Lecture #9 Notes Summary

SDP formulations of some optimal experimental design problems

The SDP approach to compute optimal designs

In this lecture, we consider the Φ_K -optimal design problem over a finite regression range $\Xi \equiv \{x_1, \ldots, x_s\}$. Recall that in this situation, a design is simply a vector of weights $\boldsymbol{w} \in \Delta_s := \{\boldsymbol{w} \ge 0 : \sum_{i=1}^s w_i = 1\}$, and we write \boldsymbol{a}_i instead of $\boldsymbol{a}(\boldsymbol{x}_i)$:

$$\max_{\boldsymbol{w}\in\Xi(K)} \Phi\Big(M_K(\boldsymbol{w})\Big),\tag{1}$$

where $M_K(\boldsymbol{w}) := \left(K^T \left(\sum_{i=1}^s w_i \boldsymbol{a}_i \boldsymbol{a}_i^T\right)^T K\right)^{-1}$ and $\boldsymbol{w} \in \Xi_K$ means that $M(\boldsymbol{w}) = \sum_i w_i \boldsymbol{a}_i \boldsymbol{a}_i^T$ contains the columns of K in its range, so $M_K(\boldsymbol{w})$ is well defined.

In fact, it is possible to extend the definition of M_K by continuity to designs $\boldsymbol{w} \notin \Xi(K)$, in which case $M_K(\xi)$ is singular.

Theorem 1. Let K be a $m \times k$ -matrix of full column rank, and let p < 1. Assume that the vectors a_1, \ldots, a_s span the columns of K. Then, a $(\Phi_p)_K$ -optimal design exists and must be solution of the following concave maximization problem:

$$\max_{\boldsymbol{w}\in\Delta_s} \quad \Phi_p\Big(M_K(\boldsymbol{w})\Big). \tag{2}$$

Moreover if $p \neq -\infty$ and w and w' are optimal, then $M_K(w) = M_K(w') \succ 0$.

Proof. Let \boldsymbol{w} be a solution of Problem (2). We show that that $M := M_K(\boldsymbol{w}) \succ 0$, which implies $\boldsymbol{w} \in \Xi(K)$, and hence \boldsymbol{w} is a $(\Phi_p)_K$ -optimal design. This is clear for $p \leq 0$, because $\Phi_p(X) = 0$ for all singular matrices X, and by assumption a non-singular design exists. For $0 , we use the duality theorem: there exists a matrix <math>N \succeq 0$ such that $D = K^T N K$ satisfies

$$\Phi_p(M)\Phi_p^{\star}(D) = \langle M, D \rangle = 1.$$

This implies $\Phi_p^*(D) > 0$, and hence $D \succ 0$ because $\Phi_p^* = m\Phi_q$ for a $-\infty < q < 0$, and $\Phi_q(X) = 0$ for singular matrices X. Now, let z be a vector such that $z^T M z = 0$. We show by contradiction that z = 0, from which the conclusion $M \succ 0$ follows. If $z \neq 0$ we have:

$$\Phi_p(M)\Phi_p^{\star}(D+\boldsymbol{z}\boldsymbol{z}^T) \leq \langle M, D+\boldsymbol{z}\boldsymbol{z}^T \rangle = \langle M, D \rangle = \Phi_p(M)\Phi_p^{\star}(D) < \Phi_p(M)\Phi_p^{\star}(D+\boldsymbol{z}\boldsymbol{z}^T),$$

where the first inequality follows from the definition of Φ_p^* , and the second inequality comes from the strict monotonicity (w.r.t. \leq) of $\Phi_p^* = m\Phi_q$ over \mathbb{S}_{++}^m (which we admit). Finally, the unicity of the optimal information matrix $M_k(\boldsymbol{w})$ is a consequence of the strict concavity of Φ_p over \mathbb{S}_{++}^m for all $p \in (-\infty, 1)$. \Box

In this lecture, we show that Problem (2) can be reformulated as an SDP for $p = -\infty$ (E-optimality) and p = -1 (A-optimality). The case p = 0 (D-optimality) is treated in exercises. In fact, it is possible to give an SDP formulation of Problem (2) for all rational values of $p \leq 1$.

