G. Sagnol LV 19086: Lecture #9 Notes June 18, 2014

Lecture #9 Notes Summary

SDP formulations of some optimal experimental design problems

The SDP approach to compute optimal designs

In this lecture, we consider the ® x —optimal design problem over a finite regression range Z = {1, ..., x}.
Recall that in this situation, a design is simply a vector of weights w € Ay := {w >0: Y], w; = 1}, and
we write a; instead of a(x;):

<I>(M ) 1

Wl K(w) (1)
—1

where Mg (w) := (KT (>0 wiaal) K) and w € Zx means that M(w) = Y, w;a;al contains the

columns of K in its range, so Mk (w) is well defined.

In fact, it is possible to extend the definition of My by continuity to designs w ¢ Z(K), in which case
Mg (€) is singular.

Theorem 1. Let K be a m X k—matriz of full column rank, and let p < 1. Assume that the vectors
ai,...,as span the columns of K. Then, a (®,)x—optimal design exists and must be solution of the
following concave maximization problem:

max @, (Mic(w)). (2)

Moreover if p £ —oo and w and w’ are optimal, then My (w) = Mg (w’) > 0.

Proof. Let w be a solution of Problem (2). We show that that M := Mg (w) > 0, which implies w € Z(K),
and hence w is a (®,) k —optimal design. This is clear for p < 0, because ®,(X) = 0 for all singular matrices
X, and by assumption a non-singular design exists. For 0 < p < 1, we use the duality theorem: there exists
a matrix N = 0 such that D = KT NK satisfies

®,(M)®5(D) = (M, D) = 1.

This implies ®5(D) > 0, and hence D >~ 0 because ®; = m®, for a —oo < ¢ <0, and ®,(X) = 0 for singular
matrices X. Now, let z be a vector such that 27 Mz = 0. We show by contradition that z = 0, from which
the conclusion M > 0 follows. If z # 0 we have:

®,(M)®}(D + 22") < (M, D + z2") = (M, D) = ®,(M)®}(D) < &,(M)®}(D + zz"),

where the first inequality follows from the definition of ®}, and the second inequality comes from the strict
monotonicity (w.r.t. X) of &5 = m®, over ST, (which we admit). Finaly, the unicity of the optimal
information matrix My (w) is a consequence of the strict concavity of ®,, over ST, for all p € (—o0,1). [

In this lecture, we show that Problem (2) can be reformulated as an SDP for p = —oo (E-optimality)
and p = —1 (A-optimality). The case p = 0 (D-optimality) is treated in exercises. In fact, it is possible to
give an SDP formulation of Problem (2) for all rational values of p < 1.
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A-optimality

Recall that an Ax —optimal design must minimize trace K7 M (w)~ K over Z(K).
If w € E(K), the (extended) Schur complement lemma gives

( Mw) K

KT U ) =0 U» K"M(w) K.

This suggests to consider the following SDP:

min trace U
U

wt (”ﬁ’;’) IU()zo (3)
wE A

The (m + k) x (m + k) matrix inequality is linear in w and in the entries of U € S¥, so (3) is an SDP
indeed.

Proposition 2. w is Ax—optimal if and only if there is a matriz U such that (U,w) is an optimal
solution of (3).

Proof. We first show that w € Z(K) for all feasible (w,U). Indeed, if the LMI is satisfied, the big (m +
k) x (m + k) can be expressed as [A, B]T[A, B] for some matrices A, B of respective sizes (m + k) x m and
(m +k) x k. So we have im K = im AT B C im AT = im AT A = im M (w), which shows w € E(K). So we
have U = KT M (w)~ K, which implies trace U > trace KT M (w)~ K.

Conversely, let w* be Ax —optimal, and set U* = KT M (w*)~ K. Note that the pair (w*, U*) is feasible,
so the optimal value of the problem must be trace K7 M (w*)~ K. This concludes the proof. O

E-optimality

Proposition 3. Let M € S™. Then,

M = AIm < A < )\min(M)-

Proof. Recall the following characterization of the smallest eigenvalue of a symmetric matrix M:

o x2TMx
)\min(M) = ;r;éf(‘) zTx

Now we write
M =M, <= Ve eR™ a'Mzx>\xTx

o x2TMex
<~ A< inf =
A0 T X
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This suggests the following SDP for E—optimality:

max A
w,A
sit. M(w) = M\, (4)
w e A,

Proposition 4. w is E—optimal if and only if there is a scalar A such that (w, \) is an optimal solution

of (4).

Proof. We recall that an E—optimal design maximizes Apin (M (w)) over Ay If (w,)) is feasible, then
we know from the previous proposition that A < A\jin (M (w)) Conversely, let w* be F—optimal and set
N = Apin (M (w*)). The pair (w*, \*) is feasible, and so it must be optimal for the SDP (4). O

Remark 5. The SDP (4) can actually be extended to an SDP-formualtion for Ex —optimality, cf. Exercise 3.
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Exercises

1. Recall the Elfving theorem for c—optimality, and show that a c—optimal design can be computed by
linear programming (for the case of a finite design space X).

2. Show that the dual problem (with respect to the polar information function ®*) for D—optimality is
equivalent to
max det N
st. a’Na; <1  (Vie<l1,...,m)
N>0

Give a geometrical interpretation to this problem

3. Show that the dual problem (with respect to the polar information function ®*) for Ex —optimality
can be written as an SDP. Form the Lagrangian dual of this SDP and make a change of variables to
find an SDP formulation of the EFx —optimal design problem.

4. SDP-representation of a geometric mean.

In this exercise, we show (by some examples) that inequalities of the form ¢ <[]\, :1:3/ ™ are equivalent

to an LMI (with respect to the variables ¢, uq, ..., up).

o Let uy,us > 0. Show that the inequality 2 < ujus can be rewritten as a 2 x 2—LMIL
o Let x € Ri. Show that

t5 < T1T2X3T4T5 <:>t8 < I1$2I31’4$5t3

ui < @y, ui < ugug,
5 . 2 2
<—Ju e R] : u; < T3xy, uz < ust,
ui < st 2 < wugus,

e Conclude that ¢t < Hle 13/5 can be rewritten as a big 12 x 12—LMI.
e By using a similar construction, rewrite ¢ < H?:l 219 as a big LMI.

i

5. Let (w,u, L) € Ay x R™ x R™*™ be such that

O ("5 gy ) =0

(’LZ) L”‘:ui (Vi:l,...,m)
(i) Lij=0 (V1<i<j<m)

e We assume that w > 0 for simplicity. Set J = L Diag(u)~/2. Show that M (w) = JJT.
e Deduce that det M(w) > (det J)? = []\", u; (even if some u; = 0).

e Conclude with an SDP formulation for D—optimality (hint: use the construction of exercise 4).
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