∈δ+(v)

q̃a′ −
∑

a∈δ−(v)

q̃a =


γ if v = ds;

−γ if v = dt;

0 otherwise.

(3)

The vertex set of D̃ is

Ṽ = S × T × {1, . . . , L} ∪ {ds, dt},

and it can be seen that the expected number of inspectors in the control area S ∈ S at time t is

q̂(S,t) =

L∑
l=1

∑
a∈δ−(S,t,l)

q̃a. (4)

As a simple approximation we can assume that the inspectors are spread uniformly on all the arcs of a

control area, so that the an inspector on the control area S is present on edge e ∈ S with probability

κe|S =
le∑

e′∈S le′
,

where le denotes the length of edge e. It follows that the expected number of inspectors on e ∈ E0 at time t

is ∑
{S∈S:S∋e}

κe|S q̂(S,t).

If this quantity is smaller than one, it can be interpreted as the marginal probability q(e,t) to find an inspector
team on the edge (e, t) ∈ E of the time extended graph G. To summarize, the set of marginal strategies Q
of the controller can be defined by:

Q =
{
q ∈(R+)

E : ∃q̃ ∈ (R+)
Ã s.t.

(i) q̃ satisfies the flow conservation (3);

(ii) ∀(e, t) ∈ E,

q(e,t) ≤
∑

{S∈S:S∋e}

κe|S

L∑
l=1

∑
a∈δ−(S,t,l)

q̃a;

(iii) ∀(e, t) ∈ E, q(e,t) ≤ 1
}
.

To conclude this section, we briefly mention some simple extensions that can be plugged in this model

(by adapting the graph G or D̃ in an intuitive fashion):

• Several side constraints can be added in the above definition ofQ. For example, the proportion of duties

starting at night can be bounded from above, or we can bound from below the inspection frequency of

some control areas to ensure a network-wide control.

• If not all the controllers start from the same location in the network, it is possible to consider several

start and end depot nodes in the duty graph D̃.

• The possibility for a user to advance or postpone her departure (in order to travel at a time with less

controls) could be represented by adding edges in G that link the different time copies of G0, with a

cost ς for the delay.

Nash equilibrium of MAXPROFIT

The next result characterizes the best response of the network users:
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Proposition 1. Let q ∈ Q be a strategy of the controller, and denote by λk(q) the length of the shortest

path from sk to dk in the weighted graph G = (V,E, c(q)), where the weight of edge e is ce(q) = we+qeσeP .

A strategy p̂k for Player k is a best response to q if and only if −Payoffk(p̂, q) = λk(q). In other words,

best responses for Player k are flows through commodity k supported by shortest paths of G = (V,E, c(q)).

Proof. If pk is a flow of unit value through commodity k, then we have

−Payoffk(p̂, q) =
∑

R∈Rk

p̂kR
∑
e∈R

ce(q),

which is the expected length for Player k from sk to dk in the weighted graph G = (V,E, c(q)). This

expression is minimized if and only if the flow p̂k uses only shortest paths.

We next show that in the case α = 1 (MAXPROFIT), the game G has the same Nash equilibria as a

zero-sum game.

Proposition 2 (Reduction to a zero-sum game). The game G = (V,E,K,x,w,σ, P, 1,β,Q) has the

same set of Nash equilibria as the zero-sum game G′ = (V,E,K,x,w,σ, P, 1,w,Q), where the controller’s

rewards βe have been replaced by the edge costs we.

Proof. First note that the game G′ is zero-sum indeed:

PayoffG′

C (p̂, q) +
∑
k

xkPayoff
G′

k (p̂, q) = 0.

The Nash equilibria are entirely defined by the set of best responses of every player. We are going to see

that these sets coincide for G and G′, from which the conclusion follows. The payoff of Player k is the same

in both games, so it is clear that BRk(q) is the same in these two games (for all k ∈ K). Now, observe that

the set of best responses for the controller in G is

BRG
0 (p̂) = argmax

q∈Q

∑
k

xk

∑
R∈Rk

p̂kR

(∑
e∈R

βe + qeσeP

)
.

For a fixed p̂, let us add
∑

k xk

∑
R∈Rk

p̂kR
∑

e∈R(we−βe) in the function to maximize. This does not change

the set of maximizers, since the new term does not depend on q. Hence,

BRG
0 (p̂) = argmax

q∈Q

∑
k

xk

∑
R∈Rk

p̂kR

(∑
e∈R

we + qeσeP

)
= BRG′

0 (p̂).

The problem of finding a NE of G hence reduces to the problem of finding a NE of G′. In this game, a

NE strategy of the inspectors must maximize the loss of the users (because the game is zero-sum), and we

know from Proposition 1 that the loss must be equal to λk(q), so it is obtained by solving

max
q∈Q

∑
k

xkλk(q) (5)

It is a standard result from graph theory that the shortest path problem has a LP formulation, in which

the objective function must be maximized. It is obtained by introducing node potentials ysv so that the

shortest path between s and v is at least ysv. Combining these LPs with Problem (5), we obtain:
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max
q,y

∑
k∈K

xky
sk
dk

(6a)

s. t. ysv − ysu ≤ we + σeqeP, ∀s ∈ S, ∀e ≡ (u, v) ∈ E; (6b)

yss = 0, ∀s ∈ S; (6c)

q ∈ Q. (6d)

We point out that the dual variables of inequalities (6b) define a (multicommodity) flow, from which it

is possible to construct the Nash strategy p̂kR of the network users.

