Lecture \#4 Notes Summary

Linear model, information matrices

The linear model

We assume that the experimenter wants to estimate an unknown parameter $\boldsymbol{\theta} \in \mathbb{R}^{m}$. He can make a trial at each point \boldsymbol{x} of a compact region \mathcal{X} (the experimental region), representing the different experimental conditions.

Let us assume that trials are done at some points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \in \mathcal{X}$. In the standard linear model, it is assumed that:

- The observation y_{i} at the $i^{\text {th }}$ point x_{i} satisfies

$$
\mathbb{E}\left[y_{i}\right]=\boldsymbol{a}\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{\theta}, \quad \operatorname{var}\left(y_{i}\right)=\sigma^{2},
$$

where $a: \mathcal{X} \mapsto \mathbb{R}^{m}$ is continuous.

- The N observatoins are mutually independent. In particular, the responses are uncorrelated:

$$
i \neq j \Longrightarrow \mathbb{E}\left[\left(y_{i}-\boldsymbol{a}\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{\theta}\right)\left(y_{j}-\boldsymbol{a}\left(\boldsymbol{x}_{j}\right)^{T} \boldsymbol{\theta}\right)\right]=0 .
$$

The set of points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N} \in \mathcal{X}$ is called the design. NB: there can be some replicate, e.g. $\boldsymbol{x}_{i}=\boldsymbol{x}_{j}$. Obviously, the order of the trials does not play a role, so we can assume without loss of generality that the points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{s}$ are distinct for some $s \leq N$. Then, the design can be represented by using the following notation:

Definition 1 (Exact design). An exact design ξ corresponds to a collection of points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{s} \in \mathcal{X}$ together with a vector of integers $\boldsymbol{n} \in \mathbb{N}^{s}$. We write

$$
\xi=\left(\begin{array}{lll}
\boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{s} \\
n_{1} & \cdots & n_{s}
\end{array}\right)
$$

or $\xi=\{\boldsymbol{x}, \boldsymbol{n}\}$ for short, which means that n_{i} observations are taken at \boldsymbol{x}_{i}.

Note that for an exact design $\xi=\{\boldsymbol{x}, \boldsymbol{n}\}$ with a total number of N trials, we have $\sum_{i} n_{i}=N$. Now, in vector notation, we have

$$
\begin{gathered}
\mathbb{E}[\boldsymbol{y}]=A(\xi) \boldsymbol{\theta} \\
\operatorname{Var}[\boldsymbol{y}]=\sigma^{2} \boldsymbol{I}_{N}
\end{gathered}
$$

where the $i^{\text {th }}$ row of the $N \times m$ - matrix $A(\xi)$ is $\boldsymbol{a}\left(\boldsymbol{x}_{i}\right)$.
A direct application of the Gauss-Markov theorem shows that if the estimability condition im $K \subseteq \operatorname{im} A(\xi)^{T}$ is satisfied, then we have

$$
\operatorname{Var}[\hat{\boldsymbol{\zeta}}] \succeq \operatorname{Var}\left[K^{T} \boldsymbol{\theta}^{*}\right]=\sigma^{2} K^{T}\left(A(\xi)^{T} A(\xi)\right)^{-} K
$$

for all unbiased estimator $\hat{\boldsymbol{\zeta}}$ of $\boldsymbol{\zeta}:=K^{T} \boldsymbol{\theta}$, and where $\boldsymbol{\theta}^{*}:=A(\xi)^{\dagger} \boldsymbol{y}$ is the least square estimate of $\boldsymbol{\theta}$. Observe that $A(\xi)^{T} A(\xi)=\sum_{i} n_{i} \boldsymbol{a}\left(\boldsymbol{x}_{i}\right) \boldsymbol{a}\left(\boldsymbol{x}_{i}\right)^{T}$, where \boldsymbol{n} is such that $\sum_{i=1}^{s} n_{i}=N$.

