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Lecture #13 Notes Summary

Classical algorithms for the computation of optimal designs

Besides the semidefinite programming approach for the computation of approximate optimal designs,

other algorithms exist (and have been developped earlier !). The objective of this lecture is to review some

features of these algorithms, for the computation of exact and approximate optimal designs.

We will focus on the case of D−optimality, but these algorithms can often be adapted to the case of

A−optimality (and sometimes E−optimality but this is harder, because λmin is not differentiable, only

sub-differentiable).

Fedorov-Wynn algorithm

Recall the Kiefer-Wolfowitz equivalence theorem: an approximate design is D−optimal iff for all x in X ,

a(x)TM(ξ)−a(x) ≤ m.

The Fedorov-Wynn (FW) algorithm tries to find a design ξ satisfying this property. It starts with an

arbitrary feasible design ξ0 ∈ Ξ := Ξ(Im), for example a design with weights wi = 1
m on points xi such

that the regression vectors a(x1), . . . ,a(xm) are independent. At the kth step of the algorithm, the current

design is ξk, and the goal is to identify a point x(k) ∈ X that solves

max
x∈X

a(x)TM(ξk)
−a(x) (1)

Note that Problem (1) can be complicated to solve, but in practice the set X is discretized as {x1, . . . ,xs},
so that Problem 1 reduces to a maximum over a finite set. Then, the design is updated by moving in the

direction of x(k):

ξk+1 = (1− αk)ξk + αkξ(x
(k)), (2)

where ξ(x) denotes the design with 100% of the weight concentrated at x. For particular step sizes αk,

it is known that this process converges to the D−optimal design. We are going to prove this for the Fedorov

rule

αk :=
dk −m

m(dk − 1)
, (3)

where dk := x(k)M(ξk)
−x(k). In fact, Wynn proved that the above algorithm converges to the D−optimal

design for all sequences of step lengths αk satisfying limk→∞ αk = 0 and
∑∞

k αk = +∞.

The proof relies on the following lemma.

Lemma 1 (Matrix Determinant Lemma). Let A be an invertible matrix of size n × n, and let u and v

be two vectors of size n. Then,

det(A+ uvT ) = detA (1 + vTA−1u).

Proof. The proof in the case A = I follows from(
I 0

vT 1

)(
I + uvT u

0T 1

)(
I 0

−vT 1

)
=

(
I u

0T 1 + vTu

)
.

Then, for an invertible matrix A we have

det(A+ uvT ) = detA det(I +A−1uvT ) = detA (1 + vTA−1u).
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Proposition 2. Let ξk ∈ Ξ. The Fedorov rule (3) defines optimal step sizes, in the sense that αk

maximizes detM(ξk+1).

Proof. We can write M(ξk+1) as

M(ξk+1) = (1− αk)

(
M(ξk) +

αk

1− αk
a(xk)a(xk)

T

)
.

This form makes it possible to use the matrix determinant lemma:

detM(ξk+1) = (1− αk)
m

(
1 +

αk

1− αk
dk

)
detM(ξk),

where dk has been set to a(x(k))M(ξk)
−a(x(k)). We know from the KW theorem that dk ≥ m (with equality

iff ξk is D−optimal). So the step size αk defined in (3) lies in the interval [0, 1], and it is easy to check that

αk maximizes detM(ξk+1)M(ξk)
−1 by differentiating the expression (1− αk)

m
(
1 + αk

1−αk
dk

)
with respect

to αk.

We can now prove the following theorem:

Theorem 3. Let ξ0, ξ1, . . . , ξk, . . . be a sequence of designs generated by the FW algorithm, with ξ0 ∈ Ξ and

step sizes αk following rule (3). Then, ξk ∈ Ξ for all k, the sequence of D−criterions is nondecreasing:

ΦD

(
M(ξ0)

)
≤ ΦD

(
M(ξ1)

)
≤ ΦD

(
M(ξ2)

)
≤ . . . ,

and (ξk) converges to a D−optimal design.

Proof. The new design ξk+1 is the barycenter of 2 designs so it is a design. Its feasibility (ξk+1 ∈ Ξ) is a

consequence from the fact that the sequence
(
detM(ξk)

)
is nondecreasing, which follows from Proposition 2.

So, the only thing to prove is that (ξk) converges to an optimal design. The sequence
(
detM(ξk)

)
is

nondecreasing and is bounded from above by D∗ = detM(ξ∗), where ξ∗ is a D−optimal design, so it has

a limit. Assume ad absurbium that limk→∞ detM(ξk) = D < D∗. This implies liminfk→∞ dk = m + δ for

some δ > 0 (otherwise, there would exist a subsequence of designs such that dk → m and detM(ξk) ̸→
D∗, which would contradict the KW theorem). Now, substituting the value of αk in the expression of

detM(ξk+1)M(ξk+1)
−1, we find (after some simplifications):

detM(ξk+1)M(ξk+1)
−1 = (1− αk)

m

(
1 +

αk

1− αk
dk

)
=

(
d

m

)m(
m− 1

d− 1

)m−1

.

