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Rapid onset of molecular friction in liquids bridging
between the atomistic and hydrodynamic pictures
Arthur V. Straube 1,2, Bartosz G. Kowalik3, Roland R. Netz 3 & Felix Höfling 1,2✉

Friction in liquids arises from conservative forces between molecules and atoms. Although

the hydrodynamics at the nanoscale is subject of intense research and despite the enormous

interest in the non-Markovian dynamics of single molecules and solutes, the onset of friction

from the atomistic scale so far could not be demonstrated. Here, we fill this gap based on

frequency-resolved friction data from high-precision simulations of three prototypical liquids,

including water. Combining with theory, we show that friction in liquids emerges abruptly at a

characteristic frequency, beyond which viscous liquids appear as non-dissipative, elastic

solids. Concomitantly, the molecules experience Brownian forces that display persistent

correlations. A critical test of the generalised Stokes–Einstein relation, mapping the friction of

single molecules to the visco-elastic response of the macroscopic sample, disproves the

relation for Newtonian fluids, but substantiates it exemplarily for water and a moderately

supercooled liquid. The employed approach is suitable to yield insights into vitrification

mechanisms and the intriguing mechanical properties of soft materials.
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Molecular friction is a key ingredient for dynamic pro-
cesses in fluids: it limits diffusion, governs dissipation,
and enables the relaxation towards equilibrium. In a

liquid environment, the friction experienced by solvated mole-
cules and nanoprobes exhibits a delayed response to external
stimuli, indicating non-Markovian dynamics1–4. Such memory is
found on sub-picosecond up to microsecond scales; it has
repercussions on macromolecular transition rates5–7 and is
manifest in the visco-elastic behaviour of soft materials8–11.
However, the origin of friction from conservative forces between
molecules and atoms remains as one of the grand challenges of
the physics of fluids12–14.

Stokes’s friction law, describing the resistance to a steadily
dragged immersed sphere of radius a, links the friction ζ0 to the
(macroscopic) shear viscosity η0, and the relation ζ0= 6πη0a
scales down remarkably well to single molecules15,16. Stokes’s
hydrodynamic treatment17 from 1851 was actually more general
and addressed slow oscillatory motions in viscous fluids, moti-
vated by inaccuracies of pendulum clocks caused by air flow
(Fig. 1a). These predictions of a dynamic friction ζ(ω) that
depends on the oscillation frequency ω have been interpreted in
terms of a delayed response, also referred to as hydrodynamic
memory, and have only recently been shown to be quantitative
also for micron-sized particles1,2. In the domain of micro-
rheology, measurements of ζ(ω) are used to infer the mechanical
properties of complex fluids18–22.

From the perspective of individual molecules or atoms, fluids
are governed by conservative interactions and obey Newton’s
equations of motion, yielding smooth and time-reversible tra-
jectories (Fig. 1b, c). In particular, a single molecule is not subject
to friction in this picture, and the mechanism of the required
entropy production is far from obvious. Macroscopic friction and
other transport coefficients have been linked to microscopic chaos
and the Lyapunov spectrum of the liquid23–25, yet the connection
of the latter to the corresponding Green–Kubo integrands, or
equivalently, to the dynamic friction ζ(ω), is an open issue24.
First-principle theories to friction are hampered by the fact that
liquids are strongly interacting systems. An insightful, formal
relation between the many-particle Liouville operator and dis-
sipation spectra was derived in the seminal works by Zwanzig,
Mori, and others26,27, but the analytic evaluation of the resulting
expressions hinges on uncontrolled approximations. For example,
a systematic short-time expansion of the motion at all orders
would yield zero friction (see “Methods”). Early work on

dissipation spectra recognised the importance of exact sum
rules28,29, the proposed ad hoc models, however, violate the sum
rules at higher orders. Theoretical progress was made for hard-
sphere fluids, where billiard-like collisions generate an instanta-
neous, Markovian contribution to friction30, thereby rendering
the frictionless regime inaccessible.

To gradually bridge between the atomistic and hydrodynamic
regimes, one would ideally like to have a magnifying glass that
allows for zooming from the slowest to the fastest processes, thus
obtaining an increasingly sharper view of the molecular details
(Fig. 1a). Spectral quantities such as ζ(ω) can serve this purpose
with the frequency ω as the control knob. Implementing this idea
in simulations of liquids and numerically tracing the friction of
molecules over wide frequency windows from fully developed
dissipation all the way down to the non-dissipative regime would
reveal sizable variations of ζ(ω). Such deviations of ζ(ω) from a
constant friction ζ0 signify non-Markovian motion that is widely
cast in the generalised Langevin equation [“Methods”, Eq. (1)],
parametrised by an associated memory function γ(t). The quan-
tities ζ(ω) and γ(t) are related to each other by a cosine transform,
but the determination of either of them from data is a formidable
challenge, with substantial progress in the past years31–38.
Reaching the high-frequency regime was precluded so far by
practical limitations, e.g., statistical noise and insufficient
dynamic windows.

