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Lecture #3 Notes Summary

Least square estimator, Gauss-Markov theorem

Linear regression and the Gauss-Markov theorem

Let θ be an unknown parameter of dimension m, and let K be a m× r−matrix of full column rank (i.e., the

columns of K are independent).

Assume that we have a vector y ∈ RN of measurements, satifying

y = Aθ + ϵ, E[ϵ] = 0, Var[ϵ] = E[ϵϵT ] = σ2IN ,

where A is a N × m−matrix and IN denotes the N × N−identity matrix. In words, the errors ϵi on the

measurements are unbiased and uncorrelated.

We want to recover θ from the vector of measurements y. More generally, assume that we want to

estimate the value of ζ = KTθ. An estimator ζ̂ is a function of y that is used to estimate ζ. We say that

the estimator ζ̂ is linear if ζ̂ = HTy for some matrix H.

Definition 1. An estimator ζ̂ for KTθ is called unbiased if E[ζ̂] = KTθ.

Proposition 1. The linear estimator ζ̂ = HTy is unbiased if and only if ATH = K.

Theorem 2 (Least square estimate). Assume that the system Aθ = y is overdetermined (i.e., rank A =

m). Then, the least square estimate of θ (that is, a minimizer of ∥Aθ − y∥2) is unique and given by

θ̂ = (ATA)−1ATy.

Proof. We differentiate the least square criterion:

∇θ

(
(Aθ − y)T (Aθ − y)

)
= ∇θ

(
θTATAθ − 2θTATy + constant

)
= 2ATAθ − 2ATy

The minimizer is found by equating the above expression with 0, and it is unique because ATA is invertible.

Theorem 3 (Gauss Markov). Let A be a matrix of full column rank. Let ζ̂ = HTy be an unbiased

estimator for ζ = KTθ, that is, ATH = K. Then, we have

Var[ζ̂] = HT Var[y]H = σ2HTH ⪰ σ2 KT (ATA)−1K.

Moreover, the lower bound is attained for H∗ = A(ATA)−1K. In other words, the best linear unbiased

estimator (BLUE) for KTθ is KT θ̂, where θ̂ is the least square estimate of θ.

Proof. The fact that the lower bound is attained for H∗ is clear by substituting its expression in H∗TH∗.

Hence, the only thing to prove is the matrix inequality. The matrix(
ATA K

KT HTH

)
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is positive semidefinite, because it can be written as(
AT

HT

)(
AT

HT

)T

.

Hence, since ATA ≻ 0 (because A has full column rank and rankATA = rankA), the Schur complement

lemma gives us

HHT ⪰ KT (ATA)−1K.

In fact, there is a more general result for the case where A does not has full rank, but the estimability

condition imK ⊆ imAT is satisfied (i.e., ∃H : ATH = K). The proof is similar to the above, but relies on

the extended version of the Schur complement lemma.

Theorem 4 (Extended Gauss Markov). Let A be a matrix such that an unbiased estimator for ζ = KTθ

exists, that is, imK ⊆ imAT and ATH = K. Then, we have

Var[ζ̂] = HT Var[y]H = σ2HTH ⪰ σ2 KT (ATA)−K.

Moreover, the lower bound is attained for H∗ = A(ATA)†K.

An alternative formulation of this theorem is as follows:

Theorem 5. Gauss Markov (extremal version) Let A be a matrix satisfying the estimability condition

imK ⊆ imAT . Then,

min⪯
(
HTH

)
= KT (ATA)−K

s.t. ATH = K,

where min⪯ denotes a minimum with respect to the Löwner ordering.

Exercises

Recall the Hotelling’s weighing problem. There are N objects, and in each trial you can put a subset L of

the objects on the left pan of the balance, and another (disjoint) subset R of the objects on the right pan,

so you measure yLR =
∑

i∈L θi −
∑

j∈R θj + ϵ.

1. Compute the information matrix of the approximate design which assigns weight wLR = 1
2N

on each

partition (L,R) = (S, S̄) of the N objects (that is, in each weighing all objects are on the balance).

2. Now, consider a spring balance (there is only one pan, on which you can put a subset S of the N

objects. For a vector w ∈ ∆N , Compute the information matrix of the approximate design which

assigns the weight wS = wi

(Ni )
to each subset S of [N ] = {1, . . . , N} of cardinality i.
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