Lecture \#5 Notes Summary

c-optimality, Elfving's theorem

Scalar optimality

Definition 1 (Feasibility cone). Let K be an $m \times r$-matrix. The Feasibility cone $\Xi(K)$ of K is the set of all designs ξ such that the estimability condition $\operatorname{im} K \subseteq \operatorname{im} A(\xi)^{T}=\operatorname{im} M(\xi)$ is satisfied.

The quantity $\zeta=K^{T} \boldsymbol{\theta}$ is said to be estimable if the feasibility cone is nonempty.

Recall our first informal statement of the approximate optimal design problem: Find a design $\xi=\{\boldsymbol{x}, \boldsymbol{w}\} \in$ $\Xi(K)$ that minimizes (in a certain sense) the matrix

$$
K^{T}\left(\sum_{i=1}^{s} w_{i} \boldsymbol{a}\left(\boldsymbol{x}_{i}\right) \boldsymbol{a}\left(\boldsymbol{x}_{i}\right)^{T}\right)^{-} K
$$

There is one case where this problem is well stated. Namely, when $K \in m \times r$ is a column vector (i.e., $r=1$). In this case, we write $K=\boldsymbol{c}$, and we want to estimate a single scalar quantity, $\zeta=\boldsymbol{c}^{T} \boldsymbol{\theta}$. That is, we are interested by a particular linear combination of the parameters. Particular cases are:

- estimation of a single parameter $\left(\zeta=\theta_{1}\right)$;
- estimation of the difference between two parameters $\left(\zeta=\theta_{i}-\theta_{j}\right)$;
- estimation of the average of the parameters $\left(\zeta=\sum_{i=1}^{m} \frac{1}{m} \theta_{i}\right)$.

The approximate optimal design problem can be rewritten as:

$$
\begin{align*}
\min _{\xi=\{\boldsymbol{x}, \boldsymbol{w}\}} & \boldsymbol{c}^{T}\left(\sum_{i=1}^{s} w_{i} \boldsymbol{a}\left(\boldsymbol{x}_{i}\right) \boldsymbol{a}\left(\boldsymbol{x}_{i}\right)^{T}\right)^{-} \boldsymbol{c} \tag{1}\\
\text { s.t. } & \xi \in \Xi(\boldsymbol{c})
\end{align*}
$$

We say that a design solving Problem (1) is \boldsymbol{c}-optimal. But in fact, we can almost ignore the constraint $\xi \in \Xi(\boldsymbol{c})$, because we can set $\boldsymbol{c}^{T} M(\xi)^{-} \boldsymbol{c}:=+\infty$ when $\boldsymbol{c} \notin M(\xi)$.

We are next going to see that this problem has a solution that has a nice geometric construction.

Definition 2 (Elfving's set). The Elfving' set for the design of experiments (in the linear model) is

$$
E=\text { convex-hull }(\{ \pm \boldsymbol{a}(\boldsymbol{x}): \boldsymbol{x} \in \mathcal{X}\})
$$

We denote its boundary by ∂E.

Theorem 1 (Elfving). An approximate design $\xi=\{\boldsymbol{x}, \boldsymbol{w}\}$ is \boldsymbol{c}-optimal if and only if there exists scalars $\varepsilon_{i}= \pm 1$ and a positive real t such that

$$
t \boldsymbol{c}=\sum_{i=1}^{s} \varepsilon_{i} w_{i} \boldsymbol{a}\left(\boldsymbol{x}_{i}\right) \in \partial E .
$$

Moreover, $t^{-2}=\boldsymbol{c}^{T} M(\xi)^{-} \boldsymbol{c}$ is the minimal variance.

This theorem has a nice geometrical interpretation: take the intersection of the straight line directed by \boldsymbol{c} and the boundary of the Elfving's set. This point can be expressed as a convex combination of extreme points of E, and the weights of this combination represent the \boldsymbol{c}-optimal design. In the next example, \boldsymbol{c} is directed along θ_{1}, i.e., we just want to estimate θ_{1} and we do not care about the accuracy of the estimation of θ_{2}. The intersection point (between $\boldsymbol{c} \mathbb{R}$ and $\left.\partial E\right)$ is $\frac{3}{4} \boldsymbol{a}_{3}+\frac{1}{4}\left(-\boldsymbol{a}_{4}\right)$, and so a \boldsymbol{c}-optimal design is

We will sketch a geometrical proof of this result. But we first need the following lemma:

Lemma 2. Let $\xi=\{\boldsymbol{x}, \boldsymbol{w}\} \in \Xi(\boldsymbol{c})$, and assume w.l.o.g. that $\boldsymbol{w}>0$ (we can remove the points with a zero weight from the design). Then, $\boldsymbol{c}^{T} M(\xi)^{-} \boldsymbol{c}=\min \left\{\sum_{i=1}^{s} \frac{u_{i}^{2}}{w_{i}}: \boldsymbol{u} \in \mathbb{R}^{s}, \sum_{i} u_{i} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\boldsymbol{c}\right\}$.

