Lecture \#3 Notes Summary

Least square estimator, Gauss-Markov theorem

Linear regression and the Gauss-Markov theorem

Let $\boldsymbol{\theta}$ be an unknown parameter of dimension m, and let K be a $m \times r$-matrix of full column rank (i.e., the columns of K are independent).

Assume that we have a vector $\boldsymbol{y} \in \mathbb{R}^{N}$ of measurements, satifying

$$
\boldsymbol{y}=A \boldsymbol{\theta}+\boldsymbol{\epsilon}, \quad \mathbb{E}[\boldsymbol{\epsilon}]=\mathbf{0}, \quad \operatorname{Var}[\boldsymbol{\epsilon}]=\mathbb{E}\left[\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T}\right]=\sigma^{2} \boldsymbol{I}_{N}
$$

where A is a $N \times m$-matrix and \boldsymbol{I}_{N} denotes the $N \times N$-identity matrix. In words, the errors ϵ_{i} on the measurements are unbiased and uncorrelated.

We want to recover $\boldsymbol{\theta}$ from the vector of measurements \boldsymbol{y}. More generally, assume that we want to estimate the value of $\boldsymbol{\zeta}=K^{T} \boldsymbol{\theta}$. An estimator $\hat{\boldsymbol{\zeta}}$ is a function of \boldsymbol{y} that is used to estimate $\boldsymbol{\zeta}$. We say that the estimator $\hat{\boldsymbol{\zeta}}$ is linear if $\hat{\boldsymbol{\zeta}}=H^{T} \boldsymbol{y}$ for some matrix H.

Definition 1. An estimator $\hat{\boldsymbol{\zeta}}$ for $K^{T} \boldsymbol{\theta}$ is called unbiased if $\mathbb{E}[\hat{\boldsymbol{\zeta}}]=K^{T} \boldsymbol{\theta}$.

Proposition 1. The linear estimator $\hat{\boldsymbol{\zeta}}=H^{T} \boldsymbol{y}$ is unbiased if and only if $A^{T} H=K$.

Theorem 2 (Least square estimate). Assume that the system $A \boldsymbol{\theta}=\boldsymbol{y}$ is overdetermined (i.e., rank $A=$ m). Then, the least square estimate of $\boldsymbol{\theta}$ (that is, a minimizer of $\|A \boldsymbol{\theta}-\boldsymbol{y}\|^{2}$) is unique and given by

$$
\hat{\boldsymbol{\theta}}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{y}
$$

Proof. We differentiate the least square criterion:

$$
\nabla_{\theta}\left((A \boldsymbol{\theta}-\boldsymbol{y})^{T}(A \boldsymbol{\theta}-\boldsymbol{y})\right)=\nabla_{\theta}\left(\boldsymbol{\theta}^{T} A^{T} A \boldsymbol{\theta}-2 \boldsymbol{\theta}^{T} A^{T} \boldsymbol{y}+\mathrm{constant}\right)=2 A^{T} A \boldsymbol{\theta}-2 A^{T} \boldsymbol{y}
$$

The minimizer is found by equating the above expression with $\mathbf{0}$, and it is unique because $A^{T} A$ is invertible.

Theorem 3 (Gauss Markov). Let A be a matrix of full column rank. Let $\hat{\boldsymbol{\zeta}}=H^{T} \boldsymbol{y}$ be an unbiased estimator for $\boldsymbol{\zeta}=K^{T} \boldsymbol{\theta}$, that is, $A^{T} H=K$. Then, we have

$$
\operatorname{Var}[\hat{\zeta}]=H^{T} \operatorname{Var}[\boldsymbol{y}] H=\sigma^{2} H^{T} H \succeq \sigma^{2} K^{T}\left(A^{T} A\right)^{-1} K
$$

Moreover, the lower bound is attained for $H^{*}=A\left(A^{T} A\right)^{-1} K$. In other words, the best linear unbiased estimator $(B L U E)$ for $K^{T} \boldsymbol{\theta}$ is $K^{T} \hat{\boldsymbol{\theta}}$, where $\hat{\boldsymbol{\theta}}$ is the least square estimate of $\boldsymbol{\theta}$.

Proof. The fact that the lower bound is attained for H^{*} is clear by substituting its expression in $H^{* T} H^{*}$. Hence, the only thing to prove is the matrix inequality. The matrix

$$
\left(\begin{array}{cc}
A^{T} A & K \\
K^{T} & H^{T} H
\end{array}\right)
$$

is positive semidefinite, because it can be written as

$$
\binom{A^{T}}{H^{T}}\binom{A^{T}}{H^{T}}^{T}
$$

Hence, since $A^{T} A \succ 0$ (because A has full column rank and $\operatorname{rank} A^{T} A=\operatorname{rank} A$), the Schur complement lemma gives us

$$
H H^{T} \succeq K^{T}\left(A^{T} A\right)^{-1} K
$$

In fact, there is a more general result for the case where A does not has full rank, but the estimability condition $\operatorname{im} K \subseteq \operatorname{im} A^{T}$ is satisfied (i.e., $\exists H: A^{T} H=K$). The proof is similar to the above, but relies on the extended version of the Schur complement lemma.

Theorem 4 (Extended Gauss Markov). Let A be a matrix such that an unbiased estimator for $\boldsymbol{\zeta}=K^{T} \boldsymbol{\theta}$ exists, that is, $\operatorname{im} K \subseteq \operatorname{im} A^{T}$ and $A^{T} H=K$. Then, we have

$$
\operatorname{Var}[\hat{\zeta}]=H^{T} \operatorname{Var}[\boldsymbol{y}] H=\sigma^{2} H^{T} H \succeq \sigma^{2} K^{T}\left(A^{T} A\right)^{-} K
$$

Moreover, the lower bound is attained for $H^{*}=A\left(A^{T} A\right)^{\dagger} K$.

An alternative formulation of this theorem is as follows:

Theorem 5. Gauss Markov (extremal version) Let A be a matrix satisfying the estimability condition $\operatorname{im} K \subseteq \operatorname{im} A^{T}$. Then,

$$
\begin{aligned}
\min _{\preceq} & \left(H^{T} H\right)=K^{T}\left(A^{T} A\right)^{-} K \\
\text { s.t. } & A^{T} H=K,
\end{aligned}
$$

where $\min _{\preceq}$ denotes a minimum with respect to the Löwner ordering.

Exercises

Recall the Hotelling's weighing problem. There are N objects, and in each trial you can put a subset L of the objects on the left pan of the balance, and another (disjoint) subset R of the objects on the right pan, so you measure $y_{L R}=\sum_{i \in L} \theta_{i}-\sum_{j \in R} \theta_{j}+\epsilon$.

1. Compute the information matrix of the approximate design which assigns weight $w_{L R}=\frac{1}{2^{N}}$ on each partition $(L, R)=(S, \bar{S})$ of the N objects (that is, in each weighing all objects are on the balance).
2. Now, consider a spring balance (there is only one pan, on which you can put a subset S of the N objects. For a vector $\boldsymbol{w} \in \Delta_{N}$, Compute the information matrix of the approximate design which assigns the weight $w_{S}=\frac{w_{i}}{\binom{N}{i}}$ to each subset S of $[N]=\{1, \ldots, N\}$ of cardinality i.
