Lecture #2 Notes Summary

- Zero-Sum matrix games: Saddle points, Minimax theorem
- Bimatrix games: Classical examples, graphical method to find mixed equilibria of 2×2 -games

A game in normal form with two players is called a bimatrix game. The reason is that player when P_1 has m strategies and player P_2 has n strategies, the payoff function π can be given by a pair of $m \times n$ matrices.

The game of matching coins presented in the first lecture

P_1/P_2	1	5
1	((1, -1))	(-1,1)
5	$\binom{(1,-1)}{(-5,5)}$	(5, -5)

can be represented by a pair of matrices (A, B), where $A = \begin{pmatrix} 1 & -1 \\ -5 & 5 \end{pmatrix}$ contains the payoffs π_1 of the first

player and $B = \begin{pmatrix} -1 & 1 \\ 5 & -5 \end{pmatrix}$ contains the payoffs of the second player.

Matrix Games (or Two-Player Zero-sum Games)

If A + B = 0 (as this is the case for the game of matchnig coins), the game is called a *zero-sum* game. So we only need to give the matrix A to define the payoff function π of this game.

Definition 1 (Matrix game). A *matrix game* with the matrix A of size $m \times n$ is a zero-sum game with two players, such that:

- the player P_1 has m strategies: $\Sigma_1 = \{S_1^1, \ldots, S_m^1\}$
- the player P_2 has *n* strategies: $\Sigma_2 = \{S_1^2, \ldots, S_n^2\}$
- the payoff function is defined by $\pi_1(S_i^1, S_j^2) = A_{i,j}$ (and $\pi_2(S_i^1, S_j^2) = -A_{i,j}$).

We say that P_1 is the row player or the max player (she selects a row *i* of the matrix and wants to maximize $A_{i,j}$), while P_2 is the column player or the min player (she selects a column *j* of the matrix and wants to minimize $A_{i,j}$).

Proposition 1. Let A be a matrix game. If player P_1 commits to the mixed strategy $\mathbf{p} \in \Delta_m$ and player P_2 commits to the mixed strategy $\mathbf{q} \in \Delta_n$, then the expected payoff of player P_1 is

$$\pi_1(\boldsymbol{p}, \boldsymbol{q}) = \sum_{i=1}^m \sum_{j=1}^n p_i q_j A_{i,j} = \boldsymbol{p}^T A \boldsymbol{q}.$$

Proof. Use the definition of expected payoffs and rewrite the expression with matrix notation.

For matrix games, a pure Nash equilibrium is called a *saddle point* of a matrix.

Definition 2 (Saddle point). Let A be a $m \times n$ -matrix. An entry $A_{p,q}$ of A is a saddle point of A is $A_{p,q}$ is simultaneously a maximum in the column q and a minimum in the row p.

#1

Saddle points of following matrices are boxed:

$$\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ \hline 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 2 & 2 \\ 2 & 1 & 1 \\ 3 & 2 & 2 \end{pmatrix}$$

Theorem 2. If $M_{i,j}$ and $M_{k,l}$ are saddle points of M, then $M_{i,l}$ and $M_{k,j}$ are also saddle points and

$$M_{i,j} = M_{k,l} = M_{i,l} = M_{k,j}.$$

Proof. $M_{i,j}$ is a maximum of column j, so $M_{k,j} \leq M_{i,j}$, and it is also a minimum of row i, so $M_{i,j} \leq M_{i,l}$. $M_{k,l}$ is a maximum of column l, so $M_{i,l} \leq M_{k,l}$, and it is also a minimum of row k, so $M_{k,l} \leq M_{k,j}$. Thus, we have

$$M_{k,j} \le M_{i,j} \le M_{i,l} \le M_{k,l} \le M_{k,j},$$

which shows that these 4 values are equal. In particular, $M_{i,l} = M_{i,j}$ is a minimum in row *i*, and $M_{i,l} = M_{k,l}$ is a maximum in column *l*, so $M_{i,l}$ is a saddle point. Similarly we can see that $M_{k,j}$ is a saddle point. \Box

Definition 3 (maximin values). The maximin and minimax values of M are defined respectively as

$$\mu_r(M) = \max_i \min_j M_{i,j}$$
$$\mu_c(M) = \min_i \max_j M_{i,j}$$

A strategy S_i^1 of the row player is called *maximin pure strategy* if $\min_j M_{i,j} = \mu_r(M)$. A strategy S_j^2 of the column player is called *minimax pure strategy* if $\max_i M_{i,j} = \mu_c(M)$.

