Lecture #3 Notes Summary

Least square estimator, Gauss-Markov theorem

Linear regression and the Gauss-Markov theorem

Let $\boldsymbol{\theta}$ be an unknown parameter of dimension m, and let K be a $m \times r$ -matrix of full column rank (i.e., the columns of K are independent).

Assume that we have a vector $\boldsymbol{y} \in \mathbb{R}^N$ of measurements, satisfying

$$\boldsymbol{y} = A\boldsymbol{\theta} + \boldsymbol{\epsilon}, \qquad \mathbb{E}[\boldsymbol{\epsilon}] = \boldsymbol{0}, \qquad \operatorname{Var}[\boldsymbol{\epsilon}] = \mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^T] = \sigma^2 \boldsymbol{I}_N,$$

where A is a $N \times m$ -matrix and I_N denotes the $N \times N$ -identity matrix. In words, the errors ϵ_i on the measurements are unbiased and uncorrelated.

We want to recover $\boldsymbol{\theta}$ from the vector of measurements \boldsymbol{y} . More generally, assume that we want to estimate the value of $\boldsymbol{\zeta} = K^T \boldsymbol{\theta}$. An estimator $\hat{\boldsymbol{\zeta}}$ is a function of \boldsymbol{y} that is used to estimate $\boldsymbol{\zeta}$. We say that the estimator $\hat{\boldsymbol{\zeta}}$ is linear if $\hat{\boldsymbol{\zeta}} = H^T \boldsymbol{y}$ for some matrix H.

Definition 1. An estimator $\hat{\boldsymbol{\zeta}}$ for $K^T \boldsymbol{\theta}$ is called *unbiased* if $\mathbb{E}[\hat{\boldsymbol{\zeta}}] = K^T \boldsymbol{\theta}$.

Proposition 1. The linear estimator $\hat{\boldsymbol{\zeta}} = H^T \boldsymbol{y}$ is unbiased if and only if $A^T H = K$.

Theorem 2 (Least square estimate). Assume that the system $A\theta = \mathbf{y}$ is overdetermined (i.e., rank A = m). Then, the least square estimate of θ (that is, a minimizer of $||A\theta - \mathbf{y}||^2$) is unique and given by

$$\hat{\boldsymbol{\theta}} = (A^T A)^{-1} A^T \boldsymbol{y}.$$

Proof. We differentiate the least square criterion:

$$\nabla_{\theta} \Big((A\boldsymbol{\theta} - \boldsymbol{y})^T (A\boldsymbol{\theta} - \boldsymbol{y}) \Big) = \nabla_{\theta} \Big(\boldsymbol{\theta}^T A^T A \boldsymbol{\theta} - 2\boldsymbol{\theta}^T A^T \boldsymbol{y} + \text{constant} \Big) = 2A^T A \boldsymbol{\theta} - 2A^T \boldsymbol{y}$$

The minimizer is found by equating the above expression with $\mathbf{0}$, and it is unique because $A^T A$ is invertible.

Theorem 3 (Gauss Markov). Let A be a matrix of full column rank. Let $\hat{\boldsymbol{\zeta}} = H^T \boldsymbol{y}$ be an unbiased estimator for $\boldsymbol{\zeta} = K^T \boldsymbol{\theta}$, that is, $A^T H = K$. Then, we have

$$\operatorname{Var}[\hat{\zeta}] = H^T \operatorname{Var}[\boldsymbol{y}] H = \sigma^2 H^T H \succeq \sigma^2 K^T (A^T A)^{-1} K.$$

Moreover, the lower bound is attained for $H^* = A(A^T A)^{-1}K$. In other words, the best linear unbiased estimator (BLUE) for $K^T \theta$ is $K^T \hat{\theta}$, where $\hat{\theta}$ is the least square estimate of θ .

Proof. The fact that the lower bound is attained for H^* is clear by substituting its expression in $H^{*T}H^*$. Hence, the only thing to prove is the matrix inequality. The matrix

$$\left(\begin{array}{cc} A^TA & K\\ K^T & H^TH \end{array}\right)$$

is positive semidefinite, because it can be written as

$$\left(\begin{array}{c}A^T\\H^T\end{array}\right)\left(\begin{array}{c}A^T\\H^T\end{array}\right)^T.$$

Hence, since $A^T A \succ 0$ (because A has full column rank and rank $A^T A = \operatorname{rank} A$), the Schur complement lemma gives us

$$HH^T \succeq K^T (A^T A)^{-1} K.$$

In fact, there is a more general result for the case where A does not has full rank, but the estimability condition im $K \subseteq \operatorname{im} A^T$ is satisfied (i.e., $\exists H : A^T H = K$). The proof is similar to the above, but relies on the extended version of the Schur complement lemma.

Theorem 4 (Extended Gauss Markov). Let A be a matrix such that an unbiased estimator for $\boldsymbol{\zeta} = K^T \boldsymbol{\theta}$ exists, that is, im $K \subseteq \text{im } A^T$ and $A^T H = K$. Then, we have

$$\operatorname{Var}[\hat{\zeta}] = H^T \operatorname{Var}[\boldsymbol{y}] H = \sigma^2 H^T H \succeq \sigma^2 K^T (A^T A)^- K$$

Moreover, the lower bound is attained for $H^* = A(A^T A)^{\dagger} K$.

An alternative formulation of this theorem is as follows:

Theorem 5. Gauss Markov (extremal version) Let A be a matrix satisfying the estimability condition im $K \subseteq \text{im } A^T$. Then,

$$\min_{\preceq} \quad (H^T H) = K^T (A^T A)^- K s.t. \quad A^T H = K,$$

where \min_{\prec} denotes a minimum with respect to the Löwner ordering.

Exercises

Recall the Hotelling's weighing problem. There are N objects, and in each trial you can put a subset L of the objects on the left pan of the balance, and another (disjoint) subset R of the objects on the right pan, so you measure $y_{LR} = \sum_{i \in L} \theta_i - \sum_{i \in R} \theta_j + \epsilon$.

- 1. Compute the information matrix of the approximate design which assigns weight $w_{LR} = \frac{1}{2^N}$ on each partition $(L, R) = (S, \overline{S})$ of the N objects (that is, in each weighing all objects are on the balance).
- 2. Now, consider a spring balance (there is only one pan, on which you can put a subset S of the N objects. For a vector $\boldsymbol{w} \in \Delta_N$, Compute the information matrix of the approximate design which assigns the weight $w_S = \frac{w_i}{\binom{N}{i}}$ to each subset S of $[N] = \{1, \ldots, N\}$ of cardinality *i*.