Lecture \#7 Notes Summary

Kiefer-Wolfowitz Equivalence Theorem, Duality

Equivalence theorem for D-optimality

A special case of \boldsymbol{c}-optimality is when the experimenter wants to estimate a quantity $\zeta=\boldsymbol{a}(\boldsymbol{x})^{T} \boldsymbol{\theta}$ which could be observed by a single trial (here, the trial at $\boldsymbol{x} \in \mathcal{X}$ with regression vector $\boldsymbol{a}(\boldsymbol{x})$). In this case, the variance of the best estimator is $\sigma^{2} \boldsymbol{a}(\boldsymbol{x})^{T} M(\xi)^{-} \boldsymbol{a}(\boldsymbol{x})$. If $\boldsymbol{a}(\boldsymbol{x})$ is a vertex of the Elfving set E, this case is highly trivial (assign all the weight of the design to \boldsymbol{x}). However, an interesting case occurs when the experimenter is not interested in the observation of a single experiment $\boldsymbol{a}(\boldsymbol{x})^{T} \boldsymbol{\theta}$, but in the whole regression surface $\left\{\boldsymbol{a}(\boldsymbol{x})^{T} \boldsymbol{\theta}, \boldsymbol{x} \in \mathcal{X}\right\}$. For example, recall the line fit model $y(x)=a x+b+\epsilon$, with $\boldsymbol{\theta}=[a, b]^{T}$. The experimenter might be interested to estimate the whole regression segment $\{a x+b, x \in \mathcal{X}\}$. A global criterion is needed to measure the performance of a design in this case. The global criterion (known as G-criterion) is

$$
\Phi_{G}: M \rightarrow \max _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{a}(\boldsymbol{x})^{T} M^{-} \boldsymbol{a}(\boldsymbol{x})
$$

and the G-optimal design guards one against the worst case, by minimizing the variance of every observation in the regression surface:

$$
\begin{array}{ll}
\min _{\xi} & \max _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{a}(\boldsymbol{x})^{T} M(\xi)^{-} \boldsymbol{a}(\boldsymbol{x}) \tag{1}\\
\text { s.t. } & M(\xi)=\sum_{i=1}^{s} w_{i} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{T} \\
& \sum_{i=1}^{s} w_{i}=1, \quad \forall i \in[s], w_{i} \geq 0, \boldsymbol{x}_{\boldsymbol{i}} \in \mathcal{X} .
\end{array}
$$

The Kiefer-Wolfowitz theorem establishes the equivalence between the D - and the G-optimal designs:
Theorem 1 (Kiefer-Wolfowitz). Assume that the regression range $\{\boldsymbol{a}(\boldsymbol{x}): \boldsymbol{x} \in \mathcal{X}\}$ contains m linearly independent vectors. Then the following statements are equivalent:
(i) The design ξ is G-optimal;
(ii) The design ξ is D-optimal for the full parameter $\boldsymbol{\theta}$ (i.e. with $K=I_{m}$);
(iii) For all \boldsymbol{x} in $\mathcal{X}, \boldsymbol{a}(\boldsymbol{x})^{T} M(\xi)^{-} \boldsymbol{a}(\boldsymbol{x}) \leq m$.

Moreover, the bound provided by the inequality in (iii) is attained for the support points of the optimal design:

$$
\boldsymbol{x}_{\boldsymbol{i}} \in \operatorname{supp}(\xi) \Longrightarrow \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{T} M(\xi)^{-} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=m .
$$

Proof. We first show that for all design $\xi=\left\{\boldsymbol{x}_{\boldsymbol{k}}, w_{k}\right\}$, we have $\Phi_{G}(\xi) \geq m$. If $M(\xi)$ is singular, then by assumption there is a regression vector $\boldsymbol{a}(\boldsymbol{x})$ which is not in the range of $M(\xi)$, and so $\Phi_{G}(\xi)=\infty \geq m$. If $M(\xi)$ is nonsingular, we write:

$$
\begin{aligned}
m=\operatorname{trace} I_{m}=\operatorname{trace} M(\xi) M(\xi)^{-1} & =\operatorname{trace}\left(\sum_{i=1}^{s} w_{i} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{T} M(\xi)^{-1}\right) \\
& \leq \sum_{i=1}^{s} w_{i} \max _{\boldsymbol{x} \in \mathcal{X}}\left(\boldsymbol{a}_{\boldsymbol{x}}{ }^{T} M(\xi)^{-1} \boldsymbol{a}_{\boldsymbol{x}}\right) \\
& =\Phi_{G}(\xi)
\end{aligned}
$$