Thus, we can give a first informal version of the optimal design problem: Find a design $\xi=\{\boldsymbol{x}, \boldsymbol{n}\}$ which satisfies the estimability condition, and which minimizes (in a certain sense) the matrix

$$
K^{T}\left(\sum_{i=1}^{s} n_{i} \boldsymbol{a}\left(\boldsymbol{x}_{i}\right) \boldsymbol{a}\left(\boldsymbol{x}_{i}\right)^{T}\right)^{-} K
$$

To get rid of the combinatorics of the problem, we can write $n_{i}=N w_{i}$ for some vector \boldsymbol{w} in the probability simplex $\Delta_{s}:=\left\{\boldsymbol{w} \in \mathbb{R}_{+}^{s}: \sum_{i} w_{i}=1\right\}$, and we (temporarily) ignore the integer constraint $N w_{i} \in \mathbb{Z}_{+}$.

Definition 2 (Approximate design). An approximate design ξ corresponds to a collection of points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{s} \in \mathcal{X}$ together with a vector of weights $\boldsymbol{w} \in \Delta_{s}$. We write

$$
\xi=\left(\begin{array}{lll}
\boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{s} \\
w_{1} & \cdots & w_{s}
\end{array}\right)
$$

and w_{i} can be interpreted as the percentage of experimental effort spent at the design point \boldsymbol{x}_{i}.

Definition 3 (Information matrix). The information matrix of the design $\xi=\{\boldsymbol{x}, \boldsymbol{w}\}$ is

$$
M(\xi)=\sum_{i=1}^{s} w_{i} \boldsymbol{a}\left(\boldsymbol{x}_{i}\right) \boldsymbol{a}\left(\boldsymbol{x}_{i}\right)^{T}
$$

An anoying point of these definitions is that we do not know what should be the value of s for an approximate design. But we can use the following geometrical result:

Theorem 1 (Carathéodory). Let $P \subset \mathbb{R}^{n}$ and $\boldsymbol{x} \in \operatorname{convex-hull}(P)$. Then, \boldsymbol{x} can be written as the barycenter of $n+1$ points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1} \in P$. That is,

$$
\exists \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1} \in P, \quad \exists \boldsymbol{\lambda} \in \Delta_{n+1}: \quad \boldsymbol{x}=\sum_{i} \lambda_{i} \boldsymbol{a}_{i} .
$$

Proposition 2. Let $\xi=\{\boldsymbol{x}, \boldsymbol{w}\}$ be a design (exact or approximate) for a model with m parameters, supported by N points (i.e., $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{N} \in \mathbb{R}^{m}$). Then, there exists an approximate design $\xi^{\prime}=\{\boldsymbol{x}, \boldsymbol{w}\}$ supported by at most $s=\frac{m(m+1)}{2}+1$ points such that $M(\xi)=M\left(\xi^{\prime}\right)$.

Remark. An alternative way to define designs uses the concept of probability measures: A design ξ can be seen as a probability measure over \mathcal{X}, in which case we define

$$
M(\xi)=\int_{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{a}(\boldsymbol{x}) \boldsymbol{a}(\boldsymbol{x})^{T} d \xi(\boldsymbol{x})
$$

In this case, Carathéodory's theorem implies that every information matrix of the above form can be obtained from a discrete measure with $s=\frac{m(m+1)}{2}+1$ support points.
Remark. When the design region \mathcal{X} is finite, or when the design points $\boldsymbol{x}_{\boldsymbol{1}}, \ldots, \boldsymbol{x}_{s}$ are given, we simply represent the design by $\boldsymbol{w} \in \Delta_{s}$ and we write \boldsymbol{a}_{i} instead of $\boldsymbol{a}\left(\boldsymbol{x}_{i}\right)$:

$$
M(\boldsymbol{w})=\sum_{i=1}^{s} w_{i} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{T}
$$

Exercises

1. Proof of Carathéodory's theorem.

The proof is by induction. Assume that \boldsymbol{x} is a barycenter of $N>n+1$ points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}$.

- Show that $\boldsymbol{a}_{2}-\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}-\boldsymbol{a}_{1}$ are linearly dependents, and deduce the existence of a vector $\boldsymbol{\mu} \neq \mathbf{0}$ such that $\sum_{i} \mu_{i}=0, \sum_{i} \mu_{i} \boldsymbol{a}_{i}=\mathbf{0}$.
- Use the above vector $\boldsymbol{\mu}$ to show that \boldsymbol{x} is a barycenter of $N-1$ points.

