## Lecture \#2 Notes Summary

- Zero-Sum matrix games: Saddle points, Minimax theorem
- Bimatrix games: Classical examples, graphical method to find mixed equilibria of $2 \times 2$-games

A game in normal form with two players is called a bimatrix game. The reason is that player when $P_{1}$ has $m$ strategies and player $P_{2}$ has $n$ strategies, the payoff function $\boldsymbol{\pi}$ can be given by a pair of $m \times n$ matrices.

The game of matching coins presented in the first lecture

$$
\begin{aligned}
& P_{1} / P_{2} \\
& 1 \\
& 5
\end{aligned}
$$

can be represented by a pair of matrices $(A, B)$, where $A=\left(\begin{array}{cc}1 & -1 \\ -5 & 5\end{array}\right)$ contains the payoffs $\pi_{1}$ of the first player and $B=\left(\begin{array}{cc}-1 & 1 \\ 5 & -5\end{array}\right)$ contains the payoffs of the second player.

## Matrix Games (or Two-Player Zero-sum Games)

If $A+B=0$ (as this is the case for the game of matchnig coins), the game is called a zero-sum game. So we only need to give the matrix $A$ to define the payoff function $\pi$ of this game.

Definition 1 (Matrix game). A matrix game with the matrix $A$ of size $m \times n$ is a zero-sum game with two players, such that:

- the player $P_{1}$ has $m$ strategies: $\Sigma_{1}=\left\{S_{1}^{1}, \ldots, S_{m}^{1}\right\}$
- the player $P_{2}$ has $n$ strategies: $\Sigma_{2}=\left\{S_{1}^{2}, \ldots, S_{n}^{2}\right\}$
- the payoff function is defined by $\pi_{1}\left(S_{i}^{1}, S_{j}^{2}\right)=A_{i, j}\left(\right.$ and $\left.\pi_{2}\left(S_{i}^{1}, S_{j}^{2}\right)=-A_{i, j}\right)$.

We say that $P_{1}$ is the row player or the max player (she selects a row $i$ of the matrix and wants to maximize $A_{i, j}$ ), while $P_{2}$ is the column player or the min player (she selects a column $j$ of the matrix and wants to minimize $A_{i, j}$ ).

Proposition 1. Let $A$ be a matrix game. If player $P_{1}$ commits to the mixed strategy $\boldsymbol{p} \in \Delta_{m}$ and player $P_{2}$ commits to the mixed strategy $\boldsymbol{q} \in \Delta_{n}$, then the expected payoff of player $P_{1}$ is

$$
\pi_{1}(\boldsymbol{p}, \boldsymbol{q})=\sum_{i=1}^{m} \sum_{j=1}^{n} p_{i} q_{j} A_{i, j}=\boldsymbol{p}^{T} A \boldsymbol{q}
$$

Proof. Use the definition of expected payoffs and rewrite the expression with matrix notation.
For matrix games, a pure Nash equilibrium is called a saddle point of a matrix.

Definition 2 (Saddle point). Let $A$ be a $m \times n-$ matrix. An entry $A_{p, q}$ of $A$ is a saddle point of $A$ is $A_{p, q}$ is simultaneously a maximum in the column $q$ and a minimum in the row $p$.

Saddle points of following matrices are boxed:

$$
\left(\begin{array}{cc}
\boxed{1} & 2 \\
0 & 3
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
\boxed{7} & 8 & 9
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 2 & 1 \\
0 & 1 & 2
\end{array}\right) \quad\left(\begin{array}{ccc}
2 & \boxed{2} & \boxed{2} \\
2 & 1 & 1 \\
3 & \boxed{2} & \boxed{2}
\end{array}\right)
$$

