Lecture #4 Notes Summary

Linear model, information matrices

The linear model

We assume that the experimenter wants to estimate an unknown parameter $\theta \in \mathbb{R}^m$. He can make a trial at each point x of a compact region \mathcal{X} (the *experimental region*), representing the different experimental conditions.

Let us assume that trials are done at some points $x_1, x_2, \ldots, x_N \in \mathcal{X}$. In the standard linear model, it is assumed that:

• The observation y_i at the i^{th} point x_i satisfies

$$\mathbb{E}[y_i] = \boldsymbol{a}(\boldsymbol{x}_i)^T \boldsymbol{\theta}, \text{ var}(y_i) = \sigma^2,$$

where $a: \mathcal{X} \mapsto \mathbb{R}^m$ is continuous.

• The N observatoins are mutually independent. In particular, the responses are uncorrelated:

$$i \neq j \Longrightarrow \mathbb{E}\left[\left(y_i - \boldsymbol{a}(\boldsymbol{x}_i)^T \boldsymbol{\theta}\right) \left(y_j - \boldsymbol{a}(\boldsymbol{x}_j)^T \boldsymbol{\theta}\right)\right] = 0.$$

The set of points $x_1, x_2, \ldots, x_N \in \mathcal{X}$ is called the *design*. NB: there can be some replicate, e.g. $x_i = x_j$. Obviously, the order of the trials does not play a role, so we can assume without loss of generality that the points x_1, \ldots, x_s are distinct for some $s \leq N$. Then, the design can be represented by using the following notation:

Definition 1 (Exact design). An *exact design* ξ corresponds to a collection of points $x_1, \ldots, x_s \in \mathcal{X}$ together with a vector of integers $n \in \mathbb{N}^s$. We write

$$\xi = \left(\begin{array}{ccc} \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_s \\ n_1 & \cdots & n_s \end{array}\right),$$

or $\xi = \{x, n\}$ for short, which means that n_i observations are taken at x_i .

Note that for an exact design $\xi = \{x, n\}$ with a total number of N trials, we have $\sum_i n_i = N$. Now, in vector notation, we have

$$\mathbb{E}[\boldsymbol{y}] = A(\xi)\boldsymbol{\theta},$$

Var $[\boldsymbol{y}] = \sigma^2 \boldsymbol{I}_N,$

where the i^{th} row of the $N \times m$ - matrix $A(\xi)$ is $\boldsymbol{a}(\boldsymbol{x}_i)$.

A direct application of the Gauss-Markov theorem shows that if the estimability condition im $K \subseteq \operatorname{im} A(\xi)^T$ is satisfied, then we have

$$\operatorname{Var}[\hat{\boldsymbol{\zeta}}] \succeq \operatorname{Var}[K^T \boldsymbol{\theta^*}] = \sigma^2 K^T \left(A(\xi)^T A(\xi) \right)^- K,$$

for all unbiased estimator $\hat{\boldsymbol{\zeta}}$ of $\boldsymbol{\zeta} := K^T \boldsymbol{\theta}$, and where $\boldsymbol{\theta}^* := A(\boldsymbol{\xi})^{\dagger} \boldsymbol{y}$ is the least square estimate of $\boldsymbol{\theta}$. Observe that $A(\boldsymbol{\xi})^T A(\boldsymbol{\xi}) = \sum_i n_i \boldsymbol{a}(\boldsymbol{x}_i) \boldsymbol{a}(\boldsymbol{x}_i)^T$, where \boldsymbol{n} is such that $\sum_{i=1}^s n_i = N$.

Thus, we can give a first informal version of the optimal design problem: Find a design $\xi = \{x, n\}$ which satisfies the estimability condition, and which minimizes (in a certain sense) the matrix

$$K^T \left(\sum_{i=1}^s n_i \boldsymbol{a}(\boldsymbol{x}_i) \boldsymbol{a}(\boldsymbol{x}_i)^T\right)^- K$$

To get rid of the combinatorics of the problem, we can write $n_i = Nw_i$ for some vector \boldsymbol{w} in the probability simplex $\Delta_s := \{ \boldsymbol{w} \in \mathbb{R}^s_+ : \sum_i w_i = 1 \}$, and we (temporarily) ignore the integer constraint $Nw_i \in \mathbb{Z}_+$.

Definition 2 (Approximate design). An approximate design ξ corresponds to a collection of points $x_1, \ldots, x_s \in \mathcal{X}$ together with a vector of weights $w \in \Delta_s$. We write

$$\xi = \left(egin{array}{ccc} oldsymbol{x}_1 & \cdots & oldsymbol{x}_s \ w_1 & \cdots & w_s \end{array}
ight),$$

and w_i can be interpreted as the *percentage of experimental effort* spent at the design point x_i .

Definition 3 (Information matrix). The *information matrix* of the design $\xi = \{x, w\}$ is

$$M(\xi) = \sum_{i=1}^{s} w_i \boldsymbol{a}(\boldsymbol{x}_i) \boldsymbol{a}(\boldsymbol{x}_i)^T.$$

An anoying point of these definitions is that we do not know what should be the value of s for an approximate design. But we can use the following geometrical result:

Theorem 1 (Carathéodory). Let $P \subset \mathbb{R}^n$ and $x \in \text{convex-hull}(P)$. Then, x can be written as the barycenter of n + 1 points $a_1, \ldots, a_{n+1} \in P$. That is,

$$\exists a_1, \dots, a_{n+1} \in P, \quad \exists \lambda \in \Delta_{n+1} : \quad x = \sum_i \lambda_i a_i$$

Proposition 2. Let $\xi = \{x, w\}$ be a design (exact or approximate) for a model with m parameters, supported by N points (i.e., $x_1, \ldots, x_N \in \mathbb{R}^m$). Then, there exists an approximate design $\xi' = \{x, w\}$ supported by at most $s = \frac{m(m+1)}{2} + 1$ points such that $M(\xi) = M(\xi')$.

Remark. An alternative way to define designs uses the concept of probability measures: A design ξ can be seen as a probability measure over \mathcal{X} , in which case we define

$$M(\xi) = \int_{\boldsymbol{x}\in\mathcal{X}} \boldsymbol{a}(\boldsymbol{x}) \boldsymbol{a}(\boldsymbol{x})^T d\xi(\boldsymbol{x}).$$

In this case, Carathéodory's theorem implies that every information matrix of the above form can be obtained from a discrete measure with $s = \frac{m(m+1)}{2} + 1$ support points.

Remark. When the design region \mathcal{X} is finite, or when the design points x_1, \ldots, x_s are given, we simply represent the design by $w \in \Delta_s$ and we write a_i instead of $a(x_i)$:

$$M(\boldsymbol{w}) = \sum_{i=1}^{s} w_i \boldsymbol{a}_i \boldsymbol{a}_i^T.$$

Exercises

1. Proof of Carathéodory's theorem.

The proof is by induction. Assume that \boldsymbol{x} is a barycenter of N > n+1 points $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_N$.

- Show that $a_2 a_1, \ldots, a_N a_1$ are linearly dependents, and deduce the existence of a vector $\mu \neq \mathbf{0}$ such that $\sum_i \mu_i = 0, \sum_i \mu_i a_i = \mathbf{0}$.
- Use the above vector $\boldsymbol{\mu}$ to show that \boldsymbol{x} is a barycenter of N-1 points.