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Abstract—We explore the dynamics of a one-dimensional chain of paramagnetic colloidal particles in a peri-
odic potential. The model accounts for a constant external force, along with magnetic dipolar attraction and
hard-core repulsive interactions between particles. Numerical simulations reveal the emergence of a traveling
kink – a chain defect propagating along the chain. We show that the kink emerges beyond a critical force
threshold and identify parameter regimes corresponding to distinct dynamic modes such as a pinned kink, a
running kink, a cluster kink, and chain drift.
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INTRODUCTION

Studying the dynamics of interacting particles in
confined (or constrained) geometries is a central
problem that arises across various fields of science and
technology [1]. A striking example in medical applica-
tions is the need for targeted delivery of active agents or
drugs to a prescribed location [2]. This issue is also rel-
evant in the context of the fundamental problem of
friction: when two surfaces slide relative to one
another, the interaction of their microscopic surface
irregularities (i.e., roughness) determines macro-
scopic friction [3]. A similar problem can arise when
interacting colloidal particles slide over a nonuniform
landscape [4].

Colloidal particles, capable of moving through dif-
ferent geometric or energetic landscapes under the
influence of external forces, represent a broad class of
intensively studied systems. In the stationary state,
each particle tends to occupy a position corresponding
to a potential minimum. When the number of particles
exceeds the number of minima, some particles are left
without enough free space. They squeeze between
other particles and displace their neighbors to create
sufficient space (see Fig. 1a), leading to the formation
of defects. The application of an external force can set
these defects in motion (see Fig. 1b). Additionally,
various interactions between particles can influence
the dynamics of such defects. The localized structure

(defect) that propagates through the system is typically
referred to as a soliton or a running kink.

In colloidal systems, similar structures were first
observed in an experiment involving a two-dimen-
sional potential, where the emergence of both kinks
(compactions) and anti-kinks (vacancies) was demon-
strated [5]. The appearance of a kink along a linear
array of particles was also observed experimentally in a
similar quasi-one-dimensional system [6]. Addition-
ally, we note the ring geometry, in which similar
structures—referred to as solitons—have recently
been predicted theoretically [7] and observed experi-
mentally [8].

In the present study, we focus on a chain of finite-
size colloidal particles placed in a one-dimensional
periodic potential. We will assume that a constant
external force acts on the system, and that the particles
possess paramagnetic properties, allowing them to
interact with each other through dipole-dipole inter-
actions. The aim of this work is to construct a simple
theoretical model that enables the emergence of a
kink, and to analyze other discrete structures that can
arise in this system.

MODEL OF COLLOIDAL 
PARTICLE DYNAMICS

Consider colloidal particles of spherical shape sus-
pended in a viscous liquid. By colloidal particles, we
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Fig. 1. One-dimensional chain of particles with diameter d in a periodic landscape of spatial period λ: defect formation due to an
“extra” particle (a); kink excitation in the presence of an external force fE (landscape tilt) (b).
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refer to particles with sizes ranging from hundreds of
nanometers to several micrometers. For example, in
the experiments [6, 9], magnetic particles with a diam-
eter of 3 μm were used. In the one-dimensional case,
the behavior of each individual particle, with coordi-
nate x(t), is governed by the following equation
neglecting inertia:

(1)

where ζ is the viscous friction coefficient, which, in
the Stokes approximation, has the form ζ = 6πηa
(here, η is the dynamic viscosity of the f luid and a is
the radius of the particle). On the right-hand side in

, we include all forces acting on the particle,
except for friction: both external forces and interparti-
cle interaction forces. We restrict ourselves to building
a minimal model, neglecting thermal f luctuations.