Theorem 3. For any matrix M,

 $\mu_r(M) \le \mu_c(M).$

Moreover $\mu_r(M) = \mu_c(M)$ if and only if M has a saddle point.

Proof. For every $l \in \{1, \ldots, n\}$, we have $\mu_r(M) = \max_i \min_j M_{i,j} \le \max_i M_{i,l}$. Hence,

$$\mu_r(M) \le \min_i \max_i M_{i,l} = \mu_c(M)$$

Now, let $M_{p,q}$ be a saddle point. We have $\max_i M_{i,q} = M_{p,q}$ and so $\mu_c(M) \leq M_{p,q}$. Similarly, $\min_j M_{p,j} = M_{p,q}$ implies $\mu_r(M) \geq M_{p,q}$. So we have $\mu_c(M) \leq \mu_r(M)$, which proves the first side of the equivalence.

Conversely, assume that $\mu_c(M) = \mu_r(M)$. Choose a maximin pure strategy with the index p and a minimax pure strategy with the index q. We have $\mu_r(M) = \min_j M_{p,j}$, and let l be an index such that $M_{p,l} = \mu_r(M) = \mu_c(M)$. Since the column q is minimax, we have $\mu_c(M) = \max_i M_{i,q}$. Thus $M_{p,l} = \max_i M_{i,q} \geq M_{p,q}$, but l has be chosen so that $M_{p,l}$ is a minimum in its row, so $M_{p,l} = M_{p,q}$ and $M_{p,q}$ is also a minimum in its row. Finally,

$$M_{p,q} = M_{p,l} = \max_{i} M_{i,q}$$

is a maximum in its column, and so $M_{p,q}$ is a saddle point.

We are now going to define the counterpart of maximin values for mixed strategies:

#1

Definition 4 (row and column values). The row and column values of a matrix $M \in \mathbb{R}^{m \times n}$ are defined respectively as

$$v_r(M) = \max_{\boldsymbol{p} \in \Delta_m} \min_{\boldsymbol{q} \in \Delta_n} \boldsymbol{p}^T M \boldsymbol{q} = \max_{\boldsymbol{p} \in \Delta_m} \min_j \left(\boldsymbol{p}^T M \right)_j$$
$$v_c(M) = \min_{\boldsymbol{q} \in \Delta_n} \max_{\boldsymbol{p} \in \Delta_m} \boldsymbol{p}^T M \boldsymbol{q} = \min_{\boldsymbol{q} \in \Delta_n} \max_i \left(M \boldsymbol{q} \right)_i$$

A mixed strategy \boldsymbol{p} of the row player is called *optimal* if $\min_{j} (\boldsymbol{p}^{T} M)_{j} = v_{r}(M)$. A mixed strategy \boldsymbol{q} of the column player is called *optimal* if $\max_{i} (M\boldsymbol{q})_{i} = v_{c}(M)$.

Theorem 4. Let \bar{p} and \bar{q} be optimal strategies of the row and column players for a matrix game M. Then,

$$\mu_r(M) \le v_r(M) \le \bar{\boldsymbol{p}}^T M \bar{\boldsymbol{q}} \le v_c(M) \le \mu_c(M).$$

Proof. cf. Exercise 2 of the Worksheet #2.

Theorem 5 (minimax theorem). Let M be a $m \times n$ matrix game. Then the row and the column players have optimal mixed strategies \bar{p} and \bar{q} , and the row and column values of the game are equal:

$$v_r(M) = \bar{\boldsymbol{p}}^T M \bar{\boldsymbol{q}} = v_c(M)$$

The common row and column values define the value of the game, which we denote by v(M).