This proves the part $(i i i) \Longrightarrow(i)$.
For the part $(i i) \Longrightarrow(i i i)$ we need this lemma:

Lemma 2. Let $M \succ 0$. The directional derivative of $\log \operatorname{det}$ at M in the direction of $H \in \mathbb{S}^{m}$ is

$$
D \log \operatorname{det}(M)[H]:=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\log \operatorname{det}(M+\varepsilon H)-\log \operatorname{det}(M)}{\varepsilon}=\operatorname{trace}\left(M^{-1} H\right)
$$

Now, we consider a D-optimal design ξ_{D}, and we show that $\boldsymbol{a}_{\boldsymbol{x}}{ }^{T} M\left(\xi_{D}\right)^{-} \boldsymbol{a}_{\boldsymbol{x}} \leq m$ for every point $\boldsymbol{x} \in \mathcal{X}$, with equality when \boldsymbol{x} is in the support of ξ_{D}. Note that a D-optimal design exists indeed, since we are maximizing a continuous function over a compact set. Moreover $M\left(\xi_{D}\right) \succ 0$. (otherwise $\operatorname{det} M\left(\xi_{D}\right)=0$, and by assumption there is a nonsingular design, so at optimality the determinant must be $>0) . M\left(\xi_{D}\right)$ has the largest possible determinant, so $D \log \operatorname{det}\left(M\left(\xi_{D}\right)\right)\left[\boldsymbol{a}(\boldsymbol{x}) \boldsymbol{a}(\boldsymbol{x})^{T}-M\left(\xi_{D}\right)\right]$ must be ≤ 0; otherwise, there would exist a small $\varepsilon>0$ such that $\log \operatorname{det}\left((1-\varepsilon) M\left(\xi_{D}\right)+\varepsilon a(\boldsymbol{x}) a(\boldsymbol{x})\right)>\log \operatorname{det}\left(M\left(\xi_{D}\right)\right)$. So:
$0 \geq D \log \operatorname{det}\left(M\left(\xi_{D}\right)\right)\left[\boldsymbol{a}(\boldsymbol{x}) \boldsymbol{a}(\boldsymbol{x})^{T}-M\left(\xi_{D}\right)\right]=\operatorname{trace} M\left(\xi_{D}\right)^{-1}\left(\boldsymbol{a}(\boldsymbol{x}) \boldsymbol{a}(\boldsymbol{x})^{T}-M\left(\xi_{D}\right)\right)=\boldsymbol{a}(\boldsymbol{x})^{T} M\left(\xi_{D}\right)^{-} \boldsymbol{a}(\boldsymbol{x})-m$.
We further show that the latter inequality becomes an equality if \boldsymbol{x} is a support point of ξ_{D}. We denote by $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)_{i \in[s]}$ the support points of ξ_{D} and by \boldsymbol{w} the vector of the associated weights, and we write:
$m=\operatorname{trace} I_{m}=\operatorname{trace} M\left(\xi_{D}\right) M\left(\xi_{D}\right)^{-1}=\operatorname{trace}\left(\sum_{i=1}^{s} w_{i} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{T} M\left(\xi_{D}\right)^{-1}\right)=\sum_{i \mid w_{i}>0} w_{i} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{T} M\left(\xi_{D}\right)^{-} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$.
The latter expression is a weighted average of terms all smaller than m and takes the value m. Hence, $w_{i}>0 \Rightarrow \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{T} M\left(\xi_{D}\right)^{-} \boldsymbol{a}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=m$.

Assume conversely that ξ is not D-optimal. If $M(\xi)$ is singular, then there is a regression vector $\boldsymbol{a}(\boldsymbol{x})$ which is not in the range of $M(\xi)$, and so (iii) does not hold. If $M(\xi)$ has full rank, then in view of the strict concavity of the \log det function over \mathbb{S}_{++}^{m}, and similarly to the previous discussion, there exists a design ξ^{\prime} such that $\log \operatorname{det}(M(\xi))$ has a positive derivative in the direction of $M\left(\xi^{\prime}\right)-M(\xi)$:

$$
\operatorname{trace} M(\xi)^{-1}\left(M\left(\xi^{\prime}\right)-M(\xi)\right)=\operatorname{trace} M(\xi)^{-1} M\left(\xi^{\prime}\right)-m>0
$$

