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Lecture #7 Notes Summary

Kiefer-Wolfowitz Equivalence Theorem, Duality

Equivalence theorem for D−optimality

A special case of c−optimality is when the experimenter wants to estimate a quantity ζ = a(x)Tθ which

could be observed by a single trial (here, the trial at x ∈ X with regression vector a(x)). In this case, the

variance of the best estimator is σ2a(x)TM(ξ)−a(x). If a(x) is a vertex of the Elfving set E, this case

is highly trivial (assign all the weight of the design to x). However, an interesting case occurs when the

experimenter is not interested in the observation of a single experiment a(x)Tθ, but in the whole regression

surface {a(x)Tθ, x ∈ X}. For example, recall the line fit model y(x) = ax + b + ϵ, with θ = [a, b]T .

The experimenter might be interested to estimate the whole regression segment {ax + b, x ∈ X}. A global

criterion is needed to measure the performance of a design in this case. The global criterion (known as

G−criterion) is

ΦG : M → max
x∈X

a(x)TM−a(x)

and the G−optimal design guards one against the worst case, by minimizing the variance of every observation

in the regression surface:

min
ξ

max
x∈X

a(x)TM(ξ)−a(x) (1)

s.t. M(ξ) =

s∑
i=1

wia(xi)a(xi)
T

s∑
i=1

wi = 1, ∀ i ∈ [s], wi ≥ 0,xi ∈ X .

The Kiefer-Wolfowitz theorem establishes the equivalence between the D− and the G−optimal designs:

Theorem 1 (Kiefer-Wolfowitz). Assume that the regression range {a(x) : x ∈ X} contains m linearly

independent vectors. Then the following statements are equivalent:

(i) The design ξ is G−optimal;

(ii) The design ξ is D−optimal for the full parameter θ (i.e. with K = Im);

(iii) For all x in X , a(x)TM(ξ)−a(x) ≤ m.

Moreover, the bound provided by the inequality in (iii) is attained for the support points of the optimal design:

xi ∈ supp(ξ) =⇒ a(xi)
T
M(ξ)−a(xi) = m.

Proof. We first show that for all design ξ = {xk, wk}, we have ΦG(ξ) ≥ m. If M(ξ) is singular, then by

assumption there is a regression vector a(x) which is not in the range of M(ξ), and so ΦG(ξ) = ∞ ≥ m. If

M(ξ) is nonsingular, we write:

m = trace Im = trace M(ξ)M(ξ)−1 = trace

(
s∑

i=1

wia(xi)a(xi)
T
M(ξ)−1

)

≤
s∑

i=1

wi max
x∈X

(ax
TM(ξ)−1ax)

= ΦG(ξ).
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This proves the part (iii) =⇒ (i).

For the part (ii) =⇒ (iii) we need this lemma:

Lemma 2. Let M ≻ 0. The directional derivative of log det at M in the direction of H ∈ Sm is

Dlog det(M)[H] := lim
ε→0+

log det(M + εH)− log det(M)

ε
= trace(M−1H)

Now, we consider a D−optimal design ξD, and we show that ax
TM(ξD)−ax ≤ m for every point x ∈ X ,

with equality when x is in the support of ξD. Note that a D−optimal design exists indeed, since we are

maximizing a continuous function over a compact set. Moreover M(ξD) ≻ 0. (otherwise detM(ξD) = 0,

and by assumption there is a nonsingular design, so at optimality the determinant must be > 0). M(ξD) has

the largest possible determinant, so Dlog det(M(ξD))
[
a(x)a(x)T −M(ξD)

]
must be ≤ 0; otherwise, there

would exist a small ε > 0 such that log det
(
(1− ε)M(ξD) + εa(x)a(x)

)
> log det

(
M(ξD)

)
. So:

0 ≥ Dlog det(M(ξD))
[
a(x)a(x)T−M(ξD)

]
= traceM(ξD)−1(a(x)a(x)T−M(ξD)) = a(x)TM(ξD)−a(x)−m.

We further show that the latter inequality becomes an equality if x is a support point of ξD. We denote by

(xi)i∈[s] the support points of ξD and by w the vector of the associated weights, and we write:

m = trace Im = trace M(ξD)M(ξD)−1 = trace(

s∑
i=1

wia(xi)a(xi)
T
M(ξD)−1) =

∑
i|wi>0

wia(xi)
T
M(ξD)−a(xi).

The latter expression is a weighted average of terms all smaller than m and takes the value m. Hence,

wi > 0 ⇒ a(xi)
T
M(ξD)−a(xi) = m.

Assume conversely that ξ is not D−optimal. If M(ξ) is singular, then there is a regression vector a(x)

which is not in the range of M(ξ), and so (iii) does not hold. If M(ξ) has full rank, then in view of the strict

concavity of the log det function over Sm++, and similarly to the previous discussion, there exists a design ξ′

such that log det(M(ξ)) has a positive derivative in the direction of M(ξ′)−M(ξ):

traceM(ξ)−1(M(ξ′)−M(ξ)) = traceM(ξ)−1M(ξ′)−m > 0.

