Lecture \#9 Notes Summary

SDP formulations of some optimal experimental design problems

The SDP approach to compute optimal designs

In this lecture, we consider the Φ_{K}-optimal design problem over a finite regression range $\Xi \equiv\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{s}\right\}$. Recall that in this situation, a design is simply a vector of weights $\boldsymbol{w} \in \Delta_{s}:=\left\{\boldsymbol{w} \geq 0: \sum_{i=1}^{s} w_{i}=1\right\}$, and we write \boldsymbol{a}_{i} instead of $\boldsymbol{a}\left(\boldsymbol{x}_{i}\right)$:

$$
\begin{equation*}
\max _{\boldsymbol{w} \in \Xi(K)} \Phi\left(M_{K}(\boldsymbol{w})\right) \tag{1}
\end{equation*}
$$

where $\quad M_{K}(\boldsymbol{w}):=\left(K^{T}\left(\sum_{i=1}^{s} w_{i} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{T}\right)^{-} K\right)^{-1}$ and $\boldsymbol{w} \in \Xi_{K}$ means that $M(\boldsymbol{w})=\sum_{i} w_{i} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{T}$ contains the columns of K in its range, so $M_{K}(\boldsymbol{w})$ is well defined.

In fact, it is possible to extend the definition of M_{K} by continuity to designs $\boldsymbol{w} \notin \Xi(K)$, in which case $M_{K}(\xi)$ is singular.

Theorem 1. Let K be a $m \times k$-matrix of full column rank, and let $p<1$. Assume that the vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{s}$ span the columns of K. Then, a $\left(\Phi_{p}\right)_{K}$-optimal design exists and must be solution of the following concave maximization problem:

$$
\begin{equation*}
\max _{\boldsymbol{w} \in \Delta_{s}} \Phi_{p}\left(M_{K}(\boldsymbol{w})\right) \tag{2}
\end{equation*}
$$

Moreover if $p \neq-\infty$ and \boldsymbol{w} and \boldsymbol{w}^{\prime} are optimal, then $M_{K}(\boldsymbol{w})=M_{K}\left(\boldsymbol{w}^{\prime}\right) \succ 0$.

Proof. Let \boldsymbol{w} be a solution of Problem (2). We show that that $M:=M_{K}(\boldsymbol{w}) \succ 0$, which implies $\boldsymbol{w} \in \Xi(K)$, and hence \boldsymbol{w} is a $\left(\Phi_{p}\right)_{K}$-optimal design. This is clear for $p \leq 0$, because $\Phi_{p}(X)=0$ for all singular matrices X, and by assumption a non-singular design exists. For $0<p<1$, we use the duality theorem: there exists a matrix $N \succeq 0$ such that $D=K^{T} N K$ satisfies

$$
\Phi_{p}(M) \Phi_{p}^{\star}(D)=\langle M, D\rangle=1
$$

This implies $\Phi_{p}^{\star}(D)>0$, and hence $D \succ 0$ because $\Phi_{p}^{\star}=m \Phi_{q}$ for a $-\infty<q<0$, and $\Phi_{q}(X)=0$ for singular matrices X. Now, let \boldsymbol{z} be a vector such that $\boldsymbol{z}^{T} M \boldsymbol{z}=0$. We show by contradition that $\boldsymbol{z}=0$, from which the conclusion $M \succ 0$ follows. If $\boldsymbol{z} \neq \mathbf{0}$ we have:

$$
\Phi_{p}(M) \Phi_{p}^{\star}\left(D+\boldsymbol{z} \boldsymbol{z}^{T}\right) \leq\left\langle M, D+\boldsymbol{z} \boldsymbol{z}^{T}\right\rangle=\langle M, D\rangle=\Phi_{p}(M) \Phi_{p}^{\star}(D)<\Phi_{p}(M) \Phi_{p}^{\star}\left(D+\boldsymbol{z} \boldsymbol{z}^{T}\right)
$$

where the first inequality follows from the definition of Φ_{p}^{\star}, and the second inequality comes from the strict monotonicity (w.r.t. \preceq) of $\Phi_{p}^{\star}=m \Phi_{q}$ over \mathbb{S}_{++}^{m} (which we admit). Finaly, the unicity of the optimal information matrix $M_{k}(\boldsymbol{w})$ is a consequence of the strict concavity of Φ_{p} over \mathbb{S}_{++}^{m} for all $p \in(-\infty, 1)$.

