
G. Sagnol LV 19086: Lecture #9 Notes June 18, 2014

Lecture #9 Notes Summary

SDP formulations of some optimal experimental design problems

The SDP approach to compute optimal designs

In this lecture, we consider the ΦK−optimal design problem over a finite regression range Ξ ≡ {x1, . . . ,xs}.
Recall that in this situation, a design is simply a vector of weights w ∈ ∆s := {w ≥ 0 :

∑s
i=1 wi = 1}, and

we write ai instead of a(xi):

max
w∈Ξ(K)

Φ
(
MK(w)

)
, (1)

where MK(w) :=
(
KT

(∑s
i=1 wiaia

T
i

)−
K
)−1

and w ∈ ΞK means that M(w) =
∑

i wiaia
T
i contains the

columns of K in its range, so MK(w) is well defined.

In fact, it is possible to extend the definition of MK by continuity to designs w /∈ Ξ(K), in which case

MK(ξ) is singular.

Theorem 1. Let K be a m × k−matrix of full column rank, and let p < 1. Assume that the vectors

a1, . . . ,as span the columns of K. Then, a (Φp)K−optimal design exists and must be solution of the

following concave maximization problem:

max
w∈∆s

Φp

(
MK(w)

)
. (2)

Moreover if p ̸= −∞ and w and w′ are optimal, then MK(w) = MK(w′) ≻ 0.

Proof. Let w be a solution of Problem (2). We show that that M := MK(w) ≻ 0, which implies w ∈ Ξ(K),

and hence w is a (Φp)K−optimal design. This is clear for p ≤ 0, because Φp(X) = 0 for all singular matrices

X, and by assumption a non-singular design exists. For 0 < p < 1, we use the duality theorem: there exists

a matrix N ⪰ 0 such that D = KTNK satisfies

Φp(M)Φ⋆
p(D) = ⟨M,D⟩ = 1.

This implies Φ⋆
p(D) > 0, and hence D ≻ 0 because Φ⋆

p = mΦq for a −∞ < q < 0, and Φq(X) = 0 for singular

matrices X. Now, let z be a vector such that zTMz = 0. We show by contradition that z = 0, from which

the conclusion M ≻ 0 follows. If z ̸= 0 we have:

Φp(M)Φ⋆
p(D + zzT ) ≤ ⟨M,D + zzT ⟩ = ⟨M,D⟩ = Φp(M)Φ⋆

p(D) < Φp(M)Φ⋆
p(D + zzT ),

where the first inequality follows from the definition of Φ⋆
p, and the second inequality comes from the strict

monotonicity (w.r.t. ⪯) of Φ⋆
p = mΦq over Sm++ (which we admit). Finaly, the unicity of the optimal

information matrix Mk(w) is a consequence of the strict concavity of Φp over Sm++ for all p ∈ (−∞, 1).

In this lecture, we show that Problem (2) can be reformulated as an SDP for p = −∞ (E-optimality)

and p = −1 (A-optimality). The case p = 0 (D-optimality) is treated in exercises. In fact, it is possible to

give an SDP formulation of Problem (2) for all rational values of p ≤ 1.
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A-optimality

Recall that an AK−optimal design must minimize traceKTM(w)−K over Ξ(K).

If w ∈ Ξ(K), the (extended) Schur complement lemma gives(
M(w) K

KT U

)
⪰ 0 ⇐⇒ U ⪰ KTM(w)−K.

This suggests to consider the following SDP:

min
w,U

trace U

s.t.

(
M(w) K

KT U

)
⪰ 0 (3)

w ∈ ∆s

The (m + k) × (m + k) matrix inequality is linear in w and in the entries of U ∈ Sk, so (3) is an SDP

indeed.

Proposition 2. w is AK−optimal if and only if there is a matrix U such that (U,w) is an optimal

solution of (3).

Proof. We first show that w ∈ Ξ(K) for all feasible (w, U). Indeed, if the LMI is satisfied, the big (m +

k)× (m+ k) can be expressed as [A,B]T [A,B] for some matrices A,B of respective sizes (m+ k)×m and

(m + k) × k. So we have imK = imATB ⊆ imAT = imATA = imM(w), which shows w ∈ Ξ(K). So we

have U ⪰ KTM(w)−K, which implies traceU ≥ traceKTM(w)−K.