Let us account for the external forces acting on the
particle. As mentioned above, a periodic energy land-
scape can be created using a linear array of optical
tweezers placed at equal distances [6, 9]. Each optical
tweezer individually induces a potential well with a
Gaussian profile [9, 10]. When the traps are arranged
closely enough to allow partial overlap of neighboring
potential wells, the resulting superposition of the opti-
cal tweezer array is well approximated by a harmonic
potential [9] (see also Fig. 1a):

(2)

where the amplitude UL is determined by the charac-
teristics of the optical tweezers, k = 2π/λ is the wave
number, and the spatial period λ defines the distance
between the centers of the potential wells. The force
exerted on the particle by the landscape is given by:

(3)

ζ =( ) ( , ),dx t F x t
dt

( , )F x t

= −T L( ) (1 cos ),U x U kx

= − = −T
T L

( )( ) sin( ).dU xF x f kx
dx
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For convenience, we introduce the notation fL =
ULk for the amplitude of the force characterizing the
periodic landscape. The introduction of a constant
external force fE, acting perpendicular to the humps of
the optical landscape, is equivalent to adding a poten-
tial term –fEx. In this case, the magnitude of fE deter-
mines the tilt of the landscape, breaking its spatial
symmetry. Thus, in the presence of an external force,
the energy landscape along which the particles move is
defined by the full potential (Fig. 1b):

(4)

A similar situation arises in a system with a mag-
netic substrate [11].

Without interparticle interactions, the equation of
motion of a colloidal particle (1) in a potential from
Eq. (4) takes the form:

(5)

where the force is given by F(x) = –dU(x)/dt = FT(x) + fE.
By passing to dimensionless coordinate and time

variables,  = x/λ,  = tfL/(λζ), the equation of
motion (5) transforms into the well-known Adler
equation [12]:

(6)

where f = fE/fL is the dimensionless external force. For
brevity, the tilde “∼” notation for dimensionless vari-
ables will be omitted in the following.

The dynamics of the particle are clearly determined
by the ratio of the forces characterizing the landscape
amplitude and the external influence, fL and fE. The
particle becomes “stuck” in the potential well when

= − −L
E( ) (1 cos ) .fU x kx f x

k

ζ = −E L sin ,dx f f kx
dt

�x �t

= − π�

�

�

sin(2 ),dx f x
dt
: PHYSICS  Vol. 89  No. 7  2025



1088 KOUROV et al.
f < 1 (fE < fL). In this case, the particle’s position
reaches a limit value:

(7)

which is a stationary solution of Eq. (6). In the oppo-
site case, f > 1 (fE > fL), no equilibrium exists, and the
particle continuously slides down along the landscape
with a velocity V(t). The particle’s drift velocity V is
obtained by time-averaging V(t) and exhibits a square-
root dependence on the external force [9]:

(8)

To simplify the analysis of defect dynamics, we
assume that before introducing an “extra” particle,
each local minimum of the potential is occupied by
exactly one particle. In the absence of interactions,
such an initial configuration should remain stationary.
Therefore, in the following, we will primarily focus on
the case f < 1.

Next, we account for interactions that may arise in
a chain of particles with paramagnetic properties. We
assume that these particles are weakly magnetized in
an external magnetic field, so that each particle pos-
sesses an instantaneously induced magnetic moment
[13] (in the more general case, the relaxation time is
finite [14]):

(9)

where V is the volume of the particle,  is the effec-
tive magnetic susceptibility, and  is the external
magnetic field. The interaction between a pair of par-
ticles with magnetic moments  and  is determined
by the energy of the dipole-dipole (superscript “dd”)
interaction [15]:

(10)

where μ0 is the magnetic permeability of vacuum,
 is the vector connecting the centers of the

particles,  is the corresponding unit vector,
and  is the distance between the particles. In
the case of identical dipoles, , the expres-
sion for the potential energy (11) simplifies signifi-
cantly:

(11)

where ϑ is the angle between the magnetic field and
the axis connecting the particles. It is known that the
critical angle ϑc = 54.7° marks the boundary between
regions of attractive and repulsive interactions. For
ϑ > ϑc, particle repulsion occurs, while for ϑ < ϑc, par-
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ticle attraction takes place. When the field is oriented
along a linear sequence of particles [6]  (ϑ =
0), the interaction potential is purely attractive:

(12)

which contributes to the formation of chains [16].
Measuring the forces in units of fL, the dimensionless
dipole-dipole interaction force exerted by particle j on
particle i, corresponding to expression (12), reads:

(13)

where xi and xj are the coordinates of the ith and
jth particles, respectively, and rij = |xi – xj| is the dis-
tance between them. Here,  is a dimensionless
parameter characterizing the strength of this interac-
tion. A value of zero disables the dipole-dipole inter-
action.

