Lecture #5 Notes Summary

c-optimality, Elfving's theorem

Scalar optimality

Definition 1 (Feasibility cone). Let K be an $m \times r$ -matrix. The *Feasibility cone* $\Xi(K)$ of K is the set of all designs ξ such that the estimability condition im $K \subseteq \operatorname{im} A(\xi)^T = \operatorname{im} M(\xi)$ is satisfied.

The quantity $\zeta = K^T \boldsymbol{\theta}$ is said to be *estimable* if the feasibility cone is nonempty.

Recall our first informal statement of the approximate optimal design problem: Find a design $\xi = \{x, w\} \in \Xi(K)$ that minimizes (in a certain sense) the matrix

$$K^T \left(\sum_{i=1}^s w_i \boldsymbol{a}(\boldsymbol{x}_i) \boldsymbol{a}(\boldsymbol{x}_i)^T\right)^- K$$

There is one case where this problem is well stated. Namely, when $K \in m \times r$ is a column vector (i.e., r = 1). In this case, we write K = c, and we want to estimate a single scalar quantity, $\zeta = c^T \theta$. That is, we are interested by a particular linear combination of the parameters. Particular cases are:

- estimation of a single parameter $(\zeta = \theta_1)$;
- estimation of the difference between two parameters $(\zeta = \theta_i \theta_j)$;
- estimation of the average of the parameters $(\zeta = \sum_{i=1}^{m} \frac{1}{m} \theta_i)$.

The approximate optimal design problem can be rewritten as:

$$\min_{\substack{\xi = \{\boldsymbol{x}, \boldsymbol{w}\}}} \boldsymbol{c}^{T} \left(\sum_{i=1}^{s} w_{i} \boldsymbol{a}(\boldsymbol{x}_{i}) \boldsymbol{a}(\boldsymbol{x}_{i})^{T} \right)^{-} \boldsymbol{c}$$
(1)
s. t. $\xi \in \Xi(\boldsymbol{c}).$

We say that a design solving Problem (1) is c-optimal. But in fact, we can almost ignore the constraint $\xi \in \Xi(c)$, because we can set $c^T M(\xi)^- c := +\infty$ when $c \notin M(\xi)$.

We are next going to see that this problem has a solution that has a nice geometric construction.

Definition 2 (Elfving's set). The *Elfving' set* for the design of experiments (in the linear model) is

$$E = ext{convex-hull}\left(\left\{\pm oldsymbol{a}(oldsymbol{x}): \ oldsymbol{x} \in \mathcal{X}
ight\}
ight).$$

We denote its boundary by ∂E .

Theorem 1 (Elfving). An approximate design $\xi = \{x, w\}$ is *c*-optimal if and only if there exists scalars $\varepsilon_i = \pm 1$ and a positive real *t* such that

$$t\boldsymbol{c} = \sum_{i=1}^{s} \varepsilon_i w_i \boldsymbol{a}(\boldsymbol{x}_i) \in \partial E.$$

Moreover, $t^{-2} = \mathbf{c}^T M(\xi)^- \mathbf{c}$ is the minimal variance.

This theorem has a nice geometrical interpretation: take the intersection of the straight line directed by \boldsymbol{c} and the boundary of the Elfving's set. This point can be expressed as a convex combination of extreme points of E, and the weights of this combination represent the \boldsymbol{c} -optimal design. In the next example, \boldsymbol{c} is directed along θ_1 , i.e., we just want to estimate θ_1 and we do not care about the accuracy of the estimation of θ_2 . The intersection point (between $\boldsymbol{c}\mathbb{R}$ and ∂E) is $\frac{3}{4}\boldsymbol{a}_3 + \frac{1}{4}(-\boldsymbol{a}_4)$, and so a \boldsymbol{c} -optimal design is

We will sketch a geometrical proof of this result. But we first need the following lemma:

Lemma 2. Let $\xi = \{x, w\} \in \Xi(c)$, and assume w.l.o.g. that w > 0 (we can remove the points with a zero weight from the design). Then, $c^T M(\xi)^- c = \min \left\{ \sum_{i=1}^s \frac{u_i^2}{w_i} : u \in \mathbb{R}^s, \sum_i u_i a(x_i) = c \right\}$.

