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Lecture #7 Notes Summary

Bounds on the Price of Anarchy for atomic and non-atomic congestion games

Price of Anarchy of non-atomic Games

The price of anarchy is a measure of how inefficient the equilibrium of a game can be. Consider a N−player

game where the payoff function π : Σ → RN is a nonnegative cost that players want to minimize (rather

than maximize, as in the first lecture). We can define a general cost function C : Σ → R+, such that

C(P ) is a measure of how bad the strategy profile P = (P1, . . . , PN ) ∈ Σ is for the society. Typical choices

are: C(P1, . . . , PN ) =
∑N

i=1 πi(P1, . . . , PN ) if we want to minimize the average cost, or C(P1, . . . , PN ) =

maxNi=1 πi(P1, . . . , PN ) if we want the outcome of the game to be as fair as possible.

Definition 1 (Price of Anarchy). Consider a N−player game π with a cost function C : Σ → R+.

The price of anarchy (PoA) of the game is defined as the ratio between the efficiency of the worst Nash

equilibrium and the best centralized solution (the social optimum). More precisely, let E ⊆ Σ denote

the set of Nash equilibriums of the game. We have:

PoA(π) :=
maxP∈E C(P )

minP∈Σ C(P )
≥ 1.

Specifically, for non-atomic congestion games the price of anarchy compares the average travel time of the

Wardrop equilibrium (which is uniquely defined) to the social optimum. Consider a non-atomic congestion

game G = (E,S,w,d). We denote by F the set of feasible flows, by X the set of load vectors induced by a

flow in F , and by T the set of pairs {(f ,x) : f ∈ F, x induced by f}. For simplicity, we still call a flow-load

pair (f ,x) ∈ T a flow. Recall that the total cost of a flow (f ,x) ∈ T only depends on the vector of loads x:

C(x) :=
∑
P∈S

fP cP (x) =
∑
P∈S

fP
∑
e∈P

de(x) =
∑
e∈E

de(x)
∑
P∋e

fP =
∑
e∈E

xede(xe).

Now, let (f∗,x∗) be a WE of the game and (fo,xo) be a social optimum. We have:

PoA(G) := C(x∗)

minx∈X C(x)
=

C(x∗)

C(xo)
,

where the last expression does not depend on the choice of a social optimum xo. It does not depend on the

choice of a WE x∗ neither, which follows from

Proposition 1. Let (f ,x) and (f ′,x′) be two WE of a non-atomic congestion game G. Then, C(x) =

C(x′).

Proof. We know that de(xe) = de(x
′
e) for all element e (by Theorem 6 of Lecture #6). So cP (x) = cP (x

′)

for all P , and

C(x′) =
∑
P∈S

f ′
P cP (x

′) =
∑
P∈S

f ′
P cP (x).

Now, recall that for all i, a WE puts weight only on the strategies P that minimize cP (x) over S
i. Denote

by Li := minP∈Si cP (x) the minimal cost over Si. We have:

C(x′) =

N∑
i=1

∑
{P∈Si:f ′

P>0}

Li f ′
P =

N∑
i=1

Li

∑
P∈Si

f ′
P =

N∑
i=1

Liwi,
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which is also the value of C(x).

We also recall an alternative characterization of Wardrop Equilibriums (which was already encountered

in Exercise 3 of Worksheet #6):

Proposition 2. Consider a non-atomic congestion game (E,S,w,d). The flow (f ,x) ∈ T is a Wardrop

equilibrium iff

∀x′ ∈ X,
∑
e∈E

xe de(xe) ≤
∑
e∈E

x′
e de(xe).

Proof. By rearranging the terms in the sums, the condition of the proposition becomes:

∀f ′ ∈ F,
∑
P∈S

cP (x)fP ≤
∑
P∈S

cP (x)f
′
P .

This means that f minimizes the expression
∑

P∈S cP (x)fP over F (for the current load x). Clearly, this is

possible if and only if f puts weight only on the strategies P minimizing cP (x) over some Si.

We are now ready to prove our first result on the price of anarchy:

Theorem 3. Let G = (E,S,w,d) be a non-atomic congestion game in which all delay functions are

affine (de(x) = aex+ be for some ae, be ≥ 0). Then,

PoA(G) ≤ 4

3
.

Proof. Let (f∗,x∗) be a WE and (fo,xo) be a social optimum of G. Now, consider an arbitrary feasible

flow (f ,x) ∈ T . We have

C(x∗) =
∑
e∈E

de(x
∗
e) x

∗
e ≤

∑
e∈E

de(x
∗
e) xe =

∑
e∈E

(aex
∗
e + be)xe,

where the inequality follows from Proposition 2. Now, note that for all scalars xe and x∗
e we have

0 ≤ (xe −
x∗
e

2
)2 = x2

e +
x∗2
e

4
− xex

∗
e.

This implies aexex
∗
e ≤ aex

2
e + aex

∗2
e /4 for all nonnegative ae, and hence:

C(x∗) ≤
∑
e∈E

(aexe + be)xe +
aex

∗2
e

4
≤ C(x) +

C(x∗)

4
.

It follows that 3
4C(x∗) ≤ C(x) for all x ∈ X. So in particular we have

C(x∗)

C(xo)
≤ 4

3
.

Remark Note that this bound can be attained by some instances. Consider the non-atomic variant of

the Braess paradox seen at the beginning of last lecture. In the WE all drivers take the A → B edge, which

yields a cost of 200 per driver, while in the social optimum the drivers split 50/50 on the upper and lower

road, at a cost of 150 per driver. So the PoA of this instance is 200/150 = 4/3.
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By using similar techniques, we can actually prove a much stronger result. For every delay function d(·)
(i.e., mapping R+ onto itself, continuous and nondecreasing), define

βd(v) :=
1

vd(v)
max
x≥0

{
x
(
d(v)− d(x)

)}
,

with the convention 0/0 = 0. For a family D of delay functions, define further

β(D) := sup
d∈D

sup
v≥0

βd(v),

and note that β(D) ≤ 1.

