
G. Sagnol & R. Borndörfer LV 19081: Lecture #1 Notes Oct. 16, 2013

Lecture #1 Notes Summary

• Introduction of games in extensive form (tree) and normal form (matrix).

• Notions of Nash equilibrium, best responses, and dominance.

Administration

• Grade ? 50% of the exercise points are required to be qualified to pass the exam.

• Timing: Wed, Thu

• Language: English

• E-mails

• Knowledge in Linear Programming ?

• Website:

http://www.zib.de/sagnol/vorlesungen/Vorlesung_game_theory_transportation_networks_WS1314.html

Introductive example

• Extensive form of a game: Tree games

• Necessity to define numerical payoffs

• If players are rational: reasonning by backward induction

• Extensive games can be converted to normal form games

• Never play Dominated strategies

• Nash equilibrium

Games in Extensive Form

A game in extensive form with N player P1, . . . , PN is described by a game tree T , that is, a rooted tree with

each non-terminal node labelled (owned) by a player Pi, and each leaf associated with a N-tuple of payoffs.

Definition 1 (Choice function). Let T be a game tree. A choice function c for player P is a function

that maps each node of T owned by P to one of his children c(u) = v ∈ Ch(u) (where Ch(u) denotes

the set of child nodes of u).

But with a choice function we define actions at nodes that will never be reached. So we define

Definition 2 (Strategy). A subtree S of T is said to be a strategy for player P , or a choice subtree for

P , if the following holds:

(i) If u is a node of S owned by P , then exactly one of the children of u belongs to S;

(ii) If u is a node of S owned by another player, then all the children of u are in S;
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Definition 3 (Game in extensive form). A game in extensive form is defined by a triple

Γ =
(
T, {P1, . . . , PN}, {Σ1, . . . ,ΣN}

)
, where T is a game tree, P1, . . . , PN are the players of the game

and Σi is the set of available strategies for player i

A game is of perfect information if only one player moves at a time and if each player knows every action

of the players that moved before him at every point. A way to formalize this definition is:

Definition 4 (Perfect information). A game Γ =
(
T, {P1, . . . , PN}, {Σ1, . . . ,ΣN}

)
is of perfect infor-

mation if for every player Pi, Σi is the set of all possible choice subtrees for Pi in T .

The next proposition shows that the outcome of the game is well defined if we know the strategy Si

played by each player Pi.

Proposition 1. Let Γ =
(
T, {P1, . . . , PN}, {Σ1, . . . ,ΣN}

)
be a game in extensive form. If each player

Pi chooses a choice subtree Si ∈ Σi, then the intersection of the Si’s form a path from the root of T to a

terminal node z. We denote by πi(S1, . . . , SN ) the ith component of the N−tuple payoff associated with

that vertex z.

Proof. cf. Exercise 2 of the worksheet #1.

The payoffs can be used to define an essential “solution concept” of game theory: the concept of Nash

equilibrium. Roughly speaking, it is a situation from which no player wants to depart if the others keep

playing the same strategy.

Definition 5 (Nash equilibrium). A N-tuple of strategies S∗
1 , . . . , S

∗
N ∈ Σ1 × . . . × ΣN is a Nash

equilibrium of the game iff for every i and for every strategy Si ∈ Σi,

πi(S
∗
1 , . . . , S

∗
i , . . . , S

∗
N ) ≥ πi(S

∗
1 , . . . , Si, . . . , S

∗
N ).

A crucial result from von Neumann and Morgenstern (1944) states the existence of a Nash equilibrium

for a game in extensive form with perfect information:

Theorem 2. Let Γ =
(
T, {P1, . . . , PN}, {Σ1, . . . ,ΣN}

)
be a game in extensive form. If Γ is of perfect

information, then Γ has at least one Nash equilibrium.

Proof. Proof by backward induction in the exercise 7 of the worksheet #1.

