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Lecture #8 Notes Summary

Semidefinite Programming

A short introduction to semidefinite programming (SDP)

Recall the standard form of a linear programming (LP) problem (in primal and dual form):

max cTx min bTy

s.t. Ax = b s.t. ATy ≥ c

x ≥ 0

If we denote the rows of A by aT
1 , . . . ,a

T
m, and we use the notation [m] := {1, . . . ,m} we can rewrite this

pair of LPs as follows:

max ⟨c,x⟩ min

m∑
i=1

biyi

s.t. ⟨ai,x⟩ = bi (∀i ∈ [m]) s.t.

m∑
i=1

yiai ≥ c

x ≥ 0

By analogy, we would like to define a pair of optimization problems by replacing the vector of variables

x ∈ Rn
+ by a matrix X ∈ Sn+. To to this, we consider a list of matrices C,A1, . . . , Am ∈ Sm:

max
X

⟨C,X⟩ min
y

m∑
i=1

biyi

s.t. ⟨Ai, X⟩ = bi (∀i ∈ [m]) s.t.

m∑
i=1

yiAi ⪰ C

X ⪰ 0

(P)-(D)

Definition 1 (LMI). A linear matrix inequality (LMI) is an equation of the form

m∑
i=1

yiAi ⪰ C (1)

for some symmetric matrices C,A1, . . . , Am. The set of feasible solutions S := {y ∈ Rm : (1) holds}
defines a convex region of Rm (called a spectrahedron).

Definition 2. A semidefinite program (SDP) is an optimization problem, where a linear function is

optimized over a convex region that is defined by linear (in)equalities and LMIs.

Proposition 1. Every SDP can be rewritten under the standard primal form (P ), and every SDP can

also be rewritten under the standard dual form (D).

We do not prove this statement, but we demonstrate how this works by an example:
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Consider the SDP

max z − x

s.t.

 1 y z

y 1 y

z y x

 ⪰ 0 (2)

2x+ y − z = 3

This problem can be put under the stadard dual form (D) as follows:

min − z + x

s.t. x

 0 0 0

0 0 0

0 0 1

 + y

 0 1 0

1 0 1

0 1 0

 + z

 0 0 1

0 0 0

1 0 0

 ⪰

 −1 0 0

0 −1 0

0 0 0


x

(
2

−2

)
+ y

(
1

−1

)
+ z

(
−1

1

)
⪰

(
3

−3

)
,

and then the two LMIs can be combined in a big 5× 5 LMI with a block structure. But the problem could
also be cast as a standard SDP in the primal form (P ):

max

〈 0 0 1
2

0 −1 0
1
2 0 −1

 , X

〉

s.t.

〈 1 0 0

0 0 0

0 0 0

 , X

〉
= 1,

〈 0 0 0

0 1 0

0 0 0

 , X

〉
= 1

〈 0 1 0

1 0 −1

0 −1 0

 , X

〉
= 0,

〈 0 1
2 − 1

2
1
2 0 0

− 1
2 0 2

 , X

〉
= 3

X ⪰ 0

#1

Theorem 2. A matrix X is positive semidefinite if and only if

∀U ⪰ 0, ⟨U,X⟩ ≥ 0.

Proof. =⇒ was done in exercises last week.

⇐=: in particular, the inequality must be true for all matrices U = uuT of rank one. So ∀u ∈ Rn,

0 ≤ ⟨U,X⟩ = ⟨uuT , X⟩ = traceuuTX = uTXu, which proves X ⪰ 0.

Corollary 3. Let U ∈ Sm. Then,

max
X⪰0

⟨X,U⟩ =
{

0 if U ⪯ 0

+∞ otherwise.

Proof. cf. Exercises

Proposition 4. Problem (D) is the Lagrangian dual of (P )

Proof. The Lagrangian of Problem (P ) is

L(X,y) = ⟨C,X⟩+
m∑
i=1

yi(bi − ⟨Ai, X⟩).
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Note that Problem (P ) can be written as a saddle point problem:

max
X⪰0

min
y∈Rm

L(X,y).

By definition, the Lagrangian dual of an optimization problem is obtained by swapping min and max:

min
y∈Rm

max
X⪰0

L(X,y).

In the dual problem, the function to minimize is thus

max
X⪰0

⟨C,X⟩+
m∑
i=1

yi(bi − ⟨Ai, X⟩) =
m∑
i=1

yibi +max
X⪰0

⟨X,C −
m∑
i=1

yiAi⟩

=

{ ∑m
i=1 yibi if

∑m
i=1 yiAi ⪰ C

+∞ otherwise

where the last equality follows from Corollary 3.

Hence, we obtain problem (D) when we minimize the expression (maxX⪰0 L(X,y)) over y ∈ Rm.