There are also short-range repulsive forces between
the particles in the chain. These forces act at very short
distances and arise because the particles have a finite
size and cannot overlap. Depending on the specific
numerical implementations, various authors apply
different smoothing modifications of the hard-sphere
model. In this work, we use the following type of
repulsive force (denoted by the superscript ‘hc’ for
‘hard core’) [17]:

(14)

where  is the cutoff distance corresponding
to the effective particle diameter, and ε is a dimension-
less parameter characterizing the strength of this inter-
action. This potential is derived from the Lennard-
Jones potential [18] (or more rigid modifications of it
[19]) by shifting and truncating the attractive tail. To
better model the real situation, we use higher powers
in the potential (48–24 instead of the standard 12–6),
which results in a steeper repulsion.

Taking all these interactions into account, the
equation describing the dynamics of N interacting
particles in a one-dimensional chain takes the fol-
lowing form:

(15)

NUMERICAL METHOD
To model the dynamics of a chain of N particles, we

solve a system of first-order differential equations (15).
We perform the numerical integration using the Euler
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Fig. 2. Coordinates of 20 particles in the chain as a function of time, showing different behaviors of discrete structures: running
kink, C = 0.015, f = 0.5 (а); clustering, C = 0.05, f = 0.5 (b); particle drift, C = 0.015, f = 1.01 (c).
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method with a time step of 0.001. We carry out the
simulations for N = 9 and N = 11 (tests) and N = 20
(main simulations).

In the numerical tests, we initially place the parti-
cles equidistantly. For the main simulations, we set up
a different initial configuration, placing all particles at
equal distances from each other, except for the first
three particles. Specifically, we set the coordinates of
the particles as xi = i, with the first three particles posi-
tioned at –0.2, 0.5, and 1.2, respectively. In this way,
we introduce an extra particle into the chain, with
each particle initially occupying the local minimum of
the potential at f = 0, creating a defect near the end of
the chain.

In all simulations, we set the diameter of the parti-
cles to d = 0.5. The values of other dimensionless
parameters of the problem—the external force f, the
strengths of the dipole-dipole attraction force , and
the short-range repulsion force ε – were varied over a
wide range depending on the objectives of the study.

As a test, we analyze the dynamics of a chain of
particles with each type of interaction separately. In
the first test, we integrate Eqs. (15) for a system of
9 particles, considering only dipole-dipole interac-
tions, without the landscape and short-range repul-
sion. We show that the particles repel each other more
strongly the farther they are from the center of the
chain. This behavior occurs because the forces from
opposite neighbors are more strongly balanced for the
central particles, while they remain almost uncom-
pensated for the particles at the ends of the chain.
Such behavior is well known and has been previously
observed in a similar one-dimensional system [20].

We perform another test to analyze the realization
of short-range interactions that account for the finite
particle size. In a system of 11 particles with dipole-
dipole attraction and short-range repulsive forces, and

С
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without the influence of the landscape, we show that
the particles initially attract each other, forming small
clusters, which then merge into a single linear cluster
of touching particles.

RESULTS AND DISCUSSION

We carry out the main simulations at parameter
values C = 0.015, ε = 0.25, f = 0.5, and values close to
them. With these values of interaction and external
force parameters, we show that a running kink
emerges, closely resembling the structure observed in
experiments with a one-dimensional chain of colloidal
particles in a periodic landscape [6]. Figure 2a illus-
trates the time-dependent dynamics of a system of
20 particles under these parameters. The plot reveals a
running defect of three particles propagating along the
chain. This picture qualitatively reproduces the behav-
ior of the particles in the experiment. However, we
emphasize that the perfectly regular nature of the tra-
jectories in Fig. 2a results from the fact that the
numerical model neglects the thermal f luctuations
that are inevitably present in the experiment.

At distinct values of the parameters, we observe
different regimes of the system’s behavior. As the
external force f or the intensity of interparticle attrac-
tion, C, decreases, we detect the kink sticking (or pin-
ning) to the landscape. In this regime, the extra parti-
cle introduced at the initial time sticks to its neighbors,
and the defect remains completely immobile. That is,
the kink stays stationary and fails to propagate, despite
the presence of a nonzero external force.