Conversely, let w∗ be AK−optimal, and set U∗ = KTM(w∗)−K. Note that the pair (w∗, U∗) is feasible,

so the optimal value of the problem must be trace KTM(w∗)−K. This concludes the proof.

E-optimality

Proposition 3. Let M ∈ Sm. Then,

M ⪰ λIm ⇐⇒ λ ≤ λmin(M).

Proof. Recall the following characterization of the smallest eigenvalue of a symmetric matrix M :

λmin(M) := inf
x ̸=0

xTMx

xTx
.

Now we write
M ⪰ λIm ⇐⇒ ∀x ∈ Rm, xTMx ≥ λxTx

⇐⇒ λ ≤ inf
x̸=0

xTMx

xTx
= λmin(M).
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This suggests the following SDP for E−optimality:

max
w,λ

λ

s.t. M(w) ⪰ λIm (4)

w ∈ ∆s

Proposition 4. w is E−optimal if and only if there is a scalar λ such that (w, λ) is an optimal solution

of (4).

Proof. We recall that an E−optimal design maximizes λmin

(
M(w)

)
over ∆s. If (w, λ) is feasible, then

we know from the previous proposition that λ ≤ λmin

(
M(w)

)
. Conversely, let w∗ be E−optimal and set

λ∗ = λmin

(
M(w∗)

)
. The pair (w∗, λ∗) is feasible, and so it must be optimal for the SDP (4).

Remark 5. The SDP (4) can actually be extended to an SDP-formualtion for EK−optimality, cf. Exercise 3.
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Exercises

1. Recall the Elfving theorem for c−optimality, and show that a c−optimal design can be computed by

linear programming (for the case of a finite design space X ).

2. Show that the dual problem (with respect to the polar information function Φ⋆) for D−optimality is

equivalent to
max
N

detN

s.t. aT
i Nai ≤ 1 (∀i ∈≤ 1, . . . ,m)

N ⪰ 0

Give a geometrical interpretation to this problem

3. Show that the dual problem (with respect to the polar information function Φ⋆) for EK−optimality

can be written as an SDP. Form the Lagrangian dual of this SDP and make a change of variables to

find an SDP formulation of the EK−optimal design problem.

4. SDP-representation of a geometric mean.

In this exercise, we show (by some examples) that inequalities of the form t ≤
∏m

i=1 x
1/m
i are equivalent

to an LMI (with respect to the variables t, u1, . . . , um).

• Let u1, u2 ≥ 0. Show that the inequality t2 ≤ u1u2 can be rewritten as a 2× 2−LMI.

• Let x ∈ R5
+. Show that

t5 ≤ x1x2x3x4x5 ⇐⇒t8 ≤ x1x2x3x4x5t
3

⇐⇒∃u ∈ R5
+ :


u2
1 ≤ x1x2, u2

4 ≤ u1u2,

u2
2 ≤ x3x4, u2

5 ≤ u3t,

u2
3 ≤ x5t, t2 ≤ u4u5,

• Conclude that t ≤
∏5

i=1 x
1/5
i can be rewritten as a big 12× 12−LMI.

• By using a similar construction, rewrite t ≤
∏9

i=1 x
1/9
i as a big LMI.

5. Let (w,u, L) ∈ ∆s × Rm × Rm×m be such that

(i)

(
M(w) L

LT Diag(u)

)
⪰ 0

(ii) Lii = ui (∀i = 1, . . . ,m)

(iii) Lij = 0 (∀ 1 ≤ i < j ≤ m)

• We assume that u > 0 for simplicity. Set J = LDiag(u)−1/2. Show that M(w) ⪰ JJT .

• Deduce that detM(w) ≥ (det J)2 =
∏m

i=1 ui (even if some ui = 0).

• Conclude with an SDP formulation for D−optimality (hint : use the construction of exercise 4).
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