Here, we have overcome these limitations by high-precision
simulations and an advanced data analysis that utilises physical
principles. For three distinct liquids—water, a dense Lennard-
Jones (LJ) fluid representing a simple, mono-atomic liquid, and a
supercooled binary mixture serving as a model glass former—we
obtained low-noise, cross-validated data for the dynamic friction
ζ(ω) and the frequency-dependent viscosity η̂ðωÞ over windows
that span from the fastest to the slowest processes in each liquid.
Corroborated by these data, we give rigorous arguments that
dissipative processes in molecular liquids are exponentially fast
suppressed as frequency is increased. As a consequence, the
liquid’s response is purely elastic above a characteristic frequency
ωc, a feature that goes beyond popular models of friction and
viscoelasticity. Furthermore, the magnitude of friction cannot be
inferred from the instantaneous behaviour of molecular trajec-
tories: its origin is non-local in time. Finally, having data available
for both ζ(ω) and η̂ðωÞ, we tested the connection between
microscopic friction and the macroscopic mechanical properties
of complex fluids, postulated by the generalised Stokes–Einstein

Fig. 1 Dynamic friction bridges between the hydrodynamic and atomistic pictures of liquids. a A pendulum that oscillates in a viscous fluid with
frequency ω experiences a dynamic friction ζ(ω) as calculated by Stokes (1851) for slow motion. The associated flow pattern (stream lines) leads to
hydrodynamic memory of the motion. Magnifying the microscopic scale, the fluid consists of molecules that obey Newton's equations, which are non-
dissipative and generate smooth trajectories. Stokes's result for the pendulum scales down to single molecules, and the function ζ(ω) provides the bridge
between the frictionless (microscopic) and the hydrodynamic (macroscopic) descriptions. b, c In liquids, the short-time trajectories of molecules (b) are
smooth, but chaotic curves due to molecules rattling in transient cages formed by their neighbours (c brown spheres). The onset of friction is driven by the
momentum transfer to the cage, as supported by control simulations of a single particle (red sphere) in a matrix of pinned particles (brown and yellow).
Illustration for a mono-atomic fluid in two dimensions.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-0389-0

2 COMMUNICATIONS PHYSICS |           (2020) 3:126 | https://doi.org/10.1038/s42005-020-0389-0 | www.nature.com/commsphys

www.nature.com/commsphys


relation. The latter is found to either fail completely (mono-
atomic liquid), serve as a qualitative description (water), or being
a nearly quantitative relation (supercooled liquid).

Results
Molecular friction in liquids emerges rapidly. Instead of
observing the response to an oscillatory force, we recorded the
Brownian position fluctuations in equilibrium and link them to
the friction, taking advantage of a fluctuation–dissipation rela-
tion. For the three liquids under investigation, we carried out
molecular dynamics simulations to compute the mean-square
displacement (MSD). Using the MSD as sole input, we estimated
both the dynamic friction ζ(ω) and the memory function γ(t) in
an ansatz-free approach, following two complementary routes

that allow for cross-validation (see Fig. 2 and “Methods”). The
first route invokes complex analysis and is based on the
Fourier–Laplace transform of correlation functions, sampled on a
sparse time grid (“adapted Filon algorithm”). Second and inde-
pendently, we computed the antiderivative of γ(t) using a stable
deconvolution technique for uniform time grids.

Although all three liquids display rather different dynamics,
leaving distinct fingerprints in their friction spectra, their high-
frequency behaviours of ζ(ω) share significant similarities
(Fig. 3a–c). Most remarkably, the data demonstrate that beyond
a liquid-characteristic frequency, ω≳ ωc, the friction ζ(ω) goes
exponentially fast to zero. Such a rapid spectral variation has to be
contrasted to the typical algebraic peaks, i.e., the Lorentz–Debye
shape, and we argue in the following that our finding is generic
for molecular fluids. Upon decreasing frequency, the onset of
friction is followed by liquid-specific behaviour over several
decades in time until the hydrodynamic value ζ0 is established: in
water, our results for the friction ζ(ω) exhibit a local maximum at
ω/2π ≈ 5 THz, followed by a slow increase towards the limiting
value ζ0, which is reached near frequencies of 0.1 THz. For the LJ
fluid, ζ(ω) varies more smoothly with a global maximum at an
intermediate frequency, and ζ0 is approached slowly from above
in accord with the hydrodynamic square-root singularity [Eq.
(18)], essentially calculated by Stokes already17. On theoretical
grounds, this feature of ζ(ω) is generic for all liquids, yet it is
suppressed in our data for the other two liquids due to a small
prefactor. In the supercooled liquid, we observe a scale separation
by three dynamic decades of (i) the rapid onset of friction and (ii)
the slow emergence of the hydrodynamic limit. The second
process is associated with cage relaxation, strongly delayed in the
glassy state, which suggests that the driving mechanism behind

VACF

mobility

memory

friction

input

Fig. 2 Flow chart of the data analysis. Along the upper route, one starts
from the mean-square displacement (MSD) and computes the generalised
mobility ŶðωÞ by numerical differentiation and a suitable Fourier
transform F (adapted Filon algorithm, Eq. (22)); the dynamic friction ζ(ω)
follows via Eