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Lecture #5 Notes Summary

c—optimality, Elfving’s theorem
Scalar optimality

Definition 1 (Feasibility cone). Let K be an m x r—matrix. The Feasibility cone Z(K) of K is the set
of all designs ¢ such that the estimability condition im K C im A(¢)” = im M (€) is satisfied.
The quantity ¢ = K70 is said to be estimable if the feasibility cone is nonempty.

Recall our first informal statement of the approximate optimal design problem: Find a design £ = {x,w} €
E(K) that minimizes (in a certain sense) the matriz

KT (Z w; a(mi)a(;ci)T> K

There is one case where this problem is well stated. Namely, when K € m X r is a column vector (i.e.,
r = 1). In this case, we write K = ¢, and we want to estimate a single scalar quantity, ¢ = ¢7'6. That is, we
are interested by a particular linear combination of the parameters. Particular cases are:

e estimation of a single parameter (¢ = 61);
e estimation of the difference between two parameters (¢ = 6; — 6,);

e estimation of the average of the parameters (¢ = 1" 16;).

The approximate optimal design problem can be rewritten as:

5:1?;21;} c’ (; wia(wi)a(a:i)T> c (1)
s.t. &€ E(e).

We say that a design solving Problem (1) is e—optimal. But in fact, we can almost ignore the constraint
¢ € Z(e), because we can set ¢! M (€)™ ¢ := 400 when ¢ ¢ M(£).
We are next going to see that this problem has a solution that has a nice geometric construction.

Definition 2 (Elfving’s set). The Elfving’ set for the design of experiments (in the linear model) is
E = convex-hull ({ £ a(z): € X}).

We denote its boundary by JE.

Theorem 1 (Elfving). An approzimate design & = {x,w} is c—optimal if and only if there exists scalars
e; = 1 and a positive real t such that

te = Zei w; a(x;) € OF.

i=1

Moreover, t=2 = ¢ M (&)~ c is the minimal variance.
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This theorem has a nice geometrical interpretation: take the intersection of the straight line directed by
c and the boundary of the Elfving’s set. This point can be expressed as a convex combination of extreme
points of F, and the weights of this combination represent the c—optimal design. In the next example, c is
directed along 61, i.e., we just want to estimate #; and we do not care about the accuracy of the estimation
of 65. The intersection point (between ¢R and OF) is %(13 + %(—a4)7 and so a c—optimal design is

e=( % %)
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—asg :
Ltfe = %('13 + i(—a4)

We will sketch a geometrical proof of this result. But we first need the following lemma:

Lemma 2. Let £ = {x,w} € E(c), and assume w.l.o.g. that w > 0 (we can remove the points with a
2
zero weight from the design). Then, ¢¥' M (£)~c = min {ZS 2w e R Y wa(xg) = c}.

i=1 w;

Proof. As a direct consequence of Gauss markov theorem:
KT'(ATA)"K =min<{H"H: ATH = K},

we have
c"M(€)"c = min {va v eR? Zvi w;a(x;) = c} .
i=1 i

(Set K := c and A := [Jwia(x1), -, wsa(ms)}T, so that M (&) = AT A.) The result of the lemma is
obtained after the change of variable u; = \/w;v;.
O

Proof of Elfving’s theorem. Let & = {x, w} be a design satisfying the estimability condition £ € Z(¢). We
define the set A(¢) := {z: = € im M (¢), 2T M(£)"x < 1}, which is an ellipsoid (it can be a flat ellipsoid
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if M(¢) is singular). Denote by ¢ the largest scalar o > 0 such that ac € A(§) and by t* the largest a > 0
such that ac € E.
The proof is in 3 steps:

1. We show that A({) C F

2. This implies ¢TM(¢)"c =172 > (+*)72

3. We show that this bound is attained iff £ is a design satisfying the condition of the theorem.
1. Let « be a point in A({). By Lemma 2 we know that

TM = —_— RS i i) = .
x' M(§)"x = min sz u € ,;ua(m) T

=1

<1and ), u;a(x;) = . Now, we apply Cauchy

= lu; —

1>z Z(“)Z w)e@hﬂ)

So for €; = sign(u;) we have © = ), €;|u;|a(x;), and ), |u;| < 1. This shows that « € E = convex-hull(+a(X)).

This implies the existence of a vector w so that Y.
Schwarz:

2. In particular, we have ac € im M (§) for all & > 0, so ac € A(€) iff
(e)TM (&) (ac) <1 <= a?c" M) c<1<=a2>c"M(¢) ¢

Sot=2 = ' M(£)~ ¢, and from point 1. we know that ¢t < t*, hence the bound e¢? M (¢)~¢ > (t*) 2
3. Let t'e = ), wia(x}) € OF as in the theorem, and define {* = {z*, w*}. By Lemma 2 we have

S 2
T *\— : Ui . *
c M(£) C:mln{._lwf. u € R?, E Uia(wi)—C}.

In partucular, if we set u; = (t*) 'e;w} we have ¢! M (€*)~e < 77 (%) 2w = (t*)72 Soc" M (£*) e = (t*) 2

Conversely, assume that tc € F. It implies that the Cauchy Schwarz inequality used above must be an
equality for x = tc = ), u;a(x;), otherwise the weights |u;| do not sum to 1 and we have t'c € E for t’ =
ST ‘u | > t. So the |u;|/\/w; are proportional to /w;, which implies w; = +u; and tec = ), ¢;w;a(x;) € OF.
That i is, & satisfies the condition of the theorem. O

Corollary 3 (LP-formulation). Assume that the experimental region X is finite, or that the candidate
design points x1,...,xN are given (recall that in that case, we write a; instead of a(x;)). Then, the
optimal weights of a c—optimal design and the quantity t such that t=2 is the minimal variance can be
computed by the following linear program:

max ¢
t,A

(we have left absolute values for more readibility).
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Exercises

1. On the finite experimental region X = {1,2,3}, a1 = [1,0]7, aa = [4,1]7, a3 = [4,2]7, find the optimal
design for 6; (that is, the (1,0)—optimal design).

2. Consider the line fit model y(z) = ax + b over z € X = [—1,1], where the unknown parameter is
0 = [a,b]. Show that the optimal design for a is unique, but that there are an infinity of optimal
designs for b.

3. In the quadratic fit model y(z) = 0 + Oox + 0322 over x € X = [—1,1], find the optimal designs for

o 01 +0;+03

o 01703

o 20, + 03 [Hint: try to write the vector [1,2t,t] as a barycenter of 2 vectors of the form [1,x, x?]

and [717 Y, 7y2H'

Page 4 of 4



