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Lecture #5 Notes Summary

Basic notions of Linear Programming, Duality, and Algorithms

Introduction

Definition 1 (Linear Programming Problem). A Linear Programming Problem (or simply a Linear

Program, abbreviated LP) is an optimization problem of the form

min
x∈Rn

f(x) (1)

s. t. ∀i ∈ [m], gi(x) ≤ 0,

where f, g1, . . . , gm : Rn → R are affine functions.

Note that maximization problems can also be handled as LP, since maxx∈X f(x) = −minx∈X −f(x).

Definition 2 (Feasibility, Boundedness).

• A vector x ∈ Rn is called a feasible solution for Problem (1) if ∀i ∈ [m], gi(x) ≤ 0.

• Problem (1) is infeasible if the feasibility set {x ∈ Rn : ∀i ∈ [m], gi(x) ≤ 0} is empty. In this

case we say that the value of Problem (1) is +∞.

• Problem (1) is unbounded if there exists no M ∈ R such that f(x) ≥ M for all feasible x.

Proposition 1. Let x∗ be a local optimum of Problem (1) (i.e. x∗ is feasible and there is a ball B
centered at x∗ such that for all feasible x ∈ B, f(x) ≥ f(x∗)). Then, x∗ is an optimal solution of

Problem (1) (i.e., for all feasible x we have f(x) ≥ f(x∗), so x∗ is also a global optimum).

Sketch of the proof. Assume the contrary. Let z∗ be feasible and such that f(z∗) < f(x∗). The function f is

linear on the segment [x∗, z∗], which is included in the feasibility region by convexity. So f(x∗+ϵ(z∗−x∗)) =

(1− ϵ)f(x∗) + ϵf(z∗) < f(x∗) for all ϵ > 0 contradicts the local optimality of x∗.

Definition 3 (Canonical/Standard form). A LP is in canonical form (resp. standard form) if it is

written as:

min
x∈Rn

cTx

s. t. Ax ≥ b,

x ≥ 0.

(
resp.

min
x∈Rn

cTx

s. t. Ax = b,

x ≥ 0.

)
,

where the rows of the matrix A ∈ Rm×n are independent (rank A = m). The vector c ∈ Rn is the cost

vector, and b ∈ Rm is the right-hand-side vector. The inequalities are understood componentwise, i.e.

∀i ∈ [m], (Ax)i ≥ bi, and ∀j ∈ [n], xj ≥ 0.

Proposition 2. Any LP can be put into canonical form (resp. standard form).
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Sketch of the proof. The reduction to canonical/standard form relies on the following two techniques:

• Inequalities can be transformed into equalities by introducing slack variables

Ax ≤ b ⇐⇒ Ax+ s = b for some s ≥ 0.

• Any unconstrained variables x can be expressed as the difference x+−x− of two nonnegative variables

(x+ ≥ 0, x− ≥ 0).

Note that the feasibility space of any LP is of the form P = {x ∈ Rn : Ax ≤ b}, i.e. P is the intersection

of the halfspaces (Ax)i ≤ bi. We say that P is a convex polyhedron. A fundamental result from polyhedral

geometry gives an alternative representation of P based on its extreme points and extreme rays (we won’t

prove this result here).

Definition 4 (extreme points). A point x of a convex polyhedron P = {x ∈ Rn : Ax ≤ b} is called a

vertex (or an extreme point) if x = 1
2x1 + 1

2x2 for some x1,x2 ∈ P implies x = x1 = x2.

Theorem 3 (affine Minkowski-Weyl theorem). Let P be a nonempty subset of Rn. The following state-

ments are equivalent:

(i) P is a convex polyhedron (P = {x ∈ Rn : Ax ≤ b} for some (A, b) ∈ Rm×n × Rm)

(ii) P is generated its (finite) set of extreme points a1, . . . ,ap ∈ Rn and extreme rays c1, . . . , cq ∈ Rn:

P = conv(a1, . . . ,ap) + cone(c1, . . . , cq) =
{ p∑

i=1

αiai +

q∑
j=1

λjcj : α ≥ 0,
∑
i

αi = 1, λ ≥ 0
}
.

Definition 5 (basic feasible solution). Consider a LP in standard form (with equality constraints). A

feasible vector x is called a basic feasible solution (bfs) if there is a set I ⊆ [n] of cardinality m such

that xi = 0 for all i /∈ I and the m×m matrix AI is invertible (where AI denotes the submatrix of A

formed with the columns indexed in I).

Note that every choice of I uniquely defines the nonzeros of x, i.e. xI = A−1
I b, so I is a valid subset

defining a bfs iff xI ≥ 0. Geometrically, bfs correspond to extreme points of the feasibility polyhedron:

Theorem 4. Let P = {x ∈ Rn : x ≥ 0, Ax = b} be the feasibility polyhedron of a LP in standard form.