As the parameter C increases, the interaction
between the particles becomes so strong that the parti-
cles overcome the potential barrier given by the land-
scape and form clusters. Instead of the motion of a sin-
gle particle through the system (a single kink), we
: PHYSICS  Vol. 89  No. 7  2025
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Fig. 3. Dependence of the kink velocity Vk on the external force f at different values of C (a). Curves 1, 2, and 3 correspond to
C = 0, 0.02, 0.04. Dependence of the critical external force fc on the interaction strength C (b).
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observe the motion of a whole cluster of particles
(a kink of 2, 3, or 4 particles), as illustrated in Fig. 2b.
This behavior resembles the structures observed in
ring geometry [7, 8]. However, it is worth emphasizing
a significant difference: in contrast to the linear geom-
etry considered here, the ring system lacks long-range
interactions.

With a significant increase in the external force f,
the system departs from the initial equilibrium state of
the chain, where each particle occupies a local mini-
mum of the potential. Thus, when f > 1, we observe
drift of the entire chain, as illustrated in Fig. 2c.

To clarify the details of the origin of the kink
motion, we vary the parameter values between those cor-
responding to the stationary state and the running kink
and compute the average kink velocity Vk. Figure 3a
shows plots of the kink velocity dependence on the
external force f for different values of the interparticle
attraction strength C. As we can see, the kink emerges
in a threshold fashion: there is a critical value of the
external force fc at which kink detachment (depinning)
occurs. The kink, which remains stationary for f < fc,
begins to move beyond f = fc. Afterwards, the kink
velocity Vk increases as the external force f is raised.
Interestingly, the threshold value, fc = fc(С), rises with
an increase in dipole-dipole attraction strength С, see
Fig. 3b.

Note that the parameter ε has little influence on
the dynamics of the chain, as expected from the model
approximating the hard-sphere model. The repulsion,
which only acts at extremely short distances between
particles, is negligible and does not significantly affect
the particle dynamics compared to the long-range
dipole-dipole attraction. Therefore, in our control
BULLETIN OF THE RUSSIAN ACADE
simulations, we vary the values of the parameters f and
C without altering ε.

We summarize the variety of modes observed in the
studied system onto the parameter plane (f, C), see
Fig. 4. The map reveals the four types of system
dynamics described above: a pinned kink, a running
kink, dynamical clustering (a running kink-like struc-
ture formed by more than three particles), and drift of
the entire chain.

CONCLUSIONS
We have studied the behavior of a one-dimensional

chain of paramagnetic particles placed in a periodic
potential landscape, under the influence of a constant
external force that tilts the landscape. We constructed
a model describing the overdamped dynamics of these
particles, accounting for the following interparticle
interaction forces: long-range dipole-dipole attraction
arising from the induced magnetic moments of the
particles along the chain, and short-range hard-core
repulsion due to the finite size of the particles. The
results were obtained by numerically solving the equa-
tions over a wide range of control parameters.

In the absence of interactions, the particle dynam-
ics are governed by the Adler equation, which admits
an analytical solution. Depending on the strength of
the external force, the particles in the chain either
occupy a stationary position (i.e., particle pinning or
sticking) or drift with an average velocity that follows a
square-root-law dependence on the external force.
The incorporation of various interactions results in
significant changes to the system’s dynamics.

The interplay of the periodic potential, external
constant force, and interparticle interactions gives rise
MY OF SCIENCES: PHYSICS  Vol. 89  No. 7  2025
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Fig. 4. Map of different modes: ( ) stationary (pinned) kink, ( ) running kink, ( ) cluster kink, ( ) chain drift.
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to intriguing system behavior. At the initial moment,
we introduce an extra particle into the chain, where
particles are initially positioned at equal distances in
the minima of the potential. This setup replicates the
conditions of experiments [6], in which the propaga-
tion of a localized defect along the chain, known as a
running kink, was observed. Our simulations confirm
the existence of this structure: at certain parameter
values, the chain dynamics qualitatively match the
known experimental results.

Apart from the running kink, we also detect other
running kink-like cluster structures when the intensity
of the dipole-dipole attraction and the external force
change. These structures, formed from four or more
particles, resemble those studied in [7, 8]. By perform-
ing simulations over a wide range of parameter values,
we identify the conditions for observing different
dynamic regimes in the system: a stationary kink, a
running kink, a cluster kink, and chain drift.
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