Proof. We know from the existence theorem of Nash (cf. first Lecture) that a Nash equilibrium (p^*, q^*) exists. So q^* is a best response to p^* , i.e. $p^{*T}Mq^* = \min_{q \in \Delta_n} p^{*T}Mq$. Combining this equality with

$$\min_{\boldsymbol{q}\in\Delta_n} \boldsymbol{p^*}^T M \boldsymbol{q} \le \max_{\boldsymbol{p}\in\Delta_m} \min_{\boldsymbol{q}\in\Delta_n} \boldsymbol{p}^T M \boldsymbol{q} = v_r(M)$$

we obtain $\boldsymbol{p^*}^T M \boldsymbol{q^*} \leq v_r(M)$. Similarly, $\boldsymbol{p^*}$ is a best response to $\boldsymbol{q^*}$ yields $\boldsymbol{p^*}^T M \boldsymbol{q^*} \geq v_c(M)$.

Now, note that optimal strategies \bar{p} and \bar{q} for the row and column player exist (optimization of a continuous function over a compact set). So we can apply Theorem 4, and we obtain:

$$v_r(M) \leq \bar{\boldsymbol{p}}^T M \bar{\boldsymbol{q}} \leq v_c(M) \leq {\boldsymbol{p}^*}^T M {\boldsymbol{q}^*} \leq v_r(M),$$

which proves that all these values are equal.

Corollary 6. Let M be a $m \times n$ matrix game. The following statements are equivalent.

- (i) (p*, q*) is a pair of optimal strategies;
 (ii) (p*, q*) is a Nash equilibrium.

Proof. (i) \Rightarrow (ii) : If (\bar{p}, \bar{q}) are optimal, then $\min_{q \in \Delta_n} \bar{p}^T M q = v_r(M) = \bar{p}^T M \bar{q}$, so \bar{q} is a minimizer of $\bar{p}^T M q$ over Δ_n , i.e. $\bar{q} \in BR_2(\bar{p})$. Similarly, $\max_{p \in \Delta_n} p^T M \bar{q} = v_c(M) = \bar{p}^T M \bar{q}$ tells us that $\bar{p} \in BR_1(\bar{q})$.

 $(ii) \Rightarrow (i)$: If (p^*, q^*) is a Nash equilibrium, then $p^* \in BR_1(q^*)$ implies

$$\boldsymbol{p^*}^T M \boldsymbol{q^*} = \max_{\boldsymbol{p} \in \Delta_m} \boldsymbol{p}^T M \boldsymbol{q^*},$$

Rock Paper Scissors

and we know that $p^{*T}Mq^* = v(M) = v_c(M)$. So q^* is an optimal strategy of the column player. Similarly, $q^* \in BR_2(p^*)$ implies $v_r(M) = v(M) = p^{*T}Mq^* = \min_{q \in \Delta_n} p^{*T}Mq$, which tells that p^* is an optimal strategy for the row player.

We also have a result which is the counterpart of Theorem 2 for mixed strategies:

Corollary 7. If p and r are both optimal strategies of the row player, and q and s are both optimal for the column player, then

$$\boldsymbol{p}^T M \boldsymbol{q} = \boldsymbol{p}^T M \boldsymbol{s} = \boldsymbol{r}^T M \boldsymbol{q} = \boldsymbol{r}^T M \boldsymbol{s}.$$

Proof. Clear from the minimax theorem, and all these payoffs must be equal to v(M).

We next define symmetric games, which are games in which both players are indistinguishable.

 $P_1 / P_2 = \mathbf{R}$

Definition 5 (symmetric game). A matrix game is called symmetric if the matrix M of the game is skew-symmetric $(M = -M^T)$.

Theorem 8. The value of a symmetric game is zero.	Moreover if p is optimal for the first player, then p	
is also an optimal strategy for the column player		

 $\begin{array}{c} R \\ P \\ S \end{array} \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$

Proof. Let p be optimal for the row player, i.e. p maximizes

$$\min_{j} (\boldsymbol{p}^{T} \boldsymbol{M})_{j} = \min_{j} (\boldsymbol{M}^{T} \boldsymbol{p})_{j} = \min_{j} - (\boldsymbol{M} \boldsymbol{p})_{j} = -\max_{j} (\boldsymbol{M} \boldsymbol{p})_{j},$$

so \boldsymbol{p} minimizes $\max_i (M\boldsymbol{p})_i$, i.e. \boldsymbol{p} is optimal for the column player.