Proof. As a direct consequence of Gauss markov theorem:

$$K^{T}(A^{T}A)^{-}K = \min_{\preceq} \{H^{T}H : A^{T}H = K\},\$$

we have

$$\boldsymbol{c}^T M(\xi)^- \boldsymbol{c} = \min\left\{\sum_{i=1}^s v_i^2: \boldsymbol{v} \in \mathbb{R}^s, \sum_i v_i \sqrt{w_i} \boldsymbol{a}(\boldsymbol{x}_i) = \boldsymbol{c}\right\}.$$

(Set $K := \mathbf{c}$ and $A := \left[\sqrt{w_1}\mathbf{a}(\mathbf{x}_1), \cdots, \sqrt{w_s}\mathbf{a}(\mathbf{x}_s)\right]^T$, so that $M(\xi) = A^T A$.) The result of the lemma is obtained after the change of variable $u_i = \sqrt{w_i}v_i$.

Proof of Elfving's theorem. Let $\xi = \{x, w\}$ be a design satisfying the estimability condition $\xi \in \Xi(c)$. We define the set $\mathcal{A}(\xi) := \{x : x \in \operatorname{im} M(\xi), x^T M(\xi)^- x \leq 1\}$, which is an ellipsoid (it can be a *flat* ellipsoid

if $M(\xi)$ is singular). Denote by t the largest scalar $\alpha \ge 0$ such that $\alpha \mathbf{c} \in \mathcal{A}(\xi)$ and by t^* the largest $\alpha \ge 0$ such that $\alpha \mathbf{c} \in E$.

The proof is in 3 steps:

- 1. We show that $\mathcal{A}(\xi) \subseteq E$
- 2. This implies $c^T M(\xi)^- c = t^{-2} \ge (t^*)^{-2}$
- 3. We show that this bound is attained iff ξ is a design satisfying the condition of the theorem.
- 1. Let \boldsymbol{x} be a point in $\mathcal{A}(\xi)$. By Lemma 2 we know that

$$\boldsymbol{x}^T M(\xi)^- \boldsymbol{x} = \min\left\{\sum_{i=1}^s \frac{u_i^2}{w_i}: \boldsymbol{u} \in \mathbb{R}^s, \sum_i u_i \boldsymbol{a}(\boldsymbol{x}_i) = \boldsymbol{x}\right\}.$$

This implies the existence of a vector \boldsymbol{u} so that $\sum_{i=1}^{s} \frac{u_i^2}{w_i} \leq 1$ and $\sum_i u_i \boldsymbol{a}(\boldsymbol{x}_i) = \boldsymbol{x}$. Now, we apply Cauchy Schwarz:

$$1 \ge \sum_{i=1}^{s} \frac{u_i^2}{w_i} = \sum_{i=1}^{s} \left(\frac{|u_i|}{\sqrt{w_i}}\right)^2 \underbrace{\sum_{i=1}^{s} (\sqrt{w_i})^2}_{=1} \ge \left(\sum_{i=1}^{s} |u_i|\right)^2$$

So for $\epsilon_i = \operatorname{sign}(u_i)$ we have $\boldsymbol{x} = \sum_i \epsilon_i |u_i| \boldsymbol{a}(\boldsymbol{x}_i)$, and $\sum_i |u_i| \le 1$. This shows that $\boldsymbol{x} \in E = \operatorname{convex-hull}(\pm a(\mathcal{X}))$. 2. In particular, we have $\alpha \boldsymbol{c} \in \operatorname{im} M(\xi)$ for all $\alpha \ge 0$, so $\alpha \boldsymbol{c} \in \mathcal{A}(\xi)$ iff

$$(\alpha \boldsymbol{c})^T M(\xi)^- (\alpha \boldsymbol{c}) \le 1 \iff \alpha^2 \boldsymbol{c}^T M(\xi)^- \boldsymbol{c} \le 1 \iff \alpha^{-2} \ge \boldsymbol{c}^T M(\xi)^- \boldsymbol{c}.$$