Theorem 2. If $M_{i, j}$ and $M_{k, l}$ are saddle points of $M$, then $M_{i, l}$ and $M_{k, j}$ are also saddle points and

$$
M_{i, j}=M_{k, l}=M_{i, l}=M_{k, j}
$$

Proof. $M_{i, j}$ is a maximum of column $j$, so $M_{k, j} \leq M_{i, j}$, and it is also a minimum of row $i$, so $M_{i, j} \leq M_{i, l}$. $M_{k, l}$ is a maximum of column $l$, so $M_{i, l} \leq M_{k, l}$, and it is also a minimum of row $k$, so $M_{k, l} \leq M_{k, j}$. Thus, we have

$$
M_{k, j} \leq M_{i, j} \leq M_{i, l} \leq M_{k, l} \leq M_{k, j}
$$

which shows that these 4 values are equal. In particular, $M_{i, l}=M_{i, j}$ is a minimum in row $i$, and $M_{i, l}=M_{k, l}$ is a maximum in column $l$, so $M_{i, l}$ is a saddle point. Similarly we can see that $M_{k, j}$ is a saddle point.

Definition 3 (maximin values). The maximin and minimax values of $M$ are defined respectively as

$$
\begin{aligned}
& \mu_{r}(M)=\max _{i} \min _{j} M_{i, j} \\
& \mu_{c}(M)=\min _{j} \max _{j} M_{i, j}
\end{aligned}
$$

A strategy $S_{i}^{1}$ of the row player is called maximin pure strategy if $\min _{j} M_{i, j}=\mu_{r}(M)$.
A strategy $S_{j}^{2}$ of the column player is called minimax pure strategy if $\max _{i} M_{i, j}=\mu_{c}(M)$.

Theorem 3. For any matrix $M$,

$$
\mu_{r}(M) \leq \mu_{c}(M)
$$

Moreover $\mu_{r}(M)=\mu_{c}(M)$ if and only if $M$ has a saddle point.

Proof. For every $l \in\{1, \ldots, n\}$, we have $\mu_{r}(M)=\max _{i} \min _{j} M_{i, j} \leq \max _{i} M_{i, l}$. Hence,

$$
\mu_{r}(M) \leq \min _{l} \max _{i} M_{i, l}=\mu_{c}(M)
$$

Now, let $M_{p, q}$ be a saddle point. We have $\max _{i} M_{i, q}=M_{p, q}$ and so $\mu_{c}(M) \leq M_{p, q}$. Similarly, $\min _{j} M_{p, j}=$ $M_{p, q}$ implies $\mu_{r}(M) \geq M_{p, q}$. So we have $\mu_{c}(M) \leq \mu_{r}(M)$, which proves the first side of the equivalence.

Conversely, assume that $\mu_{c}(M)=\mu_{r}(M)$. Choose a maximin pure strategy with the index $p$ and a minimax pure strategy with the index $q$. We have $\mu_{r}(M)=\min _{j} M_{p, j}$, and let $l$ be an index such that $M_{p, l}=\mu_{r}(M)=\mu_{c}(M)$. Since the column $q$ is minimax, we have $\mu_{c}(M)=\max _{i} M_{i, q}$. Thus $M_{p, l}=$ $\max _{i} M_{i, q} \geq M_{p, q}$, but $l$ has be chosen so that $M_{p, l}$ is a minimum in its row, so $M_{p, l}=M_{p, q}$ and $M_{p, q}$ is also a minimum in its row. Finally,

$$
M_{p, q}=M_{p, l}=\max _{i} M_{i, q}
$$

is a maximum in its column, and so $M_{p, q}$ is a saddle point.
We are now going to define the counterpart of maximin values for mixed strategies:

Definition 4 (row and column values). The row and column values of a matrix $M \in \mathbb{R}^{m \times n}$ are defined respectively as

$$
\begin{gathered}
v_{r}(M)=\max _{\boldsymbol{p} \in \Delta_{m}} \min _{\boldsymbol{q} \in \Delta_{n}} \boldsymbol{p}^{T} M \boldsymbol{q}=\max _{\boldsymbol{p} \in \Delta_{m}} \min _{j}\left(\boldsymbol{p}^{T} M\right)_{j} \\
v_{c}(M)=\min _{\boldsymbol{q} \in \Delta_{n}} \max _{\boldsymbol{p} \in \Delta_{m}} \boldsymbol{p}^{T} M \boldsymbol{q}=\min _{\boldsymbol{q} \in \Delta_{n}} \max _{i}(M \boldsymbol{q})_{i}
\end{gathered}
$$

A mixed strategy $\boldsymbol{p}$ of the row player is called optimal if $\min _{j}\left(\boldsymbol{p}^{T} M\right)_{j}=v_{r}(M)$.
A mixed strategy $\boldsymbol{q}$ of the column player is called optimal if $\max _{i}(M \boldsymbol{q})_{i}=v_{c}(M)$.

Theorem 4. Let $\overline{\boldsymbol{p}}$ and $\overline{\boldsymbol{q}}$ be optimal strategies of the row and column players for a matrix game $M$. Then,

$$
\mu_{r}(M) \leq v_{r}(M) \leq \overline{\boldsymbol{p}}^{T} M \overline{\boldsymbol{q}} \leq v_{c}(M) \leq \mu_{c}(M)
$$

Proof. cf. Exercise 2 of the Worksheet $\# 2$.

Theorem 5 (minimax theorem). Let $M$ be a $m \times n$ matrix game. Then the row and the column players have optimal mixed strategies $\overline{\boldsymbol{p}}$ and $\overline{\boldsymbol{q}}$, and the row and column values of the game are equal:

$$
v_{r}(M)=\overline{\boldsymbol{p}}^{T} M \overline{\boldsymbol{q}}=v_{c}(M) .
$$

The common row and column values define the value of the game, which we denote by $v(M)$.

Proof. We know from the existence theorem of Nash (cf. first Lecture) that a Nash equilibrium ( $\left.\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)$ exists. So $\boldsymbol{q}^{*}$ is a best response to $\boldsymbol{p}^{*}$, i.e. $\boldsymbol{p}^{* T} M \boldsymbol{q}^{*}=\min _{q \in \Delta_{n}} \boldsymbol{p}^{* T} M \boldsymbol{q}$. Combining this equality with

$$
\min _{q \in \Delta_{n}} \boldsymbol{p}^{* T} M \boldsymbol{q} \leq \max _{p \in \Delta_{m}} \min _{q \in \Delta_{n}} \boldsymbol{p}^{T} M \boldsymbol{q}=v_{r}(M)
$$

we obtain $\boldsymbol{p}^{* T} M \boldsymbol{q}^{*} \leq v_{r}(M)$. Similarly, $\boldsymbol{p}^{*}$ is a best response to $\boldsymbol{q}^{*}$ yields $\boldsymbol{p}^{* T} M \boldsymbol{q}^{*} \geq v_{c}(M)$.
Now, note that optimal strategies $\overline{\boldsymbol{p}}$ and $\overline{\boldsymbol{q}}$ for the row and column player exist (optimization of a continuous function over a compact set). So we can apply Theorem 4, and we obtain:

$$
v_{r}(M) \leq \overline{\boldsymbol{p}}^{T} M \overline{\boldsymbol{q}} \leq v_{c}(M) \leq \boldsymbol{p}^{* T} M \boldsymbol{q}^{*} \leq v_{r}(M)
$$

which proves that all these values are equal.

Corollary 6. Let $M$ be a $m \times n$ matrix game. The following statements are equivalent.
(i) $\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)$ is a pair of optimal strategies;
(ii) $\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)$ is a Nash equilibrium.