Denoting the support points and the weights of ξ^{\prime} by $\boldsymbol{x}_{\boldsymbol{i}}{ }^{\prime}$ and w_{i}^{\prime} respectively, we obtain:

$$
\operatorname{trace} M(\xi)^{-1} M\left(\xi^{\prime}\right)=\sum_{i \mid w_{i}^{\prime}>0} w_{i}^{\prime}{\boldsymbol{a}_{\boldsymbol{x}_{\boldsymbol{i}}^{\prime}}^{T}}_{T} M(\xi)^{-} \boldsymbol{a}_{\boldsymbol{x}_{\boldsymbol{i}}^{\prime}}>m
$$

This expression is a weighted average strictly larger than m, which implies the existence of a support point \boldsymbol{x}^{\prime} of ξ^{\prime} such that $\boldsymbol{a}_{\boldsymbol{x}_{\boldsymbol{i}}^{\prime}}^{T} M(\xi)^{-} \boldsymbol{a}_{\boldsymbol{x}_{\boldsymbol{i}}}>m$. Hence, (iii) does not hold and we have proved the part (iii) $\Longrightarrow(i i)$.

The existence of a D-optimal design, for which the Φ_{G}-criterion takes the value m, in conjunction with the fact that $\Phi_{G}(\xi) \geq m$ for all design ξ shows that a design ξ is G-optimal if and only if $\Phi_{G}(\xi)=m$. This proves the part $(i) \Longrightarrow(i i i)$ and the proof is complete.

Duality

Definition 1 (Scalar product over $\left.\mathbb{S}^{m}\right)$. The scalar product of two symmetrix matrices $A, B \in \mathbb{S}^{m}$ is

$$
\langle A, B\rangle:=\operatorname{trace} B^{T} A=\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i j} b_{i j} .
$$

Definition 2 (Polar information function). Let $\Phi: \mathbb{S}^{m} \rightarrow \mathbb{R}$ be an information function. We define the polar conjugate of Φ as

$$
\Phi^{\star}(D):=\inf _{C \succ 0} \frac{\langle C, D\rangle}{\Phi(C)}
$$

Proposition 3 (Polar of Kiefer's Φ_{p}-criterion). Let p and q be conjugate numbers on $[-\infty, 1]$, i.e. $p+q=p q$, or equivalently $\frac{1}{p}+\frac{1}{q}=1$. The polar function of Kiefer's $\Phi_{p}-$ criterion (over \mathbb{S}^{m}) is

$$
\Phi_{p}^{\star}:=m \Phi_{q}
$$

Theorem 4 (Duality). Let $\Phi: \mathbb{S}^{r} \rightarrow \mathbb{R}$ be an information function and K be an $m \times r$ matrix of full column rank. Then,

$$
\begin{aligned}
\max _{\xi \in \Xi(K)} \Phi\left(M_{K}(\xi)\right)=\min _{N \succeq 0} & \frac{1}{\Phi^{\star}\left(K^{T} N K\right)} \\
& \text { s.t. } \quad \forall \boldsymbol{x} \in \mathcal{X}, \boldsymbol{a}(\boldsymbol{x})^{T} N \boldsymbol{a}(\boldsymbol{x}) \leq 1 .
\end{aligned}
$$

Moreover, for the optimal dual variable $N \succeq 0$ it holds that $\boldsymbol{x} \in \operatorname{supp}(\xi) \Longrightarrow \boldsymbol{a}(\boldsymbol{x})^{T} N \boldsymbol{a}(\boldsymbol{x})=1$.
Proof. We only proof the weak duality inequality (\leq). Let $\xi \in \Xi(K)$ be a feasible design, set $M:=M(\xi)$, $M_{K}:=M_{K}(\xi)$, and let $N \in \mathbb{S}_{+}^{m}$ be a feasible matrix for the dual problem. The weak duality is a consequence of the following three inequalities, which in fact become equalities for the optimal M and N :
(i) $1 \geq\langle M, N\rangle$
(ii) $\langle M, N\rangle \geq\left\langle M_{K}, K^{T} N K\right\rangle$
(iii) $\left\langle M_{K}, K^{T} N K\right\rangle \geq \Phi\left(M_{K}\right) \Phi^{\star}\left(K^{T} N K\right)$

The point (i) simply follows from the fact that $\boldsymbol{a}(\boldsymbol{x})^{T} N \boldsymbol{a}(\boldsymbol{x}) \leq 1$ for all design points $x \in \mathcal{X}$ (because N is feasible for the dual problem.) The point (iii) comes from the definition of the polar function Φ^{\star}.