Then, the set of bfs of the LP coincides with the set of vertices of P.

Proof. cf. Exercise 3 of the Worksheet #5.

Theorem 5 (Fundamental theorem of Linear Programming). Every LP has the following properties:

(i) If it has no optimal solution, then it is either infeasible or unbounded.

(ii) If it is feasible, then there exists a bfs.

(iii) If it has an optimal solution (i.e. the minimum is attained), then it has an optimal bfs.
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Proof. Consider an arbitrary LP of the form (1), and assume that it is feasible. Its feasibility polyhedron P
is nonempty, and by Minkowski-Weyl we have P =

{∑p
i=1 αiai +

∑q
j=1 λjcj : α ≥ 0,

∑
i αi = 1, λ ≥ 0

}
,

where the ai are the vertices of P and the cj are the extreme rays. Every ai is feasible, and so by Theorem 4

we have the existence of a bfs, which proves (ii). Now, assume that the problem is bounded. Clearly, we

must have f(cj) ≥ 0 for all j ∈ [q] (otherwise we see that the problem is unbounded by letting λj → ∞).

For a feasible x =
∑p

i=1 αiai +
∑q

j=1 λjcj we have f(x) =
∑p

i=1 αif(ai) +
∑q

j=1 λjf(cj) (linearity of f).

So decreasing the value of a λj can only decrease the value of f(x), and the optimal value of Problem (1)

is infx∈P f(x) = infα∈∆p

∑p
i=1 αif(ai), where ∆p is the standard simplex of Rp. This is a minimization

problem for a continuous function over a compact set, so the minimum is attained, which proves (i). Moreover

if f(ai) = maxi′∈[p] f(ai′) we know that a solution of this problem consists in putting all the weight on the

ith coordinate, i.e. αi = 1 and j ̸= i ⇒ αj = 0, which gives the optimal bfs x∗ = ai and (iii) is proved.

Duality

We start with an informal derivation of the dual of a LP in standard form: define the Lagrangian L(x,y) :=
cTx+ yT (b−Ax), and note that

max
y∈Rm

L(x,y) =
{

cTx if Ax = b

+∞ otherwise.

So we can rewrite the standard LP problem as follows:

min{cTx|Ax = b,x ∈ Rn
+} = min

x≥0
max
y∈Rm

L(x,y).

The dual of the LP is obtained by permuting the order of the min and the max. The minimization step with

respect to x ≥ 0 yields:

min
x∈Rn

+

L(x,y) = min
x≥0

bTy + xT (c−ATy) =

{
bTy if c−ATy ≥ 0

−∞ otherwise.

So, we can now define the dual of Problem (P): min{cTx|Ax = b,x ∈ Rn
+}:

Definition 6 (Dual of a LP). The dual of a problem (P) written in standard form is

max
y∈Rm

bTy (D)

s. t. ATy ≤ c

Proposition 6. The dual of (D) is (P).

Proof. cf. Exercise 5 of the Worksheet #5.

Theorem 7 (The weak duality theorem). Let x be a feasible solution for (P) and y be a feasible solution

for (D). Then, bTy ≤ cTx. In particular, we have OPT(D) ≤ OPT(P ).

Proof. bTy = xTATy =
∑

i xi(A
Ty)i ≤

∑
i xici = cTx, where the inequality follows from x ≥ 0 and

c ≥ ATy. The inequality OPT(D) ≤ OPT(P ) follows from an analysis of all finite/infinite values for OPT(P )

and OPT(D) (for example, (P) unbounded ⇒ OPT(P ) = −∞ ⇒ (D) infeasible ⇒ OPT(D) = −∞).
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But we have a much stronger result:

Theorem 8 (The strong duality theorem). Let P and D be a pair of primal and dual LPs. If P or D is

feasible, then OPT(P ) = OPT(D).

The proof of this result relies on an important lemma:

Lemma 9 (Farkas’ Lemma). Let A ∈ Rm×n and b ∈ Rm. Then, exactly one of these two statements is

true:

1. ∃x ∈ Rn : x ≥ 0, Ax = b;

2. ∃y ∈ Rm : ATy ≥ 0, bTy < 0.

Proof. The proof of the lemma will be done in Exercise 4 of the worksheet #5, and we only prove the theorem

here. The theorem says that one of the following 4 cases must occur: (i) (P) and (D) are infeasible; (ii) (P)

is unbounded, (D) is infeasible, and OPT(P ) = OPT(D) = −∞; (iii) (P) is infeasible, (D) is unbounded,

and OPT(P ) = OPT(D) = +∞; (iv) Both (P) and (D) have an optimal solution, and their optimal value

coincide. The case (i) can indeed occur, but there is nothing to prove. The cases (ii) and (iii) were already

proved in the weak duality theorem. So we must only prove the last (and most interesting) case.