 \boldsymbol{p} minimizes $\max_j(M\boldsymbol{p})_j$, i.e. \boldsymbol{p} is optimal for the column player. The value of the game is thus $\boldsymbol{p}^T M \boldsymbol{p} = \sum_{i,j} p_i p_j M_{i,j} = \sum_{i < j} p_i p_j M_{i,j} + \sum_{\substack{j < i \\ --\sum_{i < j} p_i p_i M_{i,j}}} p_i p_j M_{i,j} = 0.$

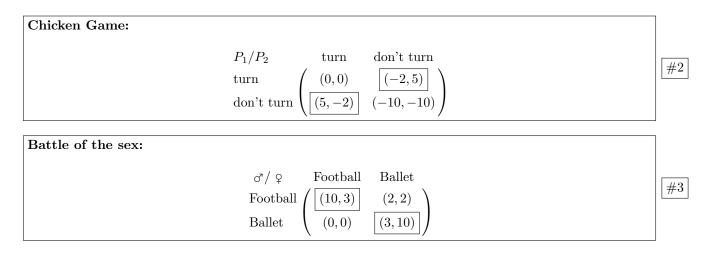
Bimatrix Games (or Two-Player Non-Zero-Sum Games)

In non-zero-sum games, the situation is not so clear anymore. We will see that Nash equilibria might lead to situations that are *bad* for both players. Moreover, using Nash equilibria to predict the outcome of the game is perilous, since several equilibria might coexist and the problem of selecting a Nash equilibrium is challenging.

Prisoner's Dilemma: plead guilty accuse the other one P_1/P_2 plead guilty $\begin{pmatrix} (-2,-2) & (-10,-1) \\ (-1,-10) & (-5,-5) \end{pmatrix}$

#1

#2



Graphical method to find the Nash equilibria of $2\times 2-$ bimatrix games

Define the sets

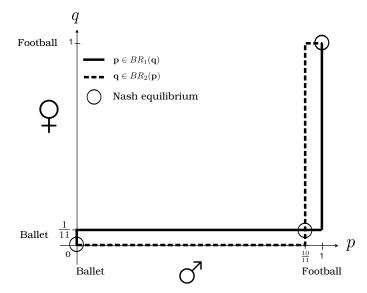
 $S_1 = \{ (\boldsymbol{p}, \boldsymbol{q}) \in \Delta_m \times \Delta_n : \boldsymbol{p} \in BR_1(\boldsymbol{q}) \}$ $S_2 = \{ (\boldsymbol{p}, \boldsymbol{q}) \in \Delta_m \times \Delta_n : \boldsymbol{q} \in BR_2(\boldsymbol{p}) \}$

By definition, the set of Nash equilibria is $S_1 \cap S_2$. For $2 \times 2-$ bimatrix games, these sets can be plotted in the square $[0,1] \times [0,1]$.

Consider the game of Battle of Sex (Example #3). We write $\boldsymbol{p} = [p, 1-p]^T \in \Delta_2$ and $\boldsymbol{q} = [q, 1-q]^T \in \Delta_2$. For the male player, the strategy *Football* is a best response to \boldsymbol{q} iff $10q + 2(1-q) \ge 3(1-q) \Leftrightarrow q \ge \frac{1}{11}$. Similarly *Ballet* is a best response to \boldsymbol{q} iff $q \le \frac{1}{11}$.

Now for the female player, the strategy *Football* is a best response to p iff $3p \ge 2p + 10(1-p) \Leftrightarrow p \ge \frac{10}{11}$. Similarly *Ballet* is a best response to p iff $p \le \frac{10}{11}$.

We know that the set of best responses are the convex hull of the pure best responses. So if $q \leq \frac{1}{11}$, every $p \in \Delta_2$ is a best response to q. Similarly $BR_2([\frac{10}{11}, \frac{1}{11}]^T) = \Delta_2$. The best responses sets are displayed on the following plot:



This shows that this bi-matrix game has two pure equilibria (Football, Football), (Ballet, Ballet) and one mixed equilibrium $\left(\left[\frac{10}{11}, \frac{1}{11}\right]^T, \left[\frac{1}{11}, \frac{10}{11}\right]^T\right)$.

#4