Proof. As a direct consequence of Gauss markov theorem:

$$
K^{T}\left(A^{T} A\right)^{-} K=\min _{\preceq}\left\{H^{T} H: \quad A^{T} H=K\right\}
$$

we have

$$
\boldsymbol{c}^{T} M(\xi)^{-} \boldsymbol{c}=\min \left\{\sum_{i=1}^{s} v_{i}^{2}: \boldsymbol{v} \in \mathbb{R}^{s}, \sum_{i} v_{i} \sqrt{w_{i}} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\boldsymbol{c}\right\}
$$

(Set $K:=\boldsymbol{c}$ and $A:=\left[\sqrt{w_{1}} \boldsymbol{a}\left(\boldsymbol{x}_{1}\right), \cdots, \sqrt{w_{s}} \boldsymbol{a}\left(\boldsymbol{x}_{s}\right)\right]^{T}$, so that $M(\xi)=A^{T} A$.) The result of the lemma is obtained after the change of variable $u_{i}=\sqrt{w_{i}} v_{i}$.

Proof of Elfving's theorem. Let $\xi=\{\boldsymbol{x}, \boldsymbol{w}\}$ be a design satisfying the estimability condition $\xi \in \Xi(\boldsymbol{c})$. We define the set $\mathcal{A}(\xi):=\left\{\boldsymbol{x}: \boldsymbol{x} \in \operatorname{im} M(\xi), \boldsymbol{x}^{T} M(\xi)^{-} \boldsymbol{x} \leq 1\right\}$, which is an ellipsoid (it can be a flat ellipsoid
if $M(\xi)$ is singular). Denote by t the largest scalar $\alpha \geq 0$ such that $\alpha \boldsymbol{c} \in \mathcal{A}(\xi)$ and by t^{*} the largest $\alpha \geq 0$ such that $\alpha \boldsymbol{c} \in E$.

The proof is in 3 steps:

1. We show that $\mathcal{A}(\xi) \subseteq E$
2. This implies $\boldsymbol{c}^{T} M(\xi)^{-} \boldsymbol{c}=t^{-2} \geq\left(t^{*}\right)^{-2}$
3. We show that this bound is attained iff ξ is a design satisfying the condition of the theorem.
4. Let \boldsymbol{x} be a point in $\mathcal{A}(\xi)$. By Lemma 2 we know that

$$
\boldsymbol{x}^{T} M(\xi)^{-} \boldsymbol{x}=\min \left\{\sum_{i=1}^{s} \frac{u_{i}^{2}}{w_{i}}: \boldsymbol{u} \in \mathbb{R}^{s}, \sum_{i} u_{i} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\boldsymbol{x}\right\} .
$$

This implies the existence of a vector \boldsymbol{u} so that $\sum_{i=1}^{s} \frac{u_{i}^{2}}{w_{i}} \leq 1$ and $\sum_{i} u_{i} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\boldsymbol{x}$. Now, we apply Cauchy Schwarz:

$$
1 \geq \sum_{i=1}^{s} \frac{u_{i}^{2}}{w_{i}}=\sum_{i=1}^{s}\left(\frac{\left|u_{i}\right|}{\sqrt{w_{i}}}\right)^{2} \underbrace{\sum_{i=1}^{s}\left(\sqrt{w_{i}}\right)^{2}}_{=1} \geq\left(\sum_{i=1}^{s}\left|u_{i}\right|\right)^{2}
$$

So for $\epsilon_{i}=\operatorname{sign}\left(u_{i}\right)$ we have $\boldsymbol{x}=\sum_{i} \epsilon_{i}\left|u_{i}\right| \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$, and $\sum_{i}\left|u_{i}\right| \leq 1$. This shows that $\boldsymbol{x} \in E=\operatorname{convex}-h u l l(\pm a(\mathcal{X}))$.
2. In particular, we have $\alpha \boldsymbol{c} \in \operatorname{im} M(\xi)$ for all $\alpha \geq 0$, so $\alpha \boldsymbol{c} \in \mathcal{A}(\xi)$ iff

$$
(\alpha \boldsymbol{c})^{T} M(\xi)^{-}(\alpha \boldsymbol{c}) \leq 1 \Longleftrightarrow \alpha^{2} \boldsymbol{c}^{T} M(\xi)^{-} \boldsymbol{c} \leq 1 \Longleftrightarrow \alpha^{-2} \geq \boldsymbol{c}^{T} M(\xi)^{-} \boldsymbol{c}
$$

