
G. Sagnol & R. Borndörfer LV 19081: Lecture #2 Notes Oct. 23, 2013

Lecture #2 Notes Summary

• Zero-Sum matrix games: Saddle points, Minimax theorem

• Bimatrix games: Classical examples, graphical method to find mixed equilibria of 2× 2−games

A game in normal form with two players is called a bimatrix game. The reason is that player when P1 has

m strategies and player P2 has n strategies, the payoff function π can be given by a pair of m× n matrices.

The game of matching coins presented in the first lecture

(P1/P2 1 5

1 (1,−1) (−1, 1)

5 (−5, 5) (5,−5)

)

can be represented by a pair of matrices (A,B), where A =

(
1 −1

−5 5

)
contains the payoffs π1 of the first

player and B =

(
−1 1

5 −5

)
contains the payoffs of the second player.

#1

Matrix Games (or Two-Player Zero-sum Games)

If A + B = 0 (as this is the case for the game of matchnig coins), the game is called a zero-sum game. So

we only need to give the matrix A to define the payoff function π of this game.

Definition 1 (Matrix game). A matrix game with the matrix A of size m×n is a zero-sum game with

two players, such that:

• the player P1 has m strategies: Σ1 = {S1
1 , . . . , S

1
m}

• the player P2 has n strategies: Σ2 = {S2
1 , . . . , S

2
n}

• the payoff function is defined by π1(S
1
i , S

2
j ) = Ai,j (and π2(S

1
i , S

2
j ) = −Ai,j).

We say that P1 is the row player or the max player (she selects a row i of the matrix and wants to

maximize Ai,j), while P2 is the column player or the min player (she selects a column j of the matrix

and wants to minimize Ai,j).

Proposition 1. Let A be a matrix game. If player P1 commits to the mixed strategy p ∈ ∆m and player

P2 commits to the mixed strategy q ∈ ∆n, then the expected payoff of player P1 is

π1(p, q) =

m∑
i=1

n∑
j=1

piqjAi,j = pTAq.

Proof. Use the definition of expected payoffs and rewrite the expression with matrix notation.

For matrix games, a pure Nash equilibrium is called a saddle point of a matrix.

Definition 2 (Saddle point). Let A be a m× n−matrix. An entry Ap,q of A is a saddle point of A is

Ap,q is simultaneously a maximum in the column q and a minimum in the row p.
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Saddle points of following matrices are boxed:

(
1 2

0 3

)  1 2 3

4 5 6

7 8 9


 1 2 3

3 2 1

0 1 2


 2 2 2

2 1 1

3 2 2

 #1

Theorem 2. If Mi,j and Mk,l are saddle points of M , then Mi,l and Mk,j are also saddle points and

Mi,j = Mk,l = Mi,l = Mk,j .

Proof. Mi,j is a maximum of column j, so Mk,j ≤ Mi,j , and it is also a minimum of row i, so Mi,j ≤ Mi,l.

Mk,l is a maximum of column l, so Mi,l ≤ Mk,l, and it is also a minimum of row k, so Mk,l ≤ Mk,j . Thus,

we have

Mk,j ≤ Mi,j ≤ Mi,l ≤ Mk,l ≤ Mk,j ,

which shows that these 4 values are equal. In particular, Mi,l = Mi,j is a minimum in row i, and Mi,l = Mk,l

is a maximum in column l, so Mi,l is a saddle point. Similarly we can see that Mk,j is a saddle point.

Definition 3 (maximin values). The maximin and minimax values of M are defined respectively as

µr(M) = max
i

min
j

Mi,j

µc(M) = min
j

max
j

Mi,j

A strategy S1
i of the row player is called maximin pure strategy if min

j
Mi,j = µr(M).

A strategy S2
j of the column player is called minimax pure strategy if max

i
Mi,j = µc(M).

Theorem 3. For any matrix M ,

µr(M) ≤ µc(M).

Moreover µr(M) = µc(M) if and only if M has a saddle point.

