Lecture #1 Notes Summary

- Introduction of games in extensive form (tree) and normal form (matrix).
- Notions of Nash equilibrium, best responses, and dominance.

Administration

- Grade ? 50% of the exercise points are required to be qualified to pass the exam.
- Timing: Wed, Thu
- Language: English
- E-mails
- Knowledge in Linear Programming ?
- Website: http://www.zib.de/sagnol/vorlesungen/Vorlesung_game_theory_transportation_networks_WS1314.html

Introductive example

- Extensive form of a game: Tree games
- Necessity to define numerical payoffs
- If players are rational: reasonning by backward induction
- Extensive games can be converted to normal form games
- Never play Dominated strategies
- Nash equilibrium

Games in Extensive Form

A game in extensive form with N player P_1, \ldots, P_N is described by a game tree T, that is, a rooted tree with each non-terminal node labelled (*owned*) by a player P_i , and each leaf associated with a N-tuple of payoffs.

Definition 1 (Choice function). Let T be a game tree. A choice function c for player P is a function that maps each node of T owned by P to one of his children $c(u) = v \in Ch(u)$ (where Ch(u) denotes the set of child nodes of u).

But with a choice function we define actions at nodes that will never be reached. So we define

Definition 2 (Strategy). A subtree S of T is said to be a *strategy* for player P, or a *choice subtree* for P, if the following holds:

- (i) If u is a node of S owned by P, then exactly one of the children of u belongs to S;
- (ii) If u is a node of S owned by another player, then all the children of u are in S;

Definition 3 (Game in extensive form). A game in extensive form is defined by a triple $\Gamma = (T, \{P_1, \ldots, P_N\}, \{\Sigma_1, \ldots, \Sigma_N\})$, where T is a game tree, P_1, \ldots, P_N are the players of the game and Σ_i is the set of available strategies for player i

A game is *of perfect information* if only one player moves at a time and if each player knows every action of the players that moved before him at every point. A way to formalize this definition is:

Definition 4 (Perfect information). A game $\Gamma = (T, \{P_1, \ldots, P_N\}, \{\Sigma_1, \ldots, \Sigma_N\})$ is of *perfect information* if for every player P_i, Σ_i is the set of all possible choice subtrees for P_i in T.

The next proposition shows that the outcome of the game is well defined if we know the strategy S_i played by each player P_i .

Proposition 1. Let $\Gamma = (T, \{P_1, \ldots, P_N\}, \{\Sigma_1, \ldots, \Sigma_N\})$ be a game in extensive form. If each player P_i chooses a choice subtree $S_i \in \Sigma_i$, then the intersection of the S_i 's form a path from the root of T to a terminal node z. We denote by $\pi_i(S_1, \ldots, S_N)$ the *i*th component of the N-tuple payoff associated with that vertex z.

Proof. cf. Exercise 2 of the worksheet #1.

The payoffs can be used to define an essential "solution concept" of game theory: the concept of Nash equilibrium. Roughly speaking, it is a situation from which no player wants to depart if the others keep playing the same strategy.

Definition 5 (Nash equilibrium). A N-tuple of strategies $S_1^*, \ldots, S_N^* \in \Sigma_1 \times \ldots \times \Sigma_N$ is a Nash equilibrium of the game iff for every *i* and for every strategy $S_i \in \Sigma_i$,

$$\pi_i(S_1^*,\ldots,S_i^*,\ldots,S_N^*) \ge \pi_i(S_1^*,\ldots,S_i,\ldots,S_N^*).$$

A crucial result from von Neumann and Morgenstern (1944) states the existence of a Nash equilibrium for a game in extensive form with perfect information:

Theorem 2. Let $\Gamma = (T, \{P_1, \ldots, P_N\}, \{\Sigma_1, \ldots, \Sigma_N\})$ be a game in extensive form. If Γ is of perfect information, then Γ has at least one Nash equilibrium.

Proof. Proof by backward induction in the exercise 7 of the worksheet #1.

Games in normal form

Every game $\Gamma = (T, \{P_1, \ldots, P_N\}, \{\Sigma_1, \ldots, \Sigma_N\})$ can be converted to a *game in normal form*, i.e. a game defined by its payoff function only:

$$\boldsymbol{\pi}: \Sigma_1 \times \ldots \times \Sigma_N \mapsto \mathbb{R}^N, \qquad \boldsymbol{\pi}(S_1, \ldots, S_N) = \left[\pi_1(S_1, \ldots, S_N), \ldots, \pi_N(S_1, \ldots, S_N)\right]^T$$

Most often, we will study games in their normal form directly, without even giving their extensive form.