So $t^{-2}=\boldsymbol{c}^{T} M(\xi)^{-} \boldsymbol{c}$, and from point 1. we know that $t \leq t^{*}$, hence the bound $\boldsymbol{c}^{T} M(\xi)^{-} \boldsymbol{c} \geq\left(t^{*}\right)^{-2}$.
3. Let $t^{*} \boldsymbol{c}=\sum_{i} \epsilon_{i} w_{i}^{*} \boldsymbol{a}\left(\boldsymbol{x}_{i}^{*}\right) \in \partial E$ as in the theorem, and define $\xi^{*}=\left\{\boldsymbol{x}^{*}, \boldsymbol{w}^{*}\right\}$. By Lemma 2 we have

$$
\boldsymbol{c}^{T} M\left(\xi^{*}\right)^{-} \boldsymbol{c}=\min \left\{\sum_{i=1}^{s} \frac{u_{i}^{2}}{w_{i}^{*}}: \boldsymbol{u} \in \mathbb{R}^{s}, \sum_{i} u_{i} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}^{*}\right)=\boldsymbol{c}\right\} .
$$

In partucular, if we set $u_{i}=\left(t^{*}\right)^{-1} \epsilon_{i} w_{i}^{*}$ we have $\boldsymbol{c}^{T} M\left(\xi^{*}\right)^{-} \boldsymbol{c} \leq \sum_{i=1}^{s}\left(t^{*}\right)^{-2} w_{i}^{*}=\left(t^{*}\right)^{-2}$. So $\boldsymbol{c}^{T} M\left(\xi^{*}\right)^{-} \boldsymbol{c}=\left(t^{*}\right)^{-2}$.
Conversely, assume that $t \boldsymbol{c} \in \partial E$. It implies that the Cauchy Schwarz inequality used above must be an equality for $\boldsymbol{x}=t \boldsymbol{c}=\sum_{i} u_{i} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$, otherwise the weights $\left|u_{i}\right|$ do not sum to 1 and we have $t^{\prime} \boldsymbol{c} \in E$ for $t^{\prime}=$ $\frac{t}{\sum_{i}\left|u_{i}\right|}>t$. So the $\left|u_{i}\right| / \sqrt{w_{i}}$ are proportional to $\sqrt{w_{i}}$, which implies $w_{i}= \pm u_{i}$ and $t \boldsymbol{c}=\sum_{i} \epsilon_{i} w_{i} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \in \partial E$. That is, ξ satisfies the condition of the theorem.

Corollary 3 (LP-formulation). Assume that the experimental region \mathcal{X} is finite, or that the candidate design points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$ are given (recall that in that case, we write $\boldsymbol{a}_{\boldsymbol{i}}$ instead of $\boldsymbol{a}\left(\boldsymbol{x}_{i}\right)$). Then, the optimal weights of a c-optimal design and the quantity t such that t^{-2} is the minimal variance can be computed by the following linear program:

$$
\begin{array}{ll}
\max _{t, \boldsymbol{\lambda}} & t \\
\text { s.t. } & t \boldsymbol{c}=\sum_{i=1}^{N} \lambda_{i} \boldsymbol{a}_{\boldsymbol{i}} \\
& \sum_{i=1}^{N} \underbrace{\left|\lambda_{i}\right|}_{w_{i}} \leq 1,
\end{array}
$$

(we have left absolute values for more readibility).

Exercises

1. On the finite experimental region $\mathcal{X}=\{1,2,3\}, a_{1}=[1,0]^{T}, a_{2}=[4,1]^{T}, a_{3}=[4,2]^{T}$, find the optimal design for θ_{1} (that is, the $(1,0)$-optimal design).
2. Consider the line fit model $y(x)=a x+b$ over $x \in \mathcal{X}=[-1,1]$, where the unknown parameter is $\boldsymbol{\theta}=[a, b]$. Show that the optimal design for a is unique, but that there are an infinity of optimal designs for b.
3. In the quadratic fit model $y(x)=\theta_{1}+\theta_{2} x+\theta_{3} x^{2}$ over $x \in \mathcal{X}=[-1,1]$, find the optimal designs for

- $\theta_{1}+\theta_{2}+\theta_{3}$
- $\theta_{1}-\theta_{3}$
- $2 \theta_{2}+\theta_{3}$ [Hint: try to write the vector $[1,2 t, t]$ as a barycenter of 2 vectors of the form $\left[1, x, x^{2}\right]$ and $\left.\left[-1,-y,-y^{2}\right]\right]$.