Proof. For every l ∈ {1, . . . , n}, we have µr(M) = maxi minj Mi,j ≤ maxi Mi,l. Hence,

µr(M) ≤ min
l

max
i

Mi,l = µc(M).

Now, letMp,q be a saddle point. We have maxi Mi,q = Mp,q and so µc(M) ≤ Mp,q. Similarly, minj Mp,j =

Mp,q implies µr(M) ≥ Mp,q. So we have µc(M) ≤ µr(M), which proves the first side of the equivalence.

Conversely, assume that µc(M) = µr(M). Choose a maximin pure strategy with the index p and a

minimax pure strategy with the index q. We have µr(M) = minj Mp,j , and let l be an index such that

Mp,l = µr(M) = µc(M). Since the column q is minimax, we have µc(M) = maxi Mi,q. Thus Mp,l =

maxi Mi,q ≥ Mp,q, but l has be chosen so that Mp,l is a minimum in its row, so Mp,l = Mp,q and Mp,q is

also a minimum in its row. Finally,

Mp,q = Mp,l = max
i

Mi,q

is a maximum in its column, and so Mp,q is a saddle point.

We are now going to define the counterpart of maximin values for mixed strategies:
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Definition 4 (row and column values). The row and column values of a matrix M ∈ Rm×n are defined

respectively as

vr(M) = max
p∈∆m

min
q∈∆n

pTMq = max
p∈∆m

min
j

(
pTM

)
j

vc(M) = min
q∈∆n

max
p∈∆m

pTMq = min
q∈∆n

max
i

(
Mq

)
i

A mixed strategy p of the row player is called optimal if min
j

(
pTM

)
j
= vr(M).

A mixed strategy q of the column player is called optimal if max
i

(
Mq

)
i
= vc(M).

Theorem 4. Let p̄ and q̄ be optimal strategies of the row and column players for a matrix game M .

Then,

µr(M) ≤ vr(M) ≤ p̄TM q̄ ≤ vc(M) ≤ µc(M).

Proof. cf. Exercise 2 of the Worksheet #2.

Theorem 5 (minimax theorem). Let M be a m× n matrix game. Then the row and the column players

have optimal mixed strategies p̄ and q̄, and the row and column values of the game are equal:

vr(M) = p̄TM q̄ = vc(M).

The common row and column values define the value of the game, which we denote by v(M).

Proof. We know from the existence theorem of Nash (cf. first Lecture) that a Nash equilibrium (p∗, q∗)

exists. So q∗ is a best response to p∗, i.e. p∗TMq∗ = minq∈∆n
p∗TMq. Combining this equality with

min
q∈∆n

p∗TMq ≤ max
p∈∆m

min
q∈∆n

pTMq = vr(M)

we obtain p∗TMq∗ ≤ vr(M). Similarly, p∗ is a best response to q∗ yields p∗TMq∗ ≥ vc(M).

Now, note that optimal strategies p̄ and q̄ for the row and column player exist (optimization of a

continuous function over a compact set). So we can apply Theorem 4, and we obtain:

vr(M) ≤ p̄TM q̄ ≤ vc(M) ≤ p∗TMq∗ ≤ vr(M),

which proves that all these values are equal.

Corollary 6. Let M be a m× n matrix game. The following statements are equivalent.

(i) (p∗, q∗) is a pair of optimal strategies;

(ii) (p∗, q∗) is a Nash equilibrium.

Proof. (i) ⇒ (ii) : If (p̄, q̄) are optimal, then min
q∈∆n

p̄TMq = vr(M) = p̄TM q̄, so q̄ is a minimizer of p̄TMq

over ∆n, i.e. q̄ ∈ BR2(p̄). Similarly, max
p∈∆m

pTM q̄ = vc(M) = p̄TM q̄ tells us that p̄ ∈ BR1(q̄).