Theorem 4. Let G = (E,S,w,d) be a non-atomic congestion game in which all delay functions are from

the family D, and assume that β(D) < 1. Then,

PoA(G) ≤ 1

1− β(D)
.

Proof. Let (f∗,x∗) be a WE and (fo,xo) be a social optimum of G. Now, consider an arbitrary feasible

flow (f ,x) ∈ T . As in the previous proof we have

C(x∗) =
∑
e∈E

de(x
∗
e) x

∗
e ≤

∑
e∈E

de(x
∗
e) xe.

By definition of βd(·), we have vd(v)βd(v) ≥ x
(
d(v)− d(x)

)
for all x, v ≥ 0. Hence, we have

∀e ∈ E, xede(x
∗
e) ≤ x∗

ede(x
∗
e)βde

(x∗
e) + xede(xe).

This implies

C(x∗) ≤
∑
e∈E

x∗
ede(x

∗
e)β(D) + xede(xe) = β(D)C(x∗) + C(x).

It follows that
(
1− β(D)

)
C(x∗) ≤ C(x) for all x ∈ X. So in particular we have

C(x∗)

C(xo)
≤ 1

1− β(D)
.

Remark We will see in Exercise 3 of Worksheet #7 that this bound can be attained for a very simple

type of instances (Pigou Network).

Price of Anarchy of atomic games

The study of the PoA in atomic games is complicated by the combinatorial nature of the problem. Moreover,

several Nash equilibriums can exist. Consider an atomic congestion game G = (E,S,w,d). Similarly as for

non-atomic instances, the total cost of a strategy profile P = (P1, . . . , PN ) ∈ S inducing a load vector x is:

C(x) =

n∑
i=1

wi

∑
e∈Pi

de(xe) =
∑
e∈E

xede(xe).
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Denote by X the set of loads induced by a feasible profile P ∈ S, and by Xeq the set of load vectors induced

by a Nash Equilibrium P ∗ of G. By definition, the PoA of the game is:

PoA(G) :=
maxx∗∈Xeq

C(x∗)

minx∈X C(x)
.

In other words, PoA(G) is the smallest positive constant α such that C(x∗) ≤ αC(x) for all (x,x∗) ∈ X×Xeq.

We have a positive result for instances with affine delay functions, but it was shown that the PoA can

grow as pp/2 for instances with polynomial delay functions of degree ≤ p.

Theorem 5. Let G = (E,S,w,d) be an atomic congestion game with affine (and nondecreasing) delay

functions (de(x) = aex+ be for some ae, be ≥ 0). Then,

PoA(G) ≤ 3 +
√
5

2
≃ 2.618.

The proof of this result follows from the following lemma:

Lemma 6. Let x∗ ∈ Xeq and x ∈ X. Then, C(x∗) ≤ C(x) +
∑

e∈E aexex
∗
e.

Proof of the lemma. Denote by P ∗ the NE profile inducing x∗ and by P the strategy profile inducing x. It

follows from the characterization of a Nash equilibrium that for all player i,∑
e∈P∗

i

aex
∗
e + be ≤

∑
e∈P∗

i ∩Pi

aex
∗
e + be +

∑
e∈Pi\P∗

i

ae(x
∗
e + wi) + be ≤

∑
e∈Pi

ae(x
∗
e + wi) + be.

Now, multiplying by wi and summing over i, we obtain

C(x∗) =

N∑
i=1

wi

∑
e∈Pi

ae(x
∗
e + wi) + be ≤

N∑
i=1

wi

∑
e∈Pi

ae(x
∗
e + xe) + be,

where the inequality follows from the fact that, for an element e ∈ Pi, xe =
∑

{j:e∈Pj} wj ≥ wi. Now, we

rearrange the order of the terms in the summation, and we obtain:

C(x∗) ≤ C(x) +

N∑
i=1

wi

∑
e∈Pi

aex
∗
e = C(x) +

∑
e∈E

aex
∗
e

∑
{j:e∈Pj}

wi︸ ︷︷ ︸
xe

.

We are now ready to prove the theorem:

Proof. By using the Cauchy Schwarz Inequality, we have

∑
e∈E

aexex
∗
e =

∑
e∈E

(
√
aexe)(

√
aex

∗
e) ≤

(∑
e∈E

aex
2
e

) 1
2
(∑

e∈E

aex
∗2
e

) 1
2

≤
√
C(x)C(x∗).
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Combining this inequality with Lemma 6, we obtain:

C(x∗) ≤ C(x) +
√

C(x)C(x∗)

⇐⇒C(x∗)

C(x)
≤ 1 +

√
C(x∗)

C(x)
.

Finally, set U :=
√

C(x∗)
C(x) . We have U2 ≤ 1 + U , which implies U ≤ 1+

√
5

2 and U2 ≤ 3+
√
5

2 .

Remark If the game G is unweighted (i.e., wi = 1 for all i), then we can improve the upper bound on

the price of anarchy: PoA(G) ≤ 5
2 . These bounds are tight, as will be seen in Exercise 1 of Worksheet #7

(i.e., the bounds are attained for some instances).

Remark It is questionable whether players might behave according to the worst Nash Equilibrium. If

we are optimistic and think that the players rather converge to the best Nash Equilibrium, then we can use

the notion of price of stability (cf. Exercises 2 and 6 of Worksheet #7):

PoS(G) :=
minx∗∈Xeq

C(x∗)

minx∈X C(x)
.

Page 5 of 5


