Lecture #6 Notes Summary

Information Criteria and confidence ellipsoids

Information criteria

Definition 1 (Generalized Information matrix for $K^T \boldsymbol{\theta}$). Let K be a matrix such that $K^T \boldsymbol{\theta}$ is estimable. The generalized information matrix of the design $\boldsymbol{\xi} = \{\boldsymbol{x}, \boldsymbol{w}\} \in \Xi(K)$ for the estimation of the parameter subsystem $\boldsymbol{\zeta} = K^T \boldsymbol{\theta}$ is

$$M_K(\xi) = (K^T M(\xi)^{-1} K)^{-1}.$$

Proposition 1. For all $\xi \in \Xi(K)$, the matrix $K^T M(\xi)^- K$ is invertible. As a consequence, $M_K(\xi)$ is well defined for (and only for) the interesting designs.

Proof. Let $\xi \in \Xi(K)$. Let the columns of $U \in \mathbb{R}^{m \times r}$ form a base of im K, so there exists an invertible $r \times r$ -matrix H such that K = UH. Since the estimability condition im $K \subseteq \operatorname{im} M(\xi)$ is satisfied, we can complete the base U to form a base of $M(\xi)$. That is, if rank $M(\xi) = q$, there exists a matrix $V \in \mathbb{R}^{m \times (q-r)}$ such that the columns of W := [U, V] form a base of $M(\xi)$ (so we have $U^T U = I_r, V^T V = I_{q-r}$, and $U^T V = 0$). This implies decomposition of $M(\xi)$ of the form $M(\xi) = W \Sigma W^T$, for an invertible matrix $\Sigma \succ 0$ of size $q \times q$. So we have

$$K^{T}M(\xi)^{-}K = K^{T}W\Sigma^{-1}W^{T}K = H^{T}U^{T}[U,V]\Sigma^{-1}[U,V]^{T}UH = H^{T}\underbrace{[I_{r},0]\Sigma^{-1}[I_{r},0]^{T}}_{r \times r \text{ principal subblock of }\Sigma^{-1}} H \succ 0.$$

Recall that we want to choose the design ξ so as to minimize the matrix $K^T M(\xi)^- K$. Equivalently, we want to maximize the generalized K-information matrix $M_K(\xi) = (K^T M(\xi)^- K)^{-1}$, because

$$0 \prec P \preceq Q \Longleftrightarrow P^{-1} \succeq Q^1 \succ 0,$$

see Exercise 1. In particular, when $K = I_m$ is the identity matrix of size $m \times m$, (i.e. we want to estimate the whole parameter $\boldsymbol{\theta}$), the problem is to maximize the information matrix $M(\xi)$. We have seen in an exercise that maximizing $M_K(\xi)$ with respect to \preceq was the same has minimizing the ellipoid

$$\mathcal{E}_K(\xi) = \{ \boldsymbol{x} : \boldsymbol{x}^T M_K(\xi) \boldsymbol{x} \le 1 \}$$

for the inclusion relation. In fact, $\mathcal{E}_K(\xi)$ can be seen as a confidence ellipsoid of the estimator $\hat{\theta}$ (resp. of $\hat{\zeta} = K^T \hat{\theta}$ if $K \neq I_m$). Indeed, if the error on the measurements follows a normal distribution, it can be seen that $\hat{\zeta} \sim \mathcal{N}\left(K^T \theta, K^T M(\xi)^- K\right)$. Then, it is a standard property of the (multivariate) normal distribution that for all $\alpha \in (0, 1)$,

$$\mathbb{P}\left(\frac{\boldsymbol{\zeta}-\hat{\boldsymbol{\zeta}}}{\kappa_{\alpha}}\in\mathcal{E}_{K}(\boldsymbol{\xi})\right)=1-\alpha,$$

where κ_{α} is a constant depending only on the confidence level α (in fact, κ_{α} is the square root of the α -quantile of a χ^2 distribution with r degrees of freedom, where r is the number of columns of K).

But when the matrix K has more than r = 1 columns, the problem of maximizing $M_K(\xi)$ is not well posed, because the Löwner ordering \leq is only a *partial order*. So we need to scalarize the problem, by

considering a criterion $\Phi : \mathbb{S}^r_+ \to \mathbb{R}$:

$$\max_{\xi\in\Xi(K)}\Phi\left(M_K(\xi)\right).$$

Definition 2 (Information criterion). A continuous function $\Phi : \mathbb{S}^m_+ \to \mathbb{R}$ is called *information criterion* if it satisfies the following properties:

1 Positive homogeneity:

$$\forall \alpha > 0, \ \forall M \in \mathbb{S}^m_+, \quad \Phi(\alpha M) = \alpha \Phi(M)$$

2 Concavity:

$$\forall \alpha \in [0,1], \ \forall M, P \in \mathbb{S}^m_+, \quad \Phi(\alpha M + (1-\alpha)P)) \ge \alpha \Phi(M) + (1-\alpha)\Phi(P)$$

3 Monotonicity with respect to the Löwner ordering:

$$A \le B \Longrightarrow \Phi(A) \le \Phi(B)$$

We next introduce the family of information criterions introduced by Kiefer, and that contains the important cases of D-, E-, and A- optimality:

