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Lecture #6 Notes Summary

Information Criteria and confidence ellipsoids

Information criteria

Definition 1 (Generalized Information matrix forKTθ). LetK be a matrix such thatKTθ is estimable.

The generalized information matrix of the design ξ = {x,w} ∈ Ξ(K) for the estimation of the parameter

subsystem ζ = KTθ is

MK(ξ) =
(
KTM(ξ)−K

)−1
.

Proposition 1. For all ξ ∈ Ξ(K), the matrix KTM(ξ)−K is invertible. As a consequence, MK(ξ) is

well defined for (and only for) the interesting designs.

Proof. Let ξ ∈ Ξ(K). Let the columns of U ∈ Rm×r form a base of imK, so there exists an invertible

r × r−matrix H such that K = UH. Since the estimability condition imK ⊆ imM(ξ) is satisfied, we can

complete the base U to form a base of M(ξ). That is, if rankM(ξ) = q, there exists a matrix V ∈ Rm×(q−r)

such that the columns of W := [U, V ] form a base of M(ξ) (so we have UTU = Ir, V
TV = Iq−r, and

UTV = 0). This implies decomposition of M(ξ) of the form M(ξ) = WΣWT , for an invertible matrix Σ ≻ 0

of size q × q. So we have

KTM(ξ)−K = KTWΣ−1WTK = HTUT [U, V ]Σ−1[U, V ]TUH = HT [Ir, 0]Σ
−1[Ir, 0]

T︸ ︷︷ ︸
r×r principal subblock of Σ−1

H ≻ 0.

Recall that we want to choose the design ξ so as to minimize the matrix KTM(ξ)−K. Equivalently, we

want to maximize the generalized K−information matrix MK(ξ) = (KTM(ξ)−K)−1, because

0 ≺ P ⪯ Q ⇐⇒ P−1 ⪰ Q1 ≻ 0,

see Exercise 1. In particular, when K = Im is the identity matrix of size m×m, (i.e. we want to estimate the

whole parameter θ), the problem is to maximize the information matrix M(ξ). We have seen in an exercise

that maximizing MK(ξ) with respect to ⪯ was the same has minimizing the ellipoid

EK(ξ) = {x : xTMK(ξ)x ≤ 1}

for the inclusion relation. In fact, EK(ξ) can be seen as a confidence ellipsoid of the estimator θ̂ (resp. of

ζ̂ = KT θ̂ if K ̸= Im). Indeed, if the error on the measurements follows a normal distribution, it can be seen

that ζ̂ ∼ N
(
KTθ,KTM(ξ)−K

)
. Then, it is a standard property of the (multivariate) normal distribution

that for all α ∈ (0, 1),

P

(
ζ − ζ̂

κα
∈ EK(ξ)

)
= 1− α,

where κα is a constant depending only on the confidence level α (in fact, κα is the square root of the

α−quantile of a χ2 distribution with r degrees of freedom, where r is the number of columns of K).

But when the matrix K has more than r = 1 columns, the problem of maximizing MK(ξ) is not well

posed, because the Löwner ordering ⪯ is only a partial order. So we need to scalarize the problem, by
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considering a criterion Φ : Sr+ → R:
max

ξ∈Ξ(K)
Φ (MK(ξ)) .

Definition 2 (Information criterion). A continuous function Φ : Sm+ → R is called information criterion if

it satisfies the following properties:

1 Positive homogeneity:

∀α > 0, ∀M ∈ Sm+ , Φ(αM) = αΦ(M)

2 Concavity:

∀α ∈ [0, 1], ∀M,P ∈ Sm+ , Φ(αM + (1− α)P )) ≥ αΦ(M) + (1− α)Φ(P )

3 Monotonicity with respect to the Löwner ordering:

A ≤ B =⇒ Φ(A) ≤ Φ(B)

We next introduce the family of information criterions introduced by Kiefer, and that contains the

important cases of D−, E−, and A−optimality:

Definition 3 (Kiefer’s p−optimality criterion). Let M ∈ Sm++ with eigenvalues 0 < λ1 ≤ . . . ≤ λm

(enumerated with multiplicities). For all p ∈ [−∞, 1], the Kiefer’s p−criterion is:

Φp(M) =


λmin(M) = λ1 if p = −∞
det(M)

1
m =

∏
λ

1
m
i if p = 0

( 1
m traceMp)

1
p = ( 1

m

∑
i λ

p
i )

1
p otherwise.

The definition of Φp is extended by continuity to singular matrices M ∈ Sm+ , so that Φp(M) = 0 if M

is singular and p ≤ 0.

We admit that Φp is an information criterion for all p ≤ 1.

Definition 4 (optimal design). A design ξ is called ΦK-optimal if it maximizes Φ
(
MK(ξ)

)
over ξ(K).

A design ξ is said to be an exact ΦK-optimal design of size N if it maximizes Φ
(
MK(ξ)

)
over

ξN (K) := {ξ = {x,w} ∈ Ξ(K) : ∀i ∈ {1, . . . , s}, Nwi ∈ Z+}.

It is always assumed that K = Im whenever the subscript K is ommited.

Definition 5 (D-criterion). ΦD := Φ0 is called the D-criterion. A DK−optimal design minimizes the

volume of the confidence ellipsoid EK(ξ), see Figure (a) below.

Proposition 2. Let X be an invertible square matrix, and define θ′ = Xθ. Then, a design is D−optimal

for θ′ iff it is D−optimal for θ. In other words, the D−optimal design is invariant to reparametrization.

Proof. Since X is invertible, we have Ξ(X) = Ξ(Im), i.e. M(ξ) is invertible for all feasible designs. Hence,

ΦD

(
MX(ξ)

)
= det

(
XTM(ξ)−X

)− 1
m =

(
(detX)2(detM(ξ))−1

)− 1
m ,

which is proportional to ΦD

(
M(ξ)

)
.
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Definition 6 (E-criterion). ΦE := Φ−∞ is called the E-criterion. An EK−optimal design minimizes

the largest radius of the confidence ellipsoid Ek(ξ), see Figure (b) below.

Definition 7 (A-criterion). ΦA := Φ−1 is called the A-criterion. An AK−optimal design minimizes

the diagonal of the bounding box of the confidence ellipsoid EK(ξ), see Figure (c) below.

Exercises

1. By using a Schur complement, show that 0 ≺ P ⪯ Q ⇐⇒ P−1 ⪰ Q−1 ≻ 0.

2. Let ξ be an E−optimal design. Show that ξ is good for the estimation of any linear combination of

the form cTθ. More precisely, show that ξ minimizes the worst case of the variance cTM(ξ)−c, over

all vectors c ∈ Bm := {c ∈ Rm : ∥c∥ = 1}. In other words, ξ minimizes
(
maxc∈Bm

cTM(ξ)−c
)
.

3. The variance of the best estimator for aT
i θ is λi(ξ) := σ2aT

i M(ξ)−ai. Show that a design ξ ∈ ∩iΞ(ai)

minimizing a weighted sum of the variances
∑

i αiλi(ξ) must be AKoptimal for some matrix K.

4. Show that EK := {y : yTMK(ξ)y ≤ 1} is a projection of E := {x : xTM(ξ)x ≤ 1} onto im(KT ), in

the following sense:

EK = {KTx : x ∈ E}.
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