Games in normal form

Every game Γ =
(
T, {P1, . . . , PN}, {Σ1, . . . ,ΣN}

)
can be converted to a game in normal form, i.e. a game

defined by its payoff function only:

π : Σ1 × . . .× ΣN 7→ RN , π(S1, . . . , SN ) =
[
π1(S1, . . . , SN ), . . . , πN (S1, . . . , SN )

]T
Most often, we will study games in their normal form directly, without even giving their extensive form.
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Definition 6 (Game in normal form). Let X1, . . . , XN be finite sets and let π be a function that maps

the cartesian product X1 × . . .×XN to RN . Then, π is called a game in normal form with the sets of

pure strategies X1, . . . , XN .

Not all the normal form games have a Nash equilibrium, as illustrated by the game of matching coins:

P1 and P2 hold either a coin of 1$ or 5$ in their closed hand. They reveal their coin simultaneously: P1 wins

the coins if the coins are the same, while P2 wins if the coins are different.

(P1/P2 1 5

1 (1,−1) (−1, 1)

5 (−5, 5) (5,−5)

)
In order to cope with this problem, we introduce the concept of mixed strategy:

Definition 7 (Mixed strategy). A mixed strategy for Player i is a probability distribution over Σi =

(Si
1, . . . , S

i
ni
). It can be represented by a vector pi ∈ ∆ni of dimension ni, where ∆n stands for the

probability simplex

∆n :=

{
p ∈ Rn : ∀k = 1, . . . , n, pk ≥ 0,

n∑
k=1

pk = 1.

}

The value pik can be interpreted as the propability that Player Pi chooses Strategy Si
k.

The payoff function π can be extended to mixed strategies as follows:

Definition 8 (Payoff for mixed strategies). If every player Pi commits to a mixed strategy pi ∈ ∆ni
,

the expected payoff of player Pi is

π̃i(p
1, . . . ,pN ) =

∑
(k1,...,kN )

 N∏
j=1

pjkj

πi(S
1
k1
, . . . , SN

kN
),

where the sum is carried over all the possible N−tuples of strategies. With a slight abuse of notation,

we will still write π instead of π̃.

We next introduce the notion of best responses, which says what a player should play if the strategies of

the others are fixed.

Definition 9. Denote by p−i := (p1, . . . ,pi−1,pi+1, . . . ,pN ) the subprofile of mixed strategies played

by the players other than Pi. We say that pi ∈ ∆ni
is a best response to p−i if

πi(p
i,p−i) = max

q∈∆ni

πi(q,p
−i).

The set of best responses for the player Pi to the subprofile of other’s strategies p−i is denoted by

BRi(p
−i) := argmax

q∈∆ni

πi(q,p
−i).
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Proposition 3. Consider a game π with N players, and let p−i := (p1, . . . ,pi−1,pi+1, . . . ,pN ) be the

subprofile of mixed strategies played by the players other than Pi.

(i) Player Pi has always a pure strategy Si
k that is a best response to p−i.

(ii) If the pure strategies of Pi in best response relationship to p−i are (Si
k1
, Si

k2
, . . . , Si

kr
), then the set

of best responses BRi(p
−i) is the set of mixtures of the pure strategies (Si

k1
, Si

k2
, . . . , Si

kr
). In other

words, BRi(p
−i) is a nonempty convex polytope whose extreme points are the pure best response

strategies to p−i.

Proof. cf. Exercise 6 of the worksheet #1.

The concept of Nash equilibrium can be translated to mixed strategies in a straightforward way, and we

give an equivalent definition in terms of best responses:

Definition 10 (Nash equilibrium in mixed strategies). Consider a game π with N players, where

every player Pi has the choice between ni pure strategies. A N-tuple of mixed strategies p1
∗, . . . ,p

N
∗ ∈

∆n1
× . . .×∆nN

is a Nash equilibrium of the game iff for every i and for every strategy pi ∈ ∆ni
,

πi(p
1
∗, . . . ,p

i
∗, . . . ,p

N
∗ ) ≥ πi(p

1
∗, . . . ,p

i, . . . ,pN
∗ ).