The log of this expression can be written as f(d) − f(m), where f : x 7→ m log x − (m − 1) log(x − 1) is an

increasing function of x for x ≥ m. This shows

log detM(ξk+1)− log detM(ξk+1) ≥ f(m+ δ)− f(m) > 0,

and detM(ξk) → ∞. Contradiction.

Remark 4. In practice, this algorithm has a rather slow rate of convergence. But several techniques can be

used to accelerate it, without loosing the theoretical convergence result. For example, one can remove weight
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from the support point xi of ξk minimizing a(xi)
TM(ξk)

−a(xi), or merge close support points. There is

also an important result which allows to remove points that cannot support the optimal design, which yields

a very important speed-up. We’ll prove this result in exercises:

Theorem 5 (Harman & Pronzato). Let ξ ∈ Ξ, and define ϵ := maxx∈X a(x)TM(ξ)−a(x) − m. If a

point x ∈ X is such that

a(x)TM(ξ)−a(x) < m

(
1 +

ϵ

2
−
√
ϵ(4 + ϵ− 4/m)

2

)
,

then x cannot belong to the support of any D−optimal design.

Heuristics for the construction of exact optimal designs

Many heuristics have been proposed to construct exact optimal designs. Besides the rounding heuristics

based on the computation of an approximate optimal design (which are known to be very efficient when

the total number of trials N is large), many are based on neighbourhood searches, such as the KL-exchange

procedure of Aktinson & Donev. We do not enter the details of these procedures (basically, any standard

heuristic that explore the neighbourhood of some solutions, such as simulated annealing, can be used), but

we show below that it is possible to evaluate efficienty the increase of ΦD when the design point i is replaced

by the design point j.

The basic idea is to use the Sherman-Morrison formula, which explain how to compute rank-one updates

of a matrix inverse. Note that this formula can also be used to make an efficient implementation of the FW

algorithm for approximate designs.

Lemma 6 (Sherman-Morrison formula). Let A be an invertible matrix of size n× n, and let u and v be

two vectors of size n. Then,

(A+ uvT )−1 = A−1 − (A−1u)(A−1v)T

1 + vTA−1u
.

Proof. let X = A+ uvT , Y = A−1 − (A−1u)(A−1v)T

1+vTA−1u
, and simply check that XY = Y X = I.

Proposition 7. Let ξ ∈ ΞN be a feasible exact design of size N , and let ξ′ denote the design obtained

by replacing one observation at design point xi by one observation at xj . Let M = M(ξ), M = M(ξ′),

ai = a(xi), aj = a(xj), di = aT
i M

−ai, dj = aT
j M

−aj , and dij = aT
i M

−aj. Then,

detM ′ = detM
(
(1 + dj)(1− di) + d2ij

)
.

Proof. Let M+ = M + aja
T
j , so that M ′ = M+ − aia

T
i . From the matrix determinant lemma, we have

detM+ = detM (1 + dj) and detM ′ = detM+ (1 − aT
i (M

+)−1aT
i ). Now we use the Sherman-Morrison

formula:

(M+)−1 = M−1 − (M−1aj)(M
−1aj)

T

1 + dj
,

so that aT
i (M

+)−1aT
i = di −

d2
ij

1+dj
. We can now obtain the formula of the proposition:

detM ′ = detM+ (1− aT
i (M

+)−1aT
i ) = detM (1 + dj)(1− di +

d2ij
1 + dj

) = detM
(
(1 + dj)(1− di) + d2ij

)
.
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Exercises

Proof of Theorem 5. Let ξ ∈ Ξ and ξ∗ be a D−optimal design. Define M = M(ξ),M∗ = M(ξ∗), and

H = M−1/2M∗M−1/2. Let x∗ be a support point of ξ∗, and define y = H−1/2M−1/2a(x∗).

1. What is the value of a(x∗)T (M∗)−1 a(x∗) ?

2. Compute yTy, yTHy, and deduce that

a(x∗)TM−1a(x∗) ≥ λ1m,

where λ1 is the smallest eigenvalue of H.

To prove the theorem, we must find a lower bound of λ1, which does not depend on M∗.

3. Set ϵ := maxx∈X a(x)TM(ξ)−a(x)−m. Show that traceH−1 ≤ m and traceH ≤ m+ ϵ.

4. Deduce that λ1 is bounded from below by the optimal value of

min λ1

s.t.

m∑
i=1

λi ≤ m+ ϵ (4)

m∑
i=1

λ−1
i ≤ m

5. (harder) Use an argument involving the Lagrangian of Problem (4) to show that at optimality, we must

have λ2 = λ3 = . . . = λm.

6. You can now compute the optimal value of Problem (4). Show that this reduces to solving a system of

2 equations for the variables λ1 and λ2. You can verify that the smallest solution λ1 of this system is

λ1 =

(
1 +

ϵ

2
−
√

ϵ(4 + ϵ− 4/m)

2

)
.

The theorem follows.
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