Definition 3 (Kiefer's *p*-optimality criterion). Let $M \in \mathbb{S}_{++}^m$ with eigenvalues $0 < \lambda_1 \leq \ldots \leq \lambda_m$ (enumerated with multiplicities). For all $p \in [-\infty, 1]$, the Kiefer's *p*-criterion is:

$$\Phi_p(M) = \begin{cases} \lambda_{\min}(M) &= \lambda_1 & \text{if } p = -\infty \\ \det(M)^{\frac{1}{m}} &= \prod \lambda_i^{\frac{1}{m}} & \text{if } p = 0 \\ (\frac{1}{m} \operatorname{trace} M^p)^{\frac{1}{p}} &= (\frac{1}{m} \sum_i \lambda_i^p)^{\frac{1}{p}} & \text{otherwise.} \end{cases}$$

The definition of Φ_p is extended by continuity to singular matrices $M \in \mathbb{S}^m_+$, so that $\Phi_p(M) = 0$ if M is singular and $p \leq 0$.

We admit that Φ_p is an information criterion for all $p \leq 1$.

Definition 4 (optimal design). A design ξ is called Φ_K -optimal if it maximizes $\Phi(M_K(\xi))$ over $\xi(K)$. A design ξ is said to be an exact Φ_K -optimal design of size N if it maximizes $\Phi(M_K(\xi))$ over

$$\xi_N(K) := \{ \xi = \{ x, w \} \in \Xi(K) : \forall i \in \{1, \dots, s\}, Nw_i \in \mathbb{Z}_+ \}.$$

It is always assumed that $K = I_m$ whenever the subscript K is ommitted.

Definition 5 (D-criterion). $\Phi_D := \Phi_0$ is called the *D-criterion*. A D_K -optimal design minimizes the volume of the confidence ellipsoid $\mathcal{E}_K(\xi)$, see Figure (a) below.

Proposition 2. Let X be an invertible square matrix, and define $\theta' = X\theta$. Then, a design is D-optimal for θ' iff it is D-optimal for θ . In other words, the D-optimal design is invariant to reparametrization.

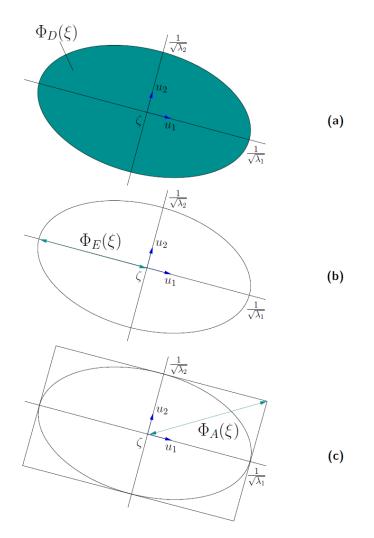
Proof. Since X is invertible, we have $\Xi(X) = \Xi(I_m)$, i.e. $M(\xi)$ is invertible for all feasible designs. Hence,

$$\Phi_D(M_X(\xi)) = \det (X^T M(\xi)^{-} X)^{-\frac{1}{m}} = ((\det X)^2 (\det M(\xi))^{-1})^{-\frac{1}{m}},$$

which is proportional to $\Phi_D(M(\xi))$.

Definition 6 (E-criterion). $\Phi_E := \Phi_{-\infty}$ is called the *E-criterion*. An E_K -optimal design minimizes the largest radius of the confidence ellipsoid $\mathcal{E}_k(\xi)$, see Figure (b) below.

Definition 7 (A-criterion). $\Phi_A := \Phi_{-1}$ is called the *A*-criterion. An A_K -optimal design minimizes the diagonal of the bounding box of the confidence ellipsoid $\mathcal{E}_K(\xi)$, see Figure (c) below.



Exercises

- 1. By using a Schur complement, show that $0 \prec P \preceq Q \iff P^{-1} \succeq Q^{-1} \succ 0$.
- 2. Let ξ be an E-optimal design. Show that ξ is good for the estimation of any linear combination of the form $\boldsymbol{c}^T \boldsymbol{\theta}$. More precisely, show that ξ minimizes the worst case of the variance $\boldsymbol{c}^T M(\xi)^- \boldsymbol{c}$, over all vectors $\boldsymbol{c} \in B_m := \{\boldsymbol{c} \in \mathbb{R}^m : \|\boldsymbol{c}\| = 1\}$. In other words, ξ minimizes $\left(\max_{\boldsymbol{c} \in B_m} \boldsymbol{c}^T M(\xi)^- \boldsymbol{c}\right)$.
- 3. The variance of the best estimator for $\boldsymbol{a}_i^T \boldsymbol{\theta}$ is $\lambda_i(\xi) := \sigma^2 \boldsymbol{a}_i^T M(\xi)^- \boldsymbol{a}_i$. Show that a design $\xi \in \cap_i \Xi(\boldsymbol{a}_i)$ minimizing a weighted sum of the variances $\sum_i \alpha_i \lambda_i(\xi)$ must be A_K optimal for some matrix K.
- 4. Show that $\mathcal{E}_K := \{ \boldsymbol{y} : \boldsymbol{y}^T M_K(\xi) \boldsymbol{y} \leq 1 \}$ is a projection of $\mathcal{E} := \{ \boldsymbol{x} : \boldsymbol{x}^T M(\xi) \boldsymbol{x} \leq 1 \}$ onto $\operatorname{im}(K^T)$, in the following sense:

$$\mathcal{E}_K = \{K^T \boldsymbol{x} : \boldsymbol{x} \in \mathcal{E}\}.$$