Not all the normal form games have a Nash equilibrium, as illustrated by the game of matching coins: P_1 and P_2 hold either a coin of 1\$ or 5\$ in their closed hand. They reveal their coin simultaneously: P_1 wins the coins if the coins are the same, while P_2 wins if the coins are different.

$$\begin{array}{cccc}
P_1/P_2 & 1 & 5 \\
1 & (1,-1) & (-1,1) \\
5 & (-5,5) & (5,-5)
\end{array}$$

In order to cope with this problem, we introduce the concept of mixed strategy:

Definition 7 (Mixed strategy). A mixed strategy for Player *i* is a probability distribution over $\Sigma_i = (S_1^i, \ldots, S_{n_i}^i)$. It can be represented by a vector $\mathbf{p}^i \in \Delta_{n_i}$ of dimension n_i , where Δ_n stands for the probability simplex

$$\Delta_n := \left\{ \boldsymbol{p} \in \mathbb{R}^n : \forall k = 1, \dots, n, \ p_k \ge 0, \qquad \sum_{k=1}^n p_k = 1. \right\}$$

The value p_k^i can be interpreted as the propability that Player P_i chooses Strategy S_k^i .

The payoff function π can be extended to mixed strategies as follows:

Definition 8 (Payoff for mixed strategies). If every player P_i commits to a mixed strategy $p^i \in \Delta_{n_i}$, the expected payoff of player P_i is

$$\tilde{\pi}_i(\boldsymbol{p^1},\ldots,\boldsymbol{p^N}) = \sum_{(k_1,\ldots,k_N)} \left(\prod_{j=1}^N p_{k_j}^j\right) \pi_i(S_{k_1}^1,\ldots,S_{k_N}^N),$$

where the sum is carried over all the possible N-tuples of strategies. With a slight abuse of notation, we will still write π instead of $\tilde{\pi}$.

We next introduce the notion of *best responses*, which says what a player should play if the strategies of the others are fixed.

Definition 9. Denote by $p^{-i} := (p^1, \ldots, p^{i-1}, p^{i+1}, \ldots, p^N)$ the subprofile of mixed strategies played by the players other than P_i . We say that $p^i \in \Delta_{n_i}$ is a *best response* to p^{-i} if

$$\pi_i(\boldsymbol{p^i}, \boldsymbol{p^{-i}}) = \max_{\boldsymbol{q} \in \Delta_{n_i}} \pi_i(\boldsymbol{q}, \boldsymbol{p^{-i}}).$$

The set of best responses for the player P_i to the subprofile of other's strategies p^{-i} is denoted by

$$BR_i(\boldsymbol{p^{-i}}) := \underset{\boldsymbol{q} \in \Delta_{n_i}}{\operatorname{arg\max}} \ \pi_i(\boldsymbol{q}, \boldsymbol{p^{-i}}).$$

Proposition 3. Consider a game π with N players, and let $p^{-i} := (p^1, \ldots, p^{i-1}, p^{i+1}, \ldots, p^N)$ be the subprofile of mixed strategies played by the players other than P_i .

- (i) Player P_i has always a pure strategy S_k^i that is a best response to p^{-i} .
- (ii) If the pure strategies of P_i in best response relationship to \mathbf{p}^{-i} are $(S_{k_1}^i, S_{k_2}^i, \ldots, S_{k_r}^i)$, then the set of best responses $BR_i(\mathbf{p}^{-i})$ is the set of mixtures of the pure strategies $(S_{k_1}^i, S_{k_2}^i, \ldots, S_{k_r}^i)$. In other words, $BR_i(\mathbf{p}^{-i})$ is a nonempty convex polytope whose extreme points are the pure best response strategies to \mathbf{p}^{-i} .

Proof. cf. Exercise 6 of the worksheet #1.

The concept of Nash equilibrium can be translated to mixed strategies in a straightforward way, and we give an equivalent definition in terms of best responses:

Definition 10 (Nash equilibrium in mixed strategies). Consider a game π with N players, where every player P_i has the choice between n_i pure strategies. A N-tuple of mixed strategies $p_*^1, \ldots, p_*^N \in \Delta_{n_1} \times \ldots \times \Delta_{n_N}$ is a Nash equilibrium of the game iff for every i and for every strategy $p_i \in \Delta_{n_i}$,

$$\pi_i(\boldsymbol{p}_*^1,\ldots,\boldsymbol{p}_*^i,\ldots,\boldsymbol{p}_*^N) \geq \pi_i(\boldsymbol{p}_*^1,\ldots,\boldsymbol{p}_*^i,\ldots,\boldsymbol{p}_*^N).$$

In other words, for every player P_i the strategy p_*^i is a *best response* to the subprofile of other players' strategies:

$$\forall i = 1, \ldots, N, \quad \boldsymbol{p}_*^i \in BR_i(\boldsymbol{p}_*^{-i})$$

A fundamental result of Nash (1951) is the following. We omit his proof, which is not constructive and based on the Brouwer fixed-point theorem.