(ii) ⇒ (i) : If (p∗, q∗) is a Nash equilibrium, then p∗ ∈ BR1(q
∗) implies

p∗TMq∗ = max
p∈∆m

pTMq∗,
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and we know that p∗TMq∗ = v(M) = vc(M). So q∗ is an optimal strategy of the column player. Similarly,

q∗ ∈ BR2(p
∗) implies vr(M) = v(M) = p∗TMq∗ = minq∈∆n p∗TMq, which tells that p∗ is an optimal

strategy for the row player.

We also have a result which is the counterpart of Theorem 2 for mixed strategies:

Corollary 7. If p and r are both optimal strategies of the row player, and q and s are both optimal for

the column player, then

pTMq = pTMs = rTMq = rTMs.

Proof. Clear from the minimax theorem, and all these payoffs must be equal to v(M).

We next define symmetric games, which are games in which both players are indistinguishable.

Definition 5 (symmetric game). A matrix game is called symmetric if the matrix M of the game is

skew-symmetric (M = −MT ).

Rock Paper Scissors


P1 / P2 R P S

R 0 −1 1

P 1 0 −1

S −1 1 0

 #2

Theorem 8. The value of a symmetric game is zero. Moreover if p is optimal for the first player, then p

is also an optimal strategy for the column player

Proof. Let p be optimal for the row player, i.e. p maximizes

min
j

(pTM)j = min
j

(MTp)j = min
j

−(Mp)j = −max
j

(Mp)j ,

so p minimizes maxj(Mp)j , i.e. p is optimal for the column player.

The value of the game is thus pTMp =
∑

i,j pipjMi,j =
∑

i<j pipjMi,j +
∑
j<i

pipjMi,j︸ ︷︷ ︸
=−

∑
j<i pipjMj,i

= 0.

Bimatrix Games (or Two-Player Non-Zero-Sum Games)

In non-zero-sum games, the situation is not so clear anymore. We will see that Nash equilibria might lead

to situations that are bad for both players. Moreover, using Nash equilibria to predict the outcome of the

game is perilous, since several equilibria might coexist and the problem of selecting a Nash equilibrium is

challenging.

Prisoner’s Dilemma:

(P1/P2 plead guilty accuse the other one

plead guilty (−2,−2) (−10,−1)

accuse the other one (−1,−10) (−5,−5)

) #1
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Chicken Game:


P1/P2 turn don’t turn

turn (0, 0) (−2, 5)

don’t turn (5,−2) (−10,−10)

 #2

Battle of the sex:


♂/ ♀ Football Ballet

Football (10, 3) (2, 2)

Ballet (0, 0) (3, 10)

 #3

Graphical method to find the Nash equilibria of 2× 2− bimatrix games

Define the sets

S1 = {(p, q) ∈ ∆m ×∆n : p ∈ BR1(q)}

S2 = {(p, q) ∈ ∆m ×∆n : q ∈ BR2(p)}

By definition, the set of Nash equilibria is S1 ∩ S2. For 2× 2− bimatrix games, these sets can be plotted in

the square [0, 1]× [0, 1].

Consider the game of Battle of Sex (Example #3). We write p = [p, 1− p]T ∈ ∆2 and q = [q, 1− q]T ∈ ∆2.

For the male player, the strategy Football is a best response to q iff 10q + 2(1 − q) ≥ 3(1 − q) ⇔ q ≥ 1
11 .

Similarly Ballet is a best response to q iff q ≤ 1
11 .

Now for the female player, the strategy Football is a best response to p iff 3p ≥ 2p + 10(1 − p) ⇔ p ≥ 10
11 .

Similarly Ballet is a best response to p iff p ≤ 10
11 .

We know that the set of best responses are the convex hull of the pure best responses. So if q ≤ 1
11 , every

p ∈ ∆2 is a best response to q. Similarly BR2

(
[ 1011 ,

1
11 ]

T
)
= ∆2. The best responses sets are displayed on the

following plot:

1

10

Football

Football

Ballet

Ballet

Nash equilibrium

This shows that this bi-matrix game has two pure equilibria (Football, Football), (Ballet, Ballet) and one

mixed equilibrium
(
[ 1011 ,

1
11 ]

T , [ 1
11 ,

10
11 ]

T
)
.

#4
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