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Lecture #5 Notes Summary

c−optimality, Elfving’s theorem

Scalar optimality

Definition 1 (Feasibility cone). Let K be an m× r−matrix. The Feasibility cone Ξ(K) of K is the set

of all designs ξ such that the estimability condition imK ⊆ imA(ξ)T = imM(ξ) is satisfied.

The quantity ζ = KTθ is said to be estimable if the feasibility cone is nonempty.

Recall our first informal statement of the approximate optimal design problem: Find a design ξ = {x,w} ∈
Ξ(K) that minimizes (in a certain sense) the matrix

KT

(
s∑

i=1

wi a(xi)a(xi)
T

)−

K

There is one case where this problem is well stated. Namely, when K ∈ m × r is a column vector (i.e.,

r = 1). In this case, we write K = c, and we want to estimate a single scalar quantity, ζ = cTθ. That is, we

are interested by a particular linear combination of the parameters. Particular cases are:

• estimation of a single parameter (ζ = θ1);

• estimation of the difference between two parameters (ζ = θi − θj);

• estimation of the average of the parameters (ζ =
∑m

i=1
1
mθi).

The approximate optimal design problem can be rewritten as:

min
ξ={x,w}

cT

(
s∑

i=1

wi a(xi)a(xi)
T

)−

c (1)

s. t. ξ ∈ Ξ(c).

We say that a design solving Problem (1) is c−optimal. But in fact, we can almost ignore the constraint

ξ ∈ Ξ(c), because we can set cTM(ξ)−c := +∞ when c /∈ M(ξ).

We are next going to see that this problem has a solution that has a nice geometric construction.

Definition 2 (Elfving’s set). The Elfving’ set for the design of experiments (in the linear model) is

E = convex-hull
({

± a(x) : x ∈ X
})

.

We denote its boundary by ∂E.

Theorem 1 (Elfving). An approximate design ξ = {x,w} is c−optimal if and only if there exists scalars

εi = ±1 and a positive real t such that

tc =

s∑
i=1

εi wi a(xi) ∈ ∂E.

Moreover, t−2 = cTM(ξ)−c is the minimal variance.
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This theorem has a nice geometrical interpretation: take the intersection of the straight line directed by

c and the boundary of the Elfving’s set. This point can be expressed as a convex combination of extreme

points of E, and the weights of this combination represent the c−optimal design. In the next example, c is

directed along θ1, i.e., we just want to estimate θ1 and we do not care about the accuracy of the estimation

of θ2. The intersection point (between cR and ∂E) is 3
4a3 +

1
4 (−a4), and so a c−optimal design is

ξ =

(
x3 x4
3
4

1
4

)
.

We will sketch a geometrical proof of this result. But we first need the following lemma:

Lemma 2. Let ξ = {x,w} ∈ Ξ(c), and assume w.l.o.g. that w > 0 (we can remove the points with a

zero weight from the design). Then, cTM(ξ)−c = min
{∑s

i=1
u2
i

wi
: u ∈ Rs,

∑
i uia(xi) = c

}
.

Proof. As a direct consequence of Gauss markov theorem:

KT (ATA)−K = min⪯{HTH : ATH = K},

we have

cTM(ξ)−c = min

{
s∑

i=1

v2i : v ∈ Rs,
∑
i

vi
√
wia(xi) = c

}
.

(Set K := c and A :=
[√

w1a(x1), · · · ,
√
wsa(xs)

]T
, so that M(ξ) = ATA.) The result of the lemma is

obtained after the change of variable ui =
√
wivi.

Proof of Elfving’s theorem. Let ξ = {x,w} be a design satisfying the estimability condition ξ ∈ Ξ(c). We

define the set A(ξ) := {x : x ∈ imM(ξ), xTM(ξ)−x ≤ 1}, which is an ellipsoid (it can be a flat ellipsoid
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if M(ξ) is singular). Denote by t the largest scalar α ≥ 0 such that αc ∈ A(ξ) and by t∗ the largest α ≥ 0

such that αc ∈ E.

