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Lecture #3 Notes Summary

Least square estimator, Gauss-Markov theorem

Linear regression and the Gauss-Markov theorem

Let 6 be an unknown parameter of dimension m, and let K be a m x r—matrix of full column rank (i.e., the
columns of K are independent).
Assume that we have a vector y € RY of measurements, satifying

y = A0 + ¢, Ele] = 0, Var[e] = Elee’] = 0*I ,

where A is a N x m—matrix and Iy denotes the N x N —identity matrix. In words, the errors ¢; on the
measurements are unbiased and uncorrelated.

We want to recover @ from the vector of measurements y. More generally, assume that we want to
estimate the value of ¢ = K76. An estimator f is a function of y that is used to estimate . We say that
the estimator € is linear if ¢ = HTy for some matrix H.

Definition 1. An estimator ¢ for K70 is called unbiased if E[{] = K76.

Proposition 1. The linear estimator ¢ = HTy is unbiased if and only if ATH = K.

Theorem 2 (Least square estimate). Assume that the system AQ =y is overdetermined (i.e., rank A =
m). Then, the least square estimate of @ (that is, a minimizer of ||A@ — y||?) is unique and given by

6= (ATA)TATy.

Proof. We differentiate the least square criterion:
Vo ((Aa — )T (46 - y)) -V, (eTATAo — 20T ATy + constant) — 24T A9 — 24Ty

The minimizer is found by equating the above expression with 0, and it is unique because A7 A is invertible.
O

Theorem 3 (Gauss Markov). Let A be a matriz of full column rank. Let 6 = HTy be an unbiased
estimator for ¢ = K70, that is, ATH = K. Then, we have

Var[¢] = HT Varly|H = o> HTH > o® KT(AT A)'K.

Moreover, the lower bound is attained for H* = A(ATA)"1K. In other words, the best linear unbiased
estimator (BLUE) for KT is K70, where 0 is the least square estimate of 6.

Proof. The fact that the lower bound is attained for H* is clear by substituting its expression in H*7 H*.
Hence, the only thing to prove is the matrix inequality. The matrix

ATA K
KT HTH
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is positive semidefinite, because it can be written as

() ()

Hence, since AT”A = 0 (because A has full column rank and rank A7 A = rank A), the Schur complement

lemma gives us

HH" = KT(ATA)'K.
O

In fact, there is a more general result for the case where A does not has full rank, but the estimability
condition im K C im A7 is satisfied (i.e., 3H : ATH = K). The proof is similar to the above, but relies on
the extended version of the Schur complement lemma.

Theorem 4 (Extended Gauss Markov). Let A be a matriz such that an unbiased estimator for { = K10
exists, that is, im K Cim AT and ATH = K. Then, we have

Var[(] = H” Var[y|H = 0?H"H = 0> K" (A" A)"K.

Moreover, the lower bound is attained for H* = A(ATA)TK.

An alternative formulation of this theorem is as follows:

Theorem 5. Gauss Markov (extremal version) Let A be a matriz satisfying the estimability condition
imK Cim AT. Then,

minx  (H'H)=K"(ATA) K
st. ATH =K,

where min< denotes a minimum with respect to the Lowner ordering.

Exercises

Recall the Hotelling’s weighing problem. There are N objects, and in each trial you can put a subset L of
the objects on the left pan of the balance, and another (disjoint) subset R of the objects on the right pan,

so you measure yrr = Y ;e 0i — D ;g0 e

1. Compute the information matrix of the approximate design which assigns weight wpp = 2% on each
partition (L, R) = (S, 5) of the N objects (that is, in each weighing all objects are on the balance).

2. Now, consider a spring balance (there is only one pan, on which you can put a subset S of the N
objects. For a vector w € Ay, Compute the information matrix of the approximate design which
assigns the weight wg = (w—N) to each subset S of [N] = {1,..., N} of cardinality i.
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