Computation of a Stackelberg Equilibrium (with the Inspector as

leader)

The computation of a Stackelberg equilibrium is a hard problem. It can be shown that in general, the

problem of finding a SE of a network spot-checking game G is NP-hard. Therefore, there is no hope to find

a LP formulation.

However, we next show that a SE can be computed by solving a so-called mixed integer program-

ming (MIP) problem, that is, a LP in which some of the variables are constrained to be integer-valued.

To do this, we define the arc-flow strategies

pke =
∑

R∈Rk

p̂kR,

which lie in the polyhedron defined by the following flow conservation constraints:

∑
e′∈δ+(v)

pke′ −
∑

e∈δ−(v)

pke =


1 if v = sk;

−1 if v = dk;

0 otherwise.

∀v ∈ V, ∀k ∈ K

pke ≥ 0, ∀e ∈ E, ∀k ∈ K

(7)

It is easy to see that the payoffs can be rewritten using these arc-flow strategies only:

Payoffk(p, q) = −

(∑
e∈E

pkewe +
∑
e∈E

pkeqeσeP

)
,

Payoff0(p, q) =
∑
k

xk

∑
e∈E

pke(ασeqeP + βe).

(8)

By Proposition 1, we know that the flow of Player k must be concentrated on the edges that belong to

a shortest path tree rooted in sk in the graph G = (V,E, c(q)). This can be enforced by the use of big-M

constraints. The next proposition shows how we can modify the Nash LP (6) into a general MIP for the

computation of a SE.

Page 6 of 7



G. Sagnol & R. Borndörfer LV 19081: Lecture #16 Notes Feb. 12, 2014

Proposition 3. Let (q,y,µ,ρ) be a solution of the following MIP:

max
q,y,µ,ρ

∑
k∈K

αxky
sk
dk

+
∑
s∈S

∑
e∈E

ρse(βe − αwe) (9a)

s. t.

0 ≤ we + σeqeP − (ysv − ysu) ≤ Me(1− µs
e),

∀s ∈ S, ∀e ≡ (u, v)∈E; (9b)

yss = 0, ∀s ∈ S; (9c)

q ∈ Q, (9d)

∑
e′∈δ+(v)

ρse′ −
∑

e∈δ−(v)

ρse =


∑

k∈Ks

xk if s = v;

−x(s,v) if (s, v) ∈ Ks;

0 otherwise,

∀s ∈ S, ∀v ∈ V ; (9e)

0 ≤ ρse ≤ Msµs
e, ∀s ∈ S, ∀e ∈ E; (9f)

µs
e ∈ {0, 1}, ∀(s, e) ∈ S × E. (9g)

Then, q is a Stackelberg strategy of the inspector. Moreover, a pure stackelberg strategy of the users

exists, and for all k it consists of a path R ∈ Rk of minimal length in G = (V,E, c(q)), and in case of a

tie R must be of maximal length for the weights c′e(q) := ασeqeP + βe.

Proof. First note that the second part of the proposition (pure Stackelberg strategies for the followers) is a

direct consequence of Theorem 3 in the lecture on polymatrix games.

As in Problem (6), constraints (9b)-(9c) bound yskdk
from above by the shortest path length for commod-

ity k in the graph G = (V,E, c(q)), and constraint (9d) forces q to be a feasible strategy for the controller.

We introduce a binary variable µs
e which can take the value 1 only if edge e belongs to a shortest path

tree rooted in s (second inequality in (9b) for a large constant Me). Indeed, the first inequality in (9b) is

saturated when the difference of potential (ysv − ysu) between the extreme points of an edge e ≡ (u, v) equals

the length of e, which indicates that there is a shortest path originating in s that uses e.

Equation (9e) forces ρs to be a single-source multi-sink flow rooted in s (for a large constant Ms),

whose demand on the commodity k ∈ Ks := {k ∈ K : sk = s} corresponds to the number of users xk. Con-

straint (9f) ensures that the flow ρs only uses edges from a shortest path tree rooted in s (in the weighted

graph with weights given by c(q)).
Now, ρs can be decomposed as

∑
k∈Ks

xkp
(s,dk), where p(s,dk) is a flow through commodity k of value

one. By construction, p(sk,dk) is a flow of minimal cost λk(q) =
∑

e∈E pke(we + qeσeP ), and it follows that
pk is a best response to q, see Proposition 1. Finally, the objective function (9a) rewrites to the controller’s
payoff (2) when replacing yskdk

and ρse by their values as a function of pke :∑
k∈K

αxky
sk
dk

+
∑
s∈S

∑
e∈E

ρse(βe − αwe)

=
∑
k∈K

αxk

∑
e∈E

pke(we + qeσeP )+

∑
s∈S

∑
e∈E

∑
k∈Ks

xkp
k
e(βe − αwe)

=
∑
k∈K

xk

∑
e∈E

pke(αqeσeP + βe).
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