The proof is in 3 steps:

1. We show that A(ξ) ⊆ E

2. This implies cTM(ξ)−c = t−2 ≥ (t∗)−2

3. We show that this bound is attained iff ξ is a design satisfying the condition of the theorem.

1. Let x be a point in A(ξ). By Lemma 2 we know that

xTM(ξ)−x = min

{
s∑

i=1

u2
i

wi
: u ∈ Rs,

∑
i

uia(xi) = x

}
.

This implies the existence of a vector u so that
∑s

i=1
u2
i

wi
≤ 1 and

∑
i uia(xi) = x. Now, we apply Cauchy

Schwarz:

1 ≥
s∑

i=1

u2
i

wi
=

s∑
i=1

(
|ui|√
wi

)2 s∑
i=1

(
√
wi)

2

︸ ︷︷ ︸
=1

≥

(
s∑

i=1

|ui|

)2

So for ϵi = sign(ui) we have x =
∑

i ϵi|ui|a(xi), and
∑

i |ui| ≤ 1. This shows that x ∈ E = convex-hull(±a(X )).

2. In particular, we have αc ∈ imM(ξ) for all α ≥ 0, so αc ∈ A(ξ) iff

(αc)TM(ξ)−(αc) ≤ 1 ⇐⇒ α2cTM(ξ)−c ≤ 1 ⇐⇒ α−2 ≥ cTM(ξ)−c.

So t−2 = cTM(ξ)−c, and from point 1. we know that t ≤ t∗, hence the bound cTM(ξ)−c ≥ (t∗)−2.

3. Let t∗c =
∑

i ϵiw
∗
i a(x

∗
i ) ∈ ∂E as in the theorem, and define ξ∗ = {x∗,w∗}. By Lemma 2 we have

cTM(ξ∗)−c = min

{
s∑

i=1

u2
i

w∗
i

: u ∈ Rs,
∑
i

uia(x
∗
i ) = c

}
.

In partucular, if we set ui = (t∗)−1ϵiw
∗
i we have c

TM(ξ∗)−c ≤
∑s

i=1(t
∗)−2w∗

i = (t∗)−2. So cTM(ξ∗)−c = (t∗)−2.

Conversely, assume that tc ∈ ∂E. It implies that the Cauchy Schwarz inequality used above must be an

equality for x = tc =
∑

i uia(xi), otherwise the weights |ui| do not sum to 1 and we have t′c ∈ E for t′ =
t∑

i |ui| > t. So the |ui|/
√
wi are proportional to

√
wi, which implies wi = ±ui and tc =

∑
i ϵiwia(xi) ∈ ∂E.

That is, ξ satisfies the condition of the theorem.

Corollary 3 (LP-formulation). Assume that the experimental region X is finite, or that the candidate

design points x1, . . . ,xN are given (recall that in that case, we write ai instead of a(xi)). Then, the

optimal weights of a c−optimal design and the quantity t such that t−2 is the minimal variance can be

computed by the following linear program:

max
t,λ

t

s. t. tc =

N∑
i=1

λiai

N∑
i=1

|λi|︸︷︷︸
wi

≤ 1,

(we have left absolute values for more readibility).
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Exercises

1. On the finite experimental region X = {1, 2, 3}, a1 = [1, 0]T , a2 = [4, 1]T , a3 = [4, 2]T , find the optimal

design for θ1 (that is, the (1, 0)−optimal design).

2. Consider the line fit model y(x) = ax + b over x ∈ X = [−1, 1], where the unknown parameter is

θ = [a, b]. Show that the optimal design for a is unique, but that there are an infinity of optimal

designs for b.

3. In the quadratic fit model y(x) = θ1 + θ2x+ θ3x
2 over x ∈ X = [−1, 1], find the optimal designs for

• θ1 + θ2 + θ3

• θ1 − θ3

• 2θ2 + θ3 [Hint: try to write the vector [1, 2t, t] as a barycenter of 2 vectors of the form [1, x, x2]

and [−1,−y,−y2]].
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