Theorem 4 (Existence of a mixed Nash equilibrium). Let π be a N-player game in normal form. Then there exists at least one Nash equilibrium of mixed strategies.

An important notion of game theory is the relation of dominance, which can be used to eliminate irrelevant pure strategies (and hence reduce the size of the game).

Definition 11 (Dominance). Let π be a game given in normal form.

• A Strategy S_i^* of Player P_i strongly dominates S_i' iff for all strategies $S_1, \ldots, S_{i-1}, S_{i+1}, \ldots, S_N$ of the other players,

 $\pi_i(S_1, \dots, S_i^*, \dots, S_N) > \pi_i(S_1, \dots, S_i', \dots, S_N).$

• A Strategy S_i^* weakly dominates S_i' iff for all strategies $S_{-i} := (S_1, \ldots, S_{i-1}, S_{i+1}, \ldots, S_N)$ of the other players,

$$\pi_i(S_i^*, S_{-i}) \ge \pi_i(S_i', S_{-i}),$$

and the inequality is strict for at least one subprofile S_{-i} of other players' strategies.

- A Strategy $S_i \in \Sigma_i$ is called strongly (resp. weakly) dominant if it strongly (resp. weakly) dominates all the other available strategies $S'_i \in \Sigma_i$.
- A Strategy $S_i \in \Sigma_i$ is called strongly (resp. weakly) *dominated* if there exists another strategy $S'_i \in \Sigma_i$ that strongly (resp. weakly) dominates it.

Proposition 5. Consider a N-player game π .

- (i) If player P_i has a strongly dominated strategy S_k^i , and (p^1, \ldots, p^N) is a mixed Nash equilibrium, then $p_k^i = 0$. In particular, S_k^i cannot be part of any pure Nash equilibrium.
- (ii) If player P_i has a strongly dominant strategy S_k^i , and (p^1, \ldots, p^N) is a mixed Nash equilibrium, then $p_k^i = 1$. In particular, the pure strategy S_k^i must be part of every pure Nash equilibrium of the game.
- (iii) If player P_i has a weakly dominated strategy S_k^i , then there exists a mixed Nash equilibrium (p^1, \ldots, p^N) such that $p_k^i = 0$.
- *Proof.* (i) Assume without loss of generality that i = 1, and that the strategy S_2^1 of player P_1 is strongly dominated by S_1^1 . Let (p^1, \ldots, p^N) be a (mixed) Nash equilibrium of the game. For all choice $[k] = (k_2, \ldots, k_N)$ of strategy indices for the other players P_2, \ldots, P_N , we define $S_{[k]}^{-1} = (S_{k_2}^2, \ldots, S_{k_N}^N)$ and $p_{[k]} = \prod_{i=2}^N p_{k_i}^i$.

With this notation, the expected payoff of player P_1 can be written as

$$\pi_1(\boldsymbol{p}^1, \dots, \boldsymbol{p}^N) = \sum_{j=1}^{n_1} p_j^1 \underbrace{\sum_{[k]} p_{[k]} \pi_1(S_j^1, S_{[k]}^{-1})}_{\alpha_j},$$

where the sum over j goes over the n_1 pure strategies of P_1 and the sum over [k] goes over all possible (N-1)-tuples of strategies for the other players. Since S_2^1 is strongly dominated by S_1^1 , for all $S_{[k]}^{-1}$ we have $\pi_1(S_2^1, S_{[k]}^{-1}) < \pi_1(S_1^1, S_{[k]}^{-1})$. Clearly, $p_{[k]}$ must be positive for at least one index [k], so we have $\alpha_2 < \alpha_1$. Finally, we know that p_1 is a best response to (p^2, \ldots, p^N) . This means that p_1 maximizes $\sum_j p_j^1 \alpha_j$ over Δ_{n_1} . So p_1 cannot gives a positive weight to $\alpha_2 < \alpha_1$, i.e. $p_2^1 = 0$.

- (ii) If S_k^i is dominant, then the other strategies $S_1^i, \ldots, S_{k-1}^i, S_{k+1}^i, \ldots, S_{n_i}^i$ of player P_i are dominated. So if $(\mathbf{p^1}, \ldots, \mathbf{p^N})$ be a (mixed) Nash equilibrium of the game, then by point (i) we know that $p_1^i = \ldots = p_{k-1}^i = p_{k+1}^i = \ldots = p_{n_i}^i = 0$, which implies $p_k^i = 1$.
- (iii) cf. Exercise 4 of the worksheet #1.