Lecture \#2 Notes Summary

Cone \mathbb{S}_{+}^{n}, generalized inverses

Semidefinite positive matrices and generalized inverses

Definition 1 (cone \mathbb{S}_{+}^{n}). A symmetric matrix A is called positive semidefinite if $\boldsymbol{x}^{\boldsymbol{T}} A \boldsymbol{x} \geq 0$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$, and positive definite if $\boldsymbol{x}^{\boldsymbol{T}} A \boldsymbol{x}>0$ for all $\boldsymbol{x} \neq \mathbf{0} \in \mathbb{R}^{n}$. The set of $n \times n$ symmetric matrices (resp. positive semidefinite, positive definite) is \mathbb{S}^{n} (resp. $\mathbb{S}_{+}^{n}, \mathbb{S}_{++}^{n}$).

Proposition 1. The set \mathbb{S}_{+}^{n} is a closed, convex, pointed cone.

We recall that the eigenvalues of a symmetric matrix are real, and any symmetric matrix can be diagonalized by an orthogonal transformation (that is, a kind of rotation):

Theorem 2 (Spectral decomposition). Let A be a symmetric matrix. Then, there exists an orthogonal matrix U (i.e., $U^{T} U=U U^{T}=\boldsymbol{I}$) such that

$$
A=U \Sigma U^{T}
$$

where the matrix Σ is diagonal and contains the eigenvalues $\lambda_{i} \in \mathbb{R}$ of A.

Definition 2 (Löwner ordering). The space \mathbb{S}^{n} is equipped with a partial ordering \succeq, defined as

$$
A \succeq B \Longleftrightarrow A-B \in \mathbb{S}_{+}^{n}
$$

In particular, we write $A \succeq 0$ if A is positive semidefinite (and $A \succ 0$ if A is positive definite).

Characterization of positive semidefinite matrices:

Theorem 3. The following statements are equivalent
(i) $A \in \mathbb{S}_{+}^{n}$.
(ii) All eigenvalues of A are ≥ 0.
(iii) $A \in$ convex-hull $\left\{\boldsymbol{x} \boldsymbol{x}^{T}, \boldsymbol{x} \in \mathbb{R}^{n}\right\}$.
(iv) There exists a $n \times n-m a t r i x ~ B$ such that $A=B B^{T}$.
and the equivalent theorem for positive definite matrices:

Theorem 4. The following statements are equivalent
(i) $A \in \mathbb{S}_{++}^{n}$.
(ii) All eigenvalues of A are >0.
(iii) There exists an invertible $n \times n$-matrix B such that $A=B B^{T}$.

Some useful properties

Proposition 5 (Congruent transformations). Let P be an $m \times n-m a t r i x$. Then,

$$
A \succeq 0 \Longrightarrow P A P^{T} \succeq 0
$$

Moreover, if P is square and invertible the converse relation holds $\left(P A P^{T} \succeq 0 \Longrightarrow A \succeq 0\right)$.

Proposition 6. Let $A \in \mathbb{S}_{+}^{n}$. Then,

- All principal submatrices of A are $\succeq 0$;
- All diagonal elements of A are ≥ 0;
- $\forall i, j,\left|A_{i j}\right| \leq \sqrt{A_{i i} A_{j j}} \leq \frac{1}{2}\left(A_{i i}+A_{j j}\right)$.

Proposition 7 (Schur complement). Let $A \succ 0$. Then the following holds:

$$
\left(\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right) \succeq 0 \Longleftrightarrow C \succeq B^{T} A^{-1} B .
$$

There is also use a stronger version of this proposition, for the case where we only have $A \succeq 0$. But this requires the concept of generalized inverses.

Definition 3 (Generalized inverse). Let M be an $n \times m$-matrix. The matrix G is called a generalized inverse of M if $M G M=M$.

Proposition 8. Let $M \in \mathbb{S}^{n}$. Let K_{1} and K_{2} be matrices whose colums are included in the range of M (i.e., $\operatorname{im} K_{1} \subseteq \operatorname{im} M$, $\operatorname{im} K_{2} \subseteq \operatorname{im} M$). Then, the matrix $K_{1}^{T} G K_{2}$ does not depend on the choice of a generalized inverse G of M. We denote this matrix by $K_{1}^{T} M^{-} K_{2}$.

Definition 4 (Moore-Penrose pseudoinverse). Let M be an $n \times m$-matrix. The matrix

$$
M^{\dagger}:=\lim _{\epsilon \rightarrow 0^{+}}\left(M^{T} M+\epsilon \boldsymbol{I}_{m}\right)^{-1} M^{T}
$$

is a generalized inverse of M, called the Moore-Penrose pseudoinverse of M. In practice, M^{\dagger} can be computed by taking a singular value decomposition of M, and inverting the nonzero singular values.

Proposition 9 (Generalized Schur complement). Let $A \succeq 0$, and let B be a matrix satisfying the range inclusion condition im $B \subseteq \operatorname{im} A$. Then the following holds:

$$
\left(\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right) \succeq 0 \Longleftrightarrow C \succeq B^{T} A^{-} B
$$

Exercises

1. Let $A \succ 0$. Show that the set $E=\left\{\boldsymbol{x}: \boldsymbol{x}^{T} A \boldsymbol{x} \leq 1\right\}$ is an ellipsoid. More precisely, show that E is the image by an orthogonal transformation of a set of the form

$$
\left\{\boldsymbol{y}: \sum_{i}\left(\frac{y i}{r_{i}}\right)^{2} \leq 1\right\}
$$

What are the semi-axis of E ?
2. Let $A \succeq 0$ and $B \succeq 0$, and consider the ellipsoids $E_{A}=\left\{\boldsymbol{x}: \boldsymbol{x}^{T} A \boldsymbol{x} \leq 1\right\}, E_{B}=\left\{\boldsymbol{x}: \boldsymbol{x}^{T} B \boldsymbol{x} \leq 1\right\}$. Show the equivalence

$$
E_{A} \subseteq E_{B} \Longleftrightarrow A \succeq B
$$

3. Let A be a $n \times n$-symmetrix matrix, satifying $A \preceq \lambda \boldsymbol{I}$. Show that we have $\lambda \geq \lambda_{\max }$, where $\lambda_{\max }$ is the largest eigenvale of A. Show that $A \preceq \lambda_{\max } \boldsymbol{I}_{n}$.
4. Let $A \succ 0$, and B be an arbitrary matrix. Use a congruence tranformation with the matrix $\left(\begin{array}{cc}\boldsymbol{I} & 0 \\ B^{T} A^{-1} & \boldsymbol{I}\end{array}\right)$ to proove the Schur complement lemma.
5. Let $A \succeq 0$. Show that A admits a square root, i.e., a matrix $X \succeq 0$ such that $A=X^{2}$.
6. (Geometric mean of two positive definite matrices). Let $A, B \succ 0$. We admit that for all $Y, Z \succeq 0$, $Y \preceq Z \Longrightarrow Y^{1 / 2} \preceq Z^{1 / 2}$ (NB: the converse is not true!). Let X be a symmetrix matrix satisfying $\left(\begin{array}{cc}A & X \\ X & B\end{array}\right) \succeq 0$. Show that

$$
X \preceq A \# B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2}
$$