In this lecture, we show that Problem (2) can be reformulated as an SDP for $p=-\infty$ (E-optimality) and $p=-1$ (A-optimality). The case $p=0$ (D-optimality) is treated in exercises. In fact, it is possible to give an SDP formulation of Problem (2) for all rational values of $p \leq 1$.

A-optimality

Recall that an A_{K}-optimal design must minimize trace $K^{T} M(\boldsymbol{w})^{-} K$ over $\Xi(K)$.
If $\boldsymbol{w} \in \Xi(K)$, the (extended) Schur complement lemma gives

$$
\left(\begin{array}{cc}
M(\boldsymbol{w}) & K \\
K^{T} & U
\end{array}\right) \succeq 0 \Longleftrightarrow U \succeq K^{T} M(\boldsymbol{w})^{-} K
$$

This suggests to consider the following SDP:

$$
\begin{array}{ll}
\min _{\boldsymbol{w}, U} & \operatorname{trace} U \\
\text { s.t. } & \left(\begin{array}{cc}
M(\boldsymbol{w}) & K \\
K^{T} & U
\end{array}\right) \succeq 0 \tag{3}\\
& \boldsymbol{w} \in \Delta_{s}
\end{array}
$$

The $(m+k) \times(m+k)$ matrix inequality is linear in \boldsymbol{w} and in the entries of $U \in \mathbb{S}^{k}$, so (3) is an SDP indeed.

Proposition 2. \boldsymbol{w} is A_{K}-optimal if and only if there is a matrix U such that (U, \boldsymbol{w}) is an optimal solution of (3).

Proof. We first show that $\boldsymbol{w} \in \Xi(K)$ for all feasible (\boldsymbol{w}, U). Indeed, if the LMI is satisfied, the big ($m+$ $k) \times(m+k)$ can be expressed as $[A, B]^{T}[A, B]$ for some matrices A, B of respective sizes $(m+k) \times m$ and $(m+k) \times k$. So we have $\operatorname{im} K=\operatorname{im} A^{T} B \subseteq \operatorname{im} A^{T}=\operatorname{im} A^{T} A=\operatorname{im} M(\boldsymbol{w})$, which shows $\boldsymbol{w} \in \Xi(K)$. So we have $U \succeq K^{T} M(\boldsymbol{w})^{-} K$, which implies trace $U \geq$ trace $K^{T} M(\boldsymbol{w})^{-} K$.

Conversely, let \boldsymbol{w}^{*} be A_{K}-optimal, and set $U^{*}=K^{T} M\left(\boldsymbol{w}^{*}\right)^{-} K$. Note that the pair $\left(\boldsymbol{w}^{*}, U^{*}\right)$ is feasible, so the optimal value of the problem must be trace $K^{T} M\left(\boldsymbol{w}^{*}\right)^{-} K$. This concludes the proof.

E-optimality

Proposition 3. Let $M \in \mathbb{S}^{m}$. Then,

$$
M \succeq \lambda I_{m} \Longleftrightarrow \lambda \leq \lambda_{\min }(M)
$$

Proof. Recall the following characterization of the smallest eigenvalue of a symmetric matrix M :

$$
\lambda_{\min }(M):=\inf _{\boldsymbol{x} \neq \mathbf{0}} \frac{\boldsymbol{x}^{T} M \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}
$$

Now we write

$$
\begin{aligned}
M \succeq \lambda I_{m} & \Longleftrightarrow \quad \forall \boldsymbol{x} \in \mathbb{R}^{m}, \quad \boldsymbol{x}^{T} M \boldsymbol{x} \geq \lambda \boldsymbol{x}^{T} \boldsymbol{x} \\
& \Longleftrightarrow \lambda \leq \inf _{\boldsymbol{x} \neq 0} \frac{\boldsymbol{x}^{T} M \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}=\lambda_{\min }(M)
\end{aligned}
$$

This suggests the following SDP for E-optimality:

$$
\begin{array}{cl}
\max _{\boldsymbol{w}, \lambda} & \lambda \\
\text { s.t. } & M(\boldsymbol{w}) \succeq \lambda I_{m} \tag{4}\\
& \boldsymbol{w} \in \Delta_{s}
\end{array}
$$

Proposition 4. \boldsymbol{w} is E-optimal if and only if there is a scalar λ such that $(\boldsymbol{w}, \lambda)$ is an optimal solution of (4).