A-optimality

Recall that an A_K -optimal design must minimize trace $K^T M(\boldsymbol{w})^- K$ over $\Xi(K)$.

If $\boldsymbol{w} \in \Xi(K)$, the (extended) Schur complement lemma gives

$$\begin{pmatrix} M(\boldsymbol{w}) & K \\ K^T & U \end{pmatrix} \succeq 0 \Longleftrightarrow U \succeq K^T M(\boldsymbol{w})^- K.$$

This suggests to consider the following SDP:

$$\begin{array}{ll} \min_{\boldsymbol{w},U} & \text{trace } U \\
s.t. & \left(\begin{array}{cc} M(\boldsymbol{w}) & K \\ K^T & U \end{array}\right) \succeq 0 \\
& \boldsymbol{w} \in \Delta_s
\end{array} \tag{3}$$

The $(m + k) \times (m + k)$ matrix inequality is linear in \boldsymbol{w} and in the entries of $U \in \mathbb{S}^k$, so (3) is an SDP indeed.

Proposition 2. \boldsymbol{w} is A_K -optimal if and only if there is a matrix U such that (U, \boldsymbol{w}) is an optimal solution of (3).

Proof. We first show that $\boldsymbol{w} \in \Xi(K)$ for all feasible (\boldsymbol{w}, U) . Indeed, if the LMI is satisfied, the big $(m + k) \times (m + k)$ can be expressed as $[A, B]^T[A, B]$ for some matrices A, B of respective sizes $(m + k) \times m$ and $(m + k) \times k$. So we have im $K = \operatorname{im} A^T B \subseteq \operatorname{im} A^T = \operatorname{im} A^T A = \operatorname{im} M(\boldsymbol{w})$, which shows $\boldsymbol{w} \in \Xi(K)$. So we have $U \succeq K^T M(\boldsymbol{w})^- K$, which implies trace $U \ge \operatorname{trace} K^T M(\boldsymbol{w})^- K$.

Conversely, let \boldsymbol{w}^* be A_K -optimal, and set $U^* = K^T M(\boldsymbol{w}^*)^- K$. Note that the pair (\boldsymbol{w}^*, U^*) is feasible, so the optimal value of the problem must be trace $K^T M(\boldsymbol{w}^*)^- K$. This concludes the proof.

E-optimality

Proposition 3. Let $M \in \mathbb{S}^m$. Then,

$$M \succeq \lambda I_m \Longleftrightarrow \lambda \le \lambda_{min}(M).$$

Proof. Recall the following characterization of the smallest eigenvalue of a symmetric matrix M:

$$\lambda_{min}(M) := \inf_{\boldsymbol{x} \neq \boldsymbol{0}} \frac{\boldsymbol{x}^T M \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}}.$$

Now we write

$$\begin{split} M \succeq \lambda I_m \iff & \forall \boldsymbol{x} \in \mathbb{R}^m, \quad \boldsymbol{x}^T M \boldsymbol{x} \ge \lambda \boldsymbol{x}^T \boldsymbol{x} \\ \iff & \lambda \le \inf_{\boldsymbol{x} \neq 0} \frac{\boldsymbol{x}^T M \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}} = \lambda_{min}(M). \end{split}$$

This suggests the following SDP for E-optimality:

$$\begin{array}{ll}
\max_{\boldsymbol{w},\lambda} & \lambda \\
s.t. & M(\boldsymbol{w}) \succeq \lambda I_m \\
& \boldsymbol{w} \in \Delta_s
\end{array}$$
(4)

Proposition 4. w is E-optimal if and only if there is a scalar λ such that (w, λ) is an optimal solution of (4).