From now on, and for more generality, we consider an alternative standard form with inequalities in the

primal (as for LPs, there are many concurrent standard forms):

max
X

⟨C,X⟩ min
y

m∑
i=1

biyi

s.t. ⟨Ai, X⟩ ≤ bi (∀i ∈ [m]) s.t.

m∑
i=1

yiAi ⪰ C

X ⪰ 0 y ≥ 0.

(P’)-(D’)

Theorem 5 (Weak Duality). Let X ⪰ 0 be feasible for (P ′) and y ≥ 0 be feasible for (D′). Then,

⟨C,X⟩ ≤ bTy. In particular, the optimal value of (P ′) is ≤ than the optimal value of (D′).

Proof. bTy =
∑

i yibi ≥
∑

i yi⟨Ai, X⟩ = ⟨
∑
i

yiAi︸ ︷︷ ︸
⪰C

, X⟩ ≥ ⟨C,X⟩.

Contrarily to what happens with LP, strong duality does not always hold. However, a sufficient condition

is the Slater’s condition, aka strict feasibility.

Definition 3 (strict feasibility). An SDP is called strictly feasible if there is a feasible solution such that all

linear (in)equalities are satisfied, and all LMIs are strictly satisfied. More precisely, an SDP of the form (P ′)

is called streactly feasible if

∃X ≻ 0 : ∀i ∈ [m], ⟨X,Ai⟩ ≤ bi.

Similarly, an SDP of the form (D′) is called strictly feasible if

∃y ≥ 0 :

m∑
i=1

yiAi ≻ 0.

Theorem 6 (Strong Duality). Consider a pair of primal-dual SDPs in the form (P’)-(D’).

• If either (P ′) or (D′) is strictly feasible, then OPT (P ′) = OPT (D′) (but this value might be ±∞).
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• If (P ′) is strictly feasible and OPT (P ′) < ∞, then the infimum is attained in the dual problem (i.e.,

there exists a feasible y for (D′) such that bTy = OPT (P ′) = OPT (D′).

• If (D′) is strictly feasible and OPT (D′) > −∞, then the supremum is attained in the primal problem

(i.e., there exists a feasible X for (P ′) such that ⟨C,X⟩ = OPT (P ′) = OPT (D′).

• If both (P ′) and (D′) are feasible, then OPT (P ′) = OPT (D′) is finite, and the optimum is attained

in both problems.

Proof. Omitted.

We can summarize the duality theorems as follows:

• OPT (P ) ≤ OPT (D)

• primal (resp. dual) feasible =⇒ dual (resp. primal) bounded

• primal or dual strictly feasible =⇒ OPT (P ) = OPT (D)

• primal (resp. dual) strictly feasible and bounded =⇒ dual (resp. primal) attainment

Proposition 7 (Complementary Slackness). Consider a pair of primal/dual SDPs of the form (P’)-(D’)

such that strong duality holds, and the optimal values are attained: there exists some feasible X∗ ∈ Sn+
and y∗ ∈ Rm

+ such that ⟨C,X∗⟩ = bTy∗ (and by weak duality, X∗ and y∗ are optimal for (P’)-(D’)).

Then, we have:

⟨X∗,
∑
i

y∗i Ai − C⟩ = 0 and ∀i ∈ [m], yi(bi − ⟨Ai, X
∗⟩) = 0.

Proof. These are simply the conditions for equality in the proof of the weak duality theorem.

Theorem 8. Every SDP can be solved to the desired precision in polynomial time. More precisely, given

a SDP (P ) a target precision ϵ > 0, the interior point method returns an ϵ−approximation of the optimum

in time polynomial with respect to n, m, and log 1
ϵ .
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Exercises

1. Proof of Corollary 3

2. Consider the SDP

min x2

s.t.

 1 + x2 0 0

0 x1 x2

0 x2 0

 ⪰ 0

• What is the optimal value of this SDP?

• What is the dual problem?

• What is the optimal value of the dual?

• Why isn’t it a violation of the strong duality theorem?

3. Let G = (V,E) be a simple undirected graph with n vertices. We recall that the stable number

α(G) of G denotes the maximal cardinality of a stable set of G (a set of vertices S ⊆ V is stable iff

(i, j ∈ S × S =⇒ (i, j) /∈ E)). Consider the SDP:

max
Y

⟨J, Y ⟩

s.t. traceY = 1

Yi,j = 0, ∀(i, j) ∈ E

Y ⪰ 0,

where J is the n × n matrix of all ones. The optimal value of this SDP is denoted by ϑ(G), and is

called the Lovász theta number of G.

• Let S be a subset of V , and denote by 1S the {0, 1}−vector that indicates the vertices in S

((1S)i = 1 ⇐⇒ i ∈ S). Show that the matrix Y =
1S1T

S

1T
S1S

is feasible for the SDP above if and only

if S is a stable set of G.

• Deduce that α(G) ≤ ϑ(G).
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