Proof. We recall that an E-optimal design maximizes $\lambda_{\min }(M(\boldsymbol{w}))$ over Δ_{s}. If $(\boldsymbol{w}, \lambda)$ is feasible, then we know from the previous proposition that $\lambda \leq \lambda_{\min }(M(\boldsymbol{w}))$. Conversely, let \boldsymbol{w}^{*} be E-optimal and set $\lambda^{*}=\lambda_{\min }\left(M\left(\boldsymbol{w}^{*}\right)\right)$. The pair $\left(\boldsymbol{w}^{*}, \lambda^{*}\right)$ is feasible, and so it must be optimal for the SDP (4).

Remark 5. The SDP (4) can actually be extended to an SDP-formualtion for E_{K}-optimality, cf. Exercise 3.

Exercises

1. Recall the Elfving theorem for \boldsymbol{c}-optimality, and show that a \boldsymbol{c}-optimal design can be computed by linear programming (for the case of a finite design space \mathcal{X}).
2. Show that the dual problem (with respect to the polar information function Φ^{\star}) for D-optimality is equivalent to

$$
\begin{array}{ll}
\max _{N} & \operatorname{det} N \\
\text { s.t. } & \boldsymbol{a}_{i}^{T} N \boldsymbol{a}_{i} \leq 1 \quad(\forall i \in \leq 1, \ldots, m) \\
& N \succeq 0
\end{array}
$$

Give a geometrical interpretation to this problem
3. Show that the dual problem (with respect to the polar information function Φ^{\star}) for $E_{K}-$ optimality can be written as an SDP. Form the Lagrangian dual of this SDP and make a change of variables to find an SDP formulation of the E_{K}-optimal design problem.
4. SDP-representation of a geometric mean.

In this exercise, we show (by some examples) that inequalities of the form $t \leq \prod_{i=1}^{m} x_{i}^{1 / m}$ are equivalent to an LMI (with respect to the variables t, u_{1}, \ldots, u_{m}).

- Let $u_{1}, u_{2} \geq 0$. Show that the inequality $t^{2} \leq u_{1} u_{2}$ can be rewritten as a $2 \times 2-\mathrm{LMI}$.
- Let $\boldsymbol{x} \in \mathbb{R}_{+}^{5}$. Show that

$$
\begin{aligned}
t^{5} \leq x_{1} x_{2} x_{3} x_{4} x_{5} & \Longleftrightarrow t^{8} \leq x_{1} x_{2} x_{3} x_{4} x_{5} t^{3} \\
& \Longleftrightarrow \exists \boldsymbol{u} \in \mathbb{R}_{+}^{5}:\left\{\begin{aligned}
& u_{1}^{2} \leq x_{1} x_{2}, \\
& u_{2}^{2} \leq x_{3} x_{4}, \\
& u_{3}^{2} \leq x_{5} t, u_{4}^{2} \leq u_{1} u_{2}, \\
& u_{5}^{2} \leq u_{3} t \\
& t^{2} \leq u_{4} u_{5}
\end{aligned}\right.
\end{aligned}
$$

- Conclude that $t \leq \prod_{i=1}^{5} x_{i}^{1 / 5}$ can be rewritten as a big $12 \times 12-\mathrm{LMI}$.
- By using a similar construction, rewrite $t \leq \prod_{i=1}^{9} x_{i}^{1 / 9}$ as a big LMI.

5. Let $(\boldsymbol{w}, \boldsymbol{u}, L) \in \Delta_{s} \times \mathbb{R}^{m} \times \mathbb{R}^{m \times m}$ be such that

$$
\text { (i) } \quad\left(\begin{array}{cc}
M(\boldsymbol{w}) & L \\
L^{T} & \operatorname{Diag}(\boldsymbol{u})
\end{array}\right) \succeq 0
$$

(ii) $L_{i i}=u_{i} \quad(\forall i=1, \ldots, m)$
(iii) $L_{i j}=0 \quad(\forall 1 \leq i<j \leq m)$

- We assume that $\boldsymbol{u}>\mathbf{0}$ for simplicity. Set $J=L \operatorname{Diag}(\boldsymbol{u})^{-1 / 2}$. Show that $M(\boldsymbol{w}) \succeq J J^{T}$.
- Deduce that $\operatorname{det} M(\boldsymbol{w}) \geq(\operatorname{det} J)^{2}=\prod_{i=1}^{m} u_{i}$ (even if some $u_{i}=0$).
- Conclude with an SDP formulation for D-optimality (hint: use the construction of exercise 4).