Proof. $(i) \Rightarrow(i i)$ : If $(\overline{\boldsymbol{p}}, \overline{\boldsymbol{q}})$ are optimal, then $\min _{\boldsymbol{q} \in \Delta_{n}} \overline{\boldsymbol{p}}^{T} M \boldsymbol{q}=v_{r}(M)=\overline{\boldsymbol{p}}^{T} M \overline{\boldsymbol{q}}$, so $\overline{\boldsymbol{q}}$ is a minimizer of $\overline{\boldsymbol{p}}^{T} M \boldsymbol{q}$ over $\Delta_{n}$, i.e. $\overline{\boldsymbol{q}} \in B R_{2}(\overline{\boldsymbol{p}})$. Similarly, $\max _{\boldsymbol{p} \in \Delta_{m}} \boldsymbol{p}^{T} M \overline{\boldsymbol{q}}=v_{c}(M)=\overline{\boldsymbol{p}}^{T} M \overline{\boldsymbol{q}}$ tells us that $\overline{\boldsymbol{p}} \in B R_{1}(\overline{\boldsymbol{q}})$.
$(i i) \Rightarrow(i):$ If $\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right)$ is a Nash equilibrium, then $\boldsymbol{p}^{*} \in B R_{1}\left(\boldsymbol{q}^{*}\right)$ implies

$$
\boldsymbol{p}^{* T} M \boldsymbol{q}^{*}=\max _{\boldsymbol{p} \in \Delta_{m}} \boldsymbol{p}^{T} M \boldsymbol{q}^{*}
$$

and we know that $\boldsymbol{p}^{* T} M \boldsymbol{q}^{*}=v(M)=v_{c}(M)$. So $\boldsymbol{q}^{*}$ is an optimal strategy of the column player. Similarly, $\boldsymbol{q}^{*} \in B R_{2}\left(\boldsymbol{p}^{*}\right)$ implies $v_{r}(M)=v(M)=\boldsymbol{p}^{* T} M \boldsymbol{q}^{*}=\min _{\boldsymbol{q} \in \Delta_{n}} \boldsymbol{p}^{* T} M \boldsymbol{q}$, which tells that $\boldsymbol{p}^{*}$ is an optimal strategy for the row player.

We also have a result which is the counterpart of Theorem 2 for mixed strategies:

Corollary 7. If $\boldsymbol{p}$ and $\boldsymbol{r}$ are both optimal strategies of the row player, and $\boldsymbol{q}$ and $\boldsymbol{s}$ are both optimal for the column player, then

$$
\boldsymbol{p}^{T} M \boldsymbol{q}=\boldsymbol{p}^{T} M \boldsymbol{s}=\boldsymbol{r}^{T} M \boldsymbol{q}=\boldsymbol{r}^{T} M \boldsymbol{s}
$$

Proof. Clear from the minimax theorem, and all these payoffs must be equal to $v(M)$.
We next define symmetric games, which are games in which both players are indistinguishable.

Definition 5 (symmetric game). A matrix game is called symmetric if the matrix $M$ of the game is skew-symmetric $\left(M=-M^{T}\right)$.

| Rock Paper Scissors |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $P_{1} / P_{2}$ | R | P | S |
|  | R |  |  |  |
| P |  |  |  |  |
| S |  |  |  |  |\(\left(\begin{array}{ccc}0 \& -1 \& 1 <br>

1 \& 0 \& -1 <br>
-1 \& 1 \& 0\end{array}\right)\)

Theorem 8. The value of a symmetric game is zero. Moreover if $\boldsymbol{p}$ is optimal for the first player, then $\boldsymbol{p}$ is also an optimal strategy for the column player

Proof. Let $\boldsymbol{p}$ be optimal for the row player, i.e. $\boldsymbol{p}$ maximizes

$$
\min _{j}\left(\boldsymbol{p}^{T} M\right)_{j}=\min _{j}\left(M^{T} \boldsymbol{p}\right)_{j}=\min _{j}-(M \boldsymbol{p})_{j}=-\max _{j}(M \boldsymbol{p})_{j}
$$

so $\boldsymbol{p}$ minimizes $\max _{j}(M \boldsymbol{p})_{j}$, i.e. $\boldsymbol{p}$ is optimal for the column player.
The value of the game is thus $\boldsymbol{p}^{T} M \boldsymbol{p}=\sum_{i, j} p_{i} p_{j} M_{i, j}=\sum_{i<j} p_{i} p_{j} M_{i, j}+\underbrace{\sum_{j<i} p_{i} p_{j} M_{i, j}}_{=-\sum_{j<i} p_{i} p_{j} M_{j, i}}=0$.