Proof. We recall that an *E*-optimal design maximizes $\lambda_{min}(M(\boldsymbol{w}))$ over Δ_s . If $(\boldsymbol{w}, \lambda)$ is feasible, then we know from the previous proposition that $\lambda \leq \lambda_{min}(M(\boldsymbol{w}))$. Conversely, let \boldsymbol{w}^* be *E*-optimal and set $\lambda^* = \lambda_{min}(M(\boldsymbol{w}^*))$. The pair $(\boldsymbol{w}^*, \lambda^*)$ is feasible, and so it must be optimal for the SDP (4). \Box

Remark 5. The SDP (4) can actually be extended to an SDP-formulation for E_K -optimality, cf. Exercise 3.

Exercises

- 1. Recall the Elfving theorem for c-optimality, and show that a c-optimal design can be computed by *linear programming* (for the case of a finite design space \mathcal{X}).
- 2. Show that the dual problem (with respect to the polar information function Φ^*) for *D*-optimality is equivalent to

$$\begin{array}{ll} \max_{N} & \det N \\ s.t. & \boldsymbol{a}_{i}^{T} N \boldsymbol{a}_{i} \leq 1 \qquad (\forall i \in \leq 1, \ldots, m) \\ & N \succeq 0 \end{array}$$

Give a geometrical interpretation to this problem

- 3. Show that the dual problem (with respect to the polar information function Φ^*) for E_K -optimality can be written as an SDP. Form the Lagrangian dual of this SDP and make a change of variables to find an SDP formulation of the E_K -optimal design problem.
- 4. SDP-representation of a geometric mean.

In this exercise, we show (by some examples) that inequalities of the form $t \leq \prod_{i=1}^{m} x_i^{1/m}$ are equivalent to an LMI (with respect to the variables t, u_1, \ldots, u_m).

- Let $u_1, u_2 \ge 0$. Show that the inequality $t^2 \le u_1 u_2$ can be rewritten as a 2×2 -LMI.
- Let $x \in \mathbb{R}^5_+$. Show that

$$t^{5} \leq x_{1}x_{2}x_{3}x_{4}x_{5} \iff t^{8} \leq x_{1}x_{2}x_{3}x_{4}x_{5}t^{3}$$
$$\iff \exists \boldsymbol{u} \in \mathbb{R}^{5}_{+} : \begin{cases} u_{1}^{2} \leq x_{1}x_{2}, & u_{4}^{2} \leq u_{1}u_{2}, \\ u_{2}^{2} \leq x_{3}x_{4}, & u_{5}^{2} \leq u_{3}t, \\ u_{3}^{2} \leq x_{5}t, & t^{2} \leq u_{4}u_{5}, \end{cases}$$

- Conclude that $t \leq \prod_{i=1}^{5} x_i^{1/5}$ can be rewritten as a big 12×12 -LMI.
- By using a similar construction, rewrite $t \leq \prod_{i=1}^{9} x_i^{1/9}$ as a big LMI.

5. Let $(\boldsymbol{w}, \boldsymbol{u}, L) \in \Delta_s \times \mathbb{R}^m \times \mathbb{R}^{m \times m}$ be such that

(i)
$$\begin{pmatrix} M(\boldsymbol{w}) & L \\ L^T & \text{Diag}(\boldsymbol{u}) \end{pmatrix} \succeq 0$$

(ii) $L_{ii} = u_i \quad (\forall i = 1, \dots, m)$
(iii) $L_{ij} = 0 \quad (\forall 1 \le i < j \le m)$

- We assume that $\boldsymbol{u} > \boldsymbol{0}$ for simplicity. Set $J = L \operatorname{Diag}(\boldsymbol{u})^{-1/2}$. Show that $M(\boldsymbol{w}) \succeq JJ^T$.
- Deduce that det $M(\boldsymbol{w}) \ge (\det J)^2 = \prod_{i=1}^m u_i$ (even if some $u_i = 0$).
- Conclude with an SDP formulation for *D*-optimality (*hint*: use the construction of exercise 4).