Denoting the support points and the weights of ξ′ by xi
′ and w′

i respectively, we obtain:

traceM(ξ)−1M(ξ′) =
∑

i|w′
i>0

w′
iax′

i

TM(ξ)−ax′
i
> m.

This expression is a weighted average strictly larger than m, which implies the existence of a support point

x′ of ξ′ such that ax′
i

TM(ξ)−ax′
i
> m. Hence, (iii) does not hold and we have proved the part (iii) =⇒ (ii).

The existence of a D−optimal design, for which the ΦG−criterion takes the value m, in conjunction with

the fact that ΦG(ξ) ≥ m for all design ξ shows that a design ξ is G−optimal if and only if ΦG(ξ) = m. This

proves the part (i) =⇒ (iii) and the proof is complete.

Duality

Definition 1 (Scalar product over Sm). The scalar product of two symmetrix matrices A,B ∈ Sm is

⟨A,B⟩ := traceBTA =

m∑
i=1

m∑
j=1

aijbij .
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Definition 2 (Polar information function). Let Φ : Sm → R be an information function. We define the

polar conjugate of Φ as

Φ⋆(D) := inf
C≻0

⟨C,D⟩
Φ(C)

.

Proposition 3 (Polar of Kiefer’s Φp−criterion). Let p and q be conjugate numbers on [−∞, 1], i.e.

p+ q = pq, or equivalently 1
p + 1

q = 1. The polar function of Kiefer’s Φp−criterion (over Sm) is

Φ⋆
p := mΦq

Theorem 4 (Duality). Let Φ : Sr → R be an information function and K be an m× r matrix of full column

rank. Then,

max
ξ∈Ξ(K)

Φ
(
MK(ξ)

)
= min

N⪰0

1

Φ⋆(KTNK)

s.t. ∀x ∈ X , a(x)TNa(x) ≤ 1.

Moreover, for the optimal dual variable N ⪰ 0 it holds that x ∈ supp(ξ) =⇒ a(x)TNa(x) = 1.

Proof. We only proof the weak duality inequality (≤). Let ξ ∈ Ξ(K) be a feasible design, set M := M(ξ),

MK := MK(ξ), and let N ∈ Sm+ be a feasible matrix for the dual problem. The weak duality is a consequence

of the following three inequalities, which in fact become equalities for the optimal M and N :

(i) 1 ≥ ⟨M,N⟩

(ii) ⟨M,N⟩ ≥ ⟨MK ,KTNK⟩

(iii) ⟨MK ,KTNK⟩ ≥ Φ(MK)Φ⋆(KTNK)

The point (i) simply follows from the fact that a(x)TNa(x) ≤ 1 for all design points x ∈ X (because N

is feasible for the dual problem.) The point (iii) comes from the definition of the polar function Φ⋆.

Now, consider a decomposition M = ATA for a m×m−matrix A, and recall the Gauss-Markov theorem

KM−K = KT (ATA)−K = min⪯{HTH : H ∈ Rm×rATH = K}. Let H0 be a minimizer of this problem.

We have ATH0 = K and HT
0 H0 = KTM−K, so that

0 ⪯
(

AT

HT
0

)
(A H0) =

(
M K

KT KTM−K

)
.

The Schur complement lemma yields M ⪰ K(KTM−K)−1KT = KMKKT . Now, we use the following

Lemma 5. Let U ⪰ 0. Then, X ⪰ Y =⇒ ⟨X,U⟩ ≥ ⟨Y,U⟩.

This gives ⟨M,N⟩ ≥ ⟨KMKKT , N⟩ = trace(KMKKTN) = trace(MKKTNK) = ⟨MK ,KTNK⟩.
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Exercises

1. Prove Lemma 5

2. Let ξ = {x,w} be a D−optimal design (with a support of size s, for the whole parameter θ ∈ Rm).

The goal of this exercise is to show that wi ≤ 1
m for all i = 1, . . . , s. To simplify the notation, we write

ai instead of a(xi). Now, let i be an arbitrary index in {1, . . . , s}.

• What does the Kiefer-Wolfowitz theorem tell you about the quantity aT
i M(ξ)−ai.

• Show that M(ξ) is invertible and conclude that aT
i M(ξ)−ai = aT

i M(ξ)−1M(ξ)M(ξ)−1ai.

• Rewrite aT
i M(ξ)−ai as a convex combination of the (aT

i M(ξ)−ak)
2 (k = 1, . . . , s).

• Conclude

3. Consider the polynomial regression model of degree d on X = [−1, 1] :

∀x ∈ X ,a(x) = [1, x, x2, . . . , xd]T ∈ Rd+1.

• Show that if an information matrix M(ξ) =
∑s

i=1 wia(xi)a(xi)
T is non singular, the design ξ

must have at least s = d+ 1 support points.

• Let ξ be a D−optimal design. Show that there exists a matrix N ≻ 0 such that a(x)TNa(x) = 1

for all support points x of ξ.

• What can you say about function x → a(x)TNa(x) over X = [−1, 1] ? Conclude that ξ has

exactly d+ 1 support points −1 = x0 < . . . < xd = 1.

• Show moreover that wi =
1

d+1 for all i = 0, . . . , d (use Exercise 2).

• By using a simple symmetry argument, find the D−optimal design for the quadratic fit model

(d = 2).
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