## Bimatrix Games (or Two-Player Non-Zero-Sum Games)

In non-zero-sum games, the situation is not so clear anymore. We will see that Nash equilibria might lead to situations that are bad for both players. Moreover, using Nash equilibria to predict the outcome of the game is perilous, since several equilibria might coexist and the problem of selecting a Nash equilibrium is challenging.
Prisoner's Dilemma:
$P_{1} / P_{2}$
plead guilty

| accuse the other one |
| :--- |

plead guilty accuse the other one | $(-2,-2)$ |
| :---: |
| $(-1,-10)$ |

## Chicken Game:



## Battle of the sex:

$$
\begin{array}{lcc}
\begin{array}{c}
o^{x} / ~ ¢
\end{array} & \text { Football } & \text { Ballet } \\
\text { Football } \\
\text { Ballet } & \left(\begin{array}{cc}
(10,3) & (2,2) \\
(0,0) & (3,10)
\end{array}\right)
\end{array}
$$

## Graphical method to find the Nash equilibria of $2 \times 2$ - bimatrix games

Define the sets

$$
\begin{array}{ll}
S_{1}=\left\{(\boldsymbol{p}, \boldsymbol{q}) \in \Delta_{m} \times \Delta_{n}:\right. & \left.\boldsymbol{p} \in B R_{1}(\boldsymbol{q})\right\} \\
S_{2}=\left\{(\boldsymbol{p}, \boldsymbol{q}) \in \Delta_{m} \times \Delta_{n}:\right. & \left.\boldsymbol{q} \in B R_{2}(\boldsymbol{p})\right\}
\end{array}
$$

By definition, the set of Nash equilibria is $S_{1} \cap S_{2}$. For $2 \times 2-$ bimatrix games, these sets can be plotted in the square $[0,1] \times[0,1]$.

Consider the game of Battle of Sex (Example \#3). We write $\boldsymbol{p}=[p, 1-p]^{T} \in \Delta_{2}$ and $\boldsymbol{q}=[q, 1-q]^{T} \in \Delta_{2}$. For the male player, the strategy Football is a best response to $\boldsymbol{q}$ iff $10 q+2(1-q) \geq 3(1-q) \Leftrightarrow q \geq \frac{1}{11}$. Similarly Ballet is a best response to $\boldsymbol{q}$ iff $q \leq \frac{1}{11}$.
Now for the female player, the strategy Football is a best response to $\boldsymbol{p}$ iff $3 p \geq 2 p+10(1-p) \Leftrightarrow p \geq \frac{10}{11}$. Similarly Ballet is a best response to $\boldsymbol{p}$ iff $p \leq \frac{10}{11}$.
We know that the set of best responses are the convex hull of the pure best responses. So if $q \leq \frac{1}{11}$, every $\boldsymbol{p} \in \Delta_{2}$ is a best response to $\boldsymbol{q}$. Similarly $B R_{2}\left(\left[\frac{10}{11}, \frac{1}{11}\right]^{T}\right)=\Delta_{2}$. The best responses sets are displayed on the following plot:


This shows that this bi-matrix game has two pure equilibria (Football, Football), (Ballet, Ballet) and one mixed equilibrium $\left(\left[\frac{10}{11}, \frac{1}{11}\right]^{T},\left[\frac{1}{11}, \frac{10}{11}\right]^{T}\right)$.