Assume that Problem (D) is feasible and bounded (so it has an optimal solution). Let y∗ be an optimal

solution of Problem (D), and denote by I the set of indices where the inequality constraint is tight: I = {i ∈
[n] : ai

Ty∗ = ci}, where ai stands for the ith column of A. Denote by Ā the matrix formed by the columns

{ai : i ∈ I}. We claim that b ∈ cone({ai : i ∈ I}), i.e. b = Āλ for some nonnegative vector λ. Otherwise,

by Farkas’ lemma, there exists a vector d such that ĀTd ≥ 0, bTd < 0. But we will see that this contradicts

the optimality of y∗: let y′ = y∗ − ϵd for an ϵ > 0. For all i ∈ I we have ai
Ty′ = ci − ϵai

Td < ci, and if ϵ

is sufficiently small we also have ai
Ty′ < ci for all i /∈ I (this constraint was not tight so we don’t violate it

if ϵ is small enough). So y′ is a feasible solution for (D) and bTy′ = bTy∗ − ϵbTd > bTy∗, a contradiction.

So, we can write b =
∑

i∈I λiai for some nonnegative scalars λi. Define the vector x ∈ Rn by setting

xi = λi if i ∈ I, and xi = 0 otherwise, so that Ax = b and x ≥ 0, i.e., x is a feasible solution for (P).

Finally, cTx =
∑

i∈I cixi =
∑

i∈I(ai
Ty∗)xi = y∗T (∑

i∈I xiai) = bTy∗. By the weak duality theorem, x is

an optimal solution for (P).

Theorem 10 (Complementary Slackness). Let x and y be feasible solutions for the pair of primal-dual

problems (P) and (D) (in standard form as in Definition 6). The following statements are equivalent:

(i) x and y are optimal for (P) and (D);

(ii) cTx = bTy;

(iii) xT (c−ATy) = 0
(
which can be rewritten as ∀i ∈ [n], (xi = 0) OR (ATy)i = ci

)
.

Proof. We know that (i) and (ii) are equivalent from the duality theorems. Now, since x is feasible we have

bTy = xTATy, which is equal to xT c iff xT (c−ATy) = 0, so (ii) ⇐⇒ (iii).

Algorithms to solve LP

In this section we briefly review the three main families of algorithms to solve a LP.
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The Simplex Algorithm
Very good in practice, returns an optimal bfs, but things can go badly in theory

▶ Start from a basic feasible solution x(0)

▶ At the kth iteration, move from this vertex to an adjacent vertex of the feasibility polyhedron P,

by selecting an edge which is a descent direction for the objective cTx. More precisely:

▷ If there is no such descent direction, we have found a local (and hence global) optimum.

▷ The operation of moving along an edge corresponds to choosing a variable xj that was not in

the basis of x(k) (i.e., x
(k)
j = 0), and to increase it while decreasing the other basic variables.

▷ A simple formula gives the step length to reach the vertex x(k+1) along the chosen edge, or

finds that the descent direction is in fact a ray of P, i.e. the problem is unbounded.

This algorithm is very efficient in practice, although one can construct examples where the simplex algorithm

visits all the vertices of P before reaching the solution (i.e., an exponential number of iterations is needed).

The Ellipsoid Algorithm
Useful in theory to obtain complexity bounds, but poor performance in practice

▶ Reduce to a strict feasibility problem: find x ∈ P = {x : Ax < b}

▶ Start with an ellipsoid E0 centered at x(0) that contains P

▶ At each step k = 0, 1, . . . ,K:

▷ If x(k) ∈ P, the algorithm stops and returns x(k)

▷ Otherwise, find a constraint ai
Tx ≤ bi violated by x(k)

▷ Find the minimum-volume ellipsoid Ek+1 (centered at x(k+1)) that contains the half-ellipsoid

Ek ∩ {x : ai
Tx ≤ ai

Tx(k)}.

It can be shown that for rational-valued A and b, there is a number K of iterations polynomial in the

input size such that P is guaranteed to be empty if x(K) /∈ P, and the reduction of the LP to a strict

feasibility problem can also be done with polynomial number of iterations.

Barrier Method
Strong algorithm in theory and in practice, it often beats the simplex for large scale problems

▶ Find a point x(0) such that Ax(0) = b

▶ Choose a sequence β0, β1, . . . , βk, . . . of positive numbers decreasing to 0

▶ At each step k = 0, 1, . . . ,K, find an approximate solution x(k+1) of the problem

min
x

{
cTx− βk

n∑
j=1

lnxj | Ax = b
}
,

by making one (or several) Newton steps, starting from x(k).

It was shown that for some sequence βk = β0/α
k (with α > 1), we have cTx(K) ≤ OPT(P ) + ϵ after

K = O
(
log n

ϵ

)
iterations, and the iterations themselves are polynomial in the input size of the LP. This type

of algorithm is harder to implement than the simplex, and it does not always provide a bfs.
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