Now, consider a decomposition $M=A^{T} A$ for a $m \times m-$ matrix A, and recall the Gauss-Markov theorem $K M^{-} K=K^{T}\left(A^{T} A\right)^{-} K=\min _{\preceq}\left\{H^{T} H: H \in R^{m \times r} A^{T} H=K\right\}$. Let H_{0} be a minimizer of this problem. We have $A^{T} H_{0}=K$ and $H_{0}^{T} H_{0}=K^{T} M^{-} K$, so that

$$
0 \preceq\binom{A^{T}}{H_{0}^{T}}\left(A H_{0}\right)=\left(\begin{array}{cc}
M & K \\
K^{T} & K^{T} M^{-} K
\end{array}\right) .
$$

The Schur complement lemma yields $M \succeq K\left(K^{T} M^{-} K\right)^{-1} K^{T}=K M_{K} K^{T}$. Now, we use the following
Lemma 5. Let $U \succeq 0$. Then, $X \succeq Y \Longrightarrow\langle X, U\rangle \geq\langle Y, U\rangle$.

This gives $\langle M, N\rangle \geq\left\langle K M_{K} K^{T}, N\right\rangle=\operatorname{trace}\left(K M_{K} K^{T} N\right)=\operatorname{trace}\left(M_{K} K^{T} N K\right)=\left\langle M_{K}, K^{T} N K\right\rangle$.

Exercises

1. Prove Lemma 5
2. Let $\xi=\{\boldsymbol{x}, \boldsymbol{w}\}$ be a D-optimal design (with a support of size s, for the whole parameter $\boldsymbol{\theta} \in \mathbb{R}^{m}$).

The goal of this exercise is to show that $w_{i} \leq \frac{1}{m}$ for all $i=1, \ldots, s$. To simplify the notation, we write \boldsymbol{a}_{i} instead of $\boldsymbol{a}\left(\boldsymbol{x}_{i}\right)$. Now, let i be an arbitrary index in $\{1, \ldots, s\}$.

- What does the Kiefer-Wolfowitz theorem tell you about the quantity $\boldsymbol{a}_{i}^{T} M(\xi)^{-} \boldsymbol{a}_{i}$.
- Show that $M(\xi)$ is invertible and conclude that $\boldsymbol{a}_{i}^{T} M(\xi)^{-} \boldsymbol{a}_{i}=\boldsymbol{a}_{i}^{T} M(\xi)^{-1} M(\xi) M(\xi)^{-1} \boldsymbol{a}_{i}$.
- Rewrite $\boldsymbol{a}_{i}^{T} M(\xi)^{-} \boldsymbol{a}_{i}$ as a convex combination of the $\left(\boldsymbol{a}_{i}^{T} M(\xi)^{-} \boldsymbol{a}_{k}\right)^{2}(k=1, \ldots, s)$.
- Conclude

3. Consider the polynomial regression model of degree d on $\mathcal{X}=[-1,1]$:

$$
\forall \boldsymbol{x} \in \mathcal{X}, \boldsymbol{a}(\boldsymbol{x})=\left[1, x, x^{2}, \ldots, x^{d}\right]^{T} \in \mathbb{R}^{d+1}
$$

- Show that if an information matrix $M(\xi)=\sum_{i=1}^{s} w_{i} \boldsymbol{a}\left(x_{i}\right) \boldsymbol{a}\left(x_{i}\right)^{T}$ is non singular, the design ξ must have at least $s=d+1$ support points.
- Let ξ be a D-optimal design. Show that there exists a matrix $N \succ 0$ such that $\boldsymbol{a}(x)^{T} N \boldsymbol{a}(x)=1$ for all support points x of ξ.
- What can you say about function $x \rightarrow \boldsymbol{a}(x)^{T} N \boldsymbol{a}(x)$ over $\mathcal{X}=[-1,1]$? Conclude that ξ has exactly $d+1$ support points $-1=x_{0}<\ldots<x_{d}=1$.
- Show moreover that $w_{i}=\frac{1}{d+1}$ for all $i=0, \ldots, d$ (use Exercise 2).
- By using a simple symmetry argument, find the D-optimal design for the quadratic fit model $(d=2)$.