In other words, for every player Pi the strategy pi
∗ is a best response to the subprofile of other players’

strategies:

∀i = 1, . . . , N, pi
∗ ∈ BRi(p

−i
∗ )

A fundamental result of Nash (1951) is the following. We omit his proof, which is not constructive and

based on the Brouwer fixed-point theorem.

Theorem 4 (Existence of a mixed Nash equilibrium). Let π be a N-player game in normal form. Then

there exists at least one Nash equilibrium of mixed strategies.

An important notion of game theory is the relation of dominance, which can be used to eliminate irrelevant

pure strategies (and hence reduce the size of the game).

Definition 11 (Dominance). Let π be a game given in normal form.

• A Strategy S∗
i of Player Pi strongly dominates S′

i iff for all strategies S1, . . . , Si−1, Si+1, . . . , SN of

the other players,

πi(S1, . . . , S
∗
i , . . . , SN ) > πi(S1, . . . , S

′
i, . . . , SN ).

• A Strategy S∗
i weakly dominates S′

i iff for all strategies S−i :=
(
S1, . . . , Si−1, Si+1, . . . , SN

)
of the

other players,

πi(S
∗
i , S−i) ≥ πi(S

′
i, S−i),

and the inequality is strict for at least one subprofile S−i of other players’ strategies.

• A Strategy Si ∈ Σi is called strongly (resp. weakly) dominant if it strongly (resp. weakly) domi-

nates all the other available strategies S′
i ∈ Σi.

• A Strategy Si ∈ Σi is called strongly (resp. weakly) dominated if there exists another strategy

S′
i ∈ Σi that strongly (resp. weakly) dominates it.
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Proposition 5. Consider a N−player game π.

(i) If player Pi has a strongly dominated strategy Si
k, and (p1, . . . ,pN ) is a mixed Nash equilibrium,

then pik = 0. In particular, Si
k cannot be part of any pure Nash equilibrium.

(ii) If player Pi has a strongly dominant strategy Si
k, and (p1, . . . ,pN ) is a mixed Nash equilibrium,

then pik = 1. In particular, the pure strategy Si
k must be part of every pure Nash equilibrium of the

game.

(iii) If player Pi has a weakly dominated strategy Si
k, then there exists a mixed Nash equilibrium

(p1, . . . ,pN ) such that pik = 0.

Proof. (i) Assume without loss of generality that i = 1, and that the strategy S1
2 of player P1 is strongly

dominated by S1
1 . Let (p1, . . . ,pN ) be a (mixed) Nash equilibrium of the game. For all choice

[k] = (k2, . . . , kN ) of strategy indices for the other players P2, . . . , PN , we define S−1
[k] = (S2

k2
, . . . , SN

kN
)

and p[k] =
∏N

i=2 p
i
ki
.

With this notation, the expected payoff of player P1 can be written as

π1(p
1, . . . ,pN ) =

n1∑
j=1

p1j
∑
[k]

p[k] π1(S
1
j , S

−1
[k] )︸ ︷︷ ︸

αj

,

where the sum over j goes over the n1 pure strategies of P1 and the sum over [k] goes over all possible

(N − 1)-tuples of strategies for the other players. Since S1
2 is strongly dominated by S1

1 , for all S
−1
[k] we

have π1(S
1
2 , S

−1
[k] ) < π1(S

1
1 , S

−1
[k] ). Clearly, p[k] must be positive for at least one index [k], so we have

α2 < α1. Finally, we know that p1 is a best response to (p2, . . . ,pN ). This means that p1 maximizes∑
j p

1
jαj over ∆n1 . So p1 cannot gives a positive weight to α2 < α1, i.e. p

1
2 = 0.

(ii) If Si
k is dominant, then the other strategies Si

1, . . . , S
i
k−1, S

i
k+1, . . . , S

i
ni

of player Pi are dominated. So

if (p1, . . . ,pN ) be a (mixed) Nash equilibrium of the game, then by point (i) we know that pi1 = . . . =

pik−1 = pik+1 = . . . = pini
= 0, which implies pik = 1.

(iii) cf. Exercise 4 of the worksheet #1.
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