So $t^{-2} = \mathbf{c}^T M(\xi)^- \mathbf{c}$, and from point 1. we know that $t \leq t^*$, hence the bound $\mathbf{c}^T M(\xi)^- \mathbf{c} \geq (t^*)^{-2}$. 3. Let $t^* \mathbf{c} = \sum_i \epsilon_i w_i^* \mathbf{a}(\mathbf{x}_i^*) \in \partial E$ as in the theorem, and define $\xi^* = \{\mathbf{x}^*, \mathbf{w}^*\}$. By Lemma 2 we have

$$\boldsymbol{c}^T M(\xi^*)^- \boldsymbol{c} = \min\left\{\sum_{i=1}^s \frac{u_i^2}{w_i^*}: \boldsymbol{u} \in \mathbb{R}^s, \sum_i u_i \boldsymbol{a}(\boldsymbol{x}_i^*) = \boldsymbol{c}\right\}.$$

In particular, if we set $u_i = (t^*)^{-1} \epsilon_i w_i^*$ we have $\boldsymbol{c}^T M(\xi^*)^- \boldsymbol{c} \leq \sum_{i=1}^s (t^*)^{-2} w_i^* = (t^*)^{-2}$. So $\boldsymbol{c}^T M(\xi^*)^- \boldsymbol{c} = (t^*)^{-2}$.

Conversely, assume that $t \mathbf{c} \in \partial E$. It implies that the Cauchy Schwarz inequality used above must be an equality for $\mathbf{x} = t \mathbf{c} = \sum_i u_i \mathbf{a}(\mathbf{x}_i)$, otherwise the weights $|u_i|$ do not sum to 1 and we have $t' \mathbf{c} \in E$ for $t' = \frac{t}{\sum_i |u_i|} > t$. So the $|u_i|/\sqrt{w_i}$ are proportional to $\sqrt{w_i}$, which implies $w_i = \pm u_i$ and $t \mathbf{c} = \sum_i \epsilon_i w_i \mathbf{a}(\mathbf{x}_i) \in \partial E$. That is, ξ satisfies the condition of the theorem.

Corollary 3 (LP-formulation). Assume that the experimental region \mathcal{X} is finite, or that the candidate design points $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are given (recall that in that case, we write \mathbf{a}_i instead of $\mathbf{a}(\mathbf{x}_i)$). Then, the optimal weights of a \mathbf{c} -optimal design and the quantity t such that t^{-2} is the minimal variance can be computed by the following linear program:

$$\max_{t,\lambda} t$$

s.t. $tc = \sum_{i=1}^{N} \lambda_i a_i$
$$\sum_{i=1}^{N} \underbrace{|\lambda_i|}_{w_i} \le 1,$$

(we have left absolute values for more readibility).

Exercises

- 1. On the finite experimental region $\mathcal{X} = \{1, 2, 3\}, a_1 = [1, 0]^T, a_2 = [4, 1]^T, a_3 = [4, 2]^T$, find the optimal design for θ_1 (that is, the (1, 0)-optimal design).
- 2. Consider the line fit model y(x) = ax + b over $x \in \mathcal{X} = [-1, 1]$, where the unknown parameter is $\theta = [a, b]$. Show that the optimal design for a is unique, but that there are an infinity of optimal designs for b.
- 3. In the quadratic fit model $y(x) = \theta_1 + \theta_2 x + \theta_3 x^2$ over $x \in \mathcal{X} = [-1, 1]$, find the optimal designs for
 - $\theta_1 + \theta_2 + \theta_3$
 - $\theta_1 \theta_3$
 - $2\theta_2 + \theta_3$ [*Hint:* try to write the vector [1, 2t, t] as a barycenter of 2 vectors of the form $[1, x, x^2]$ and $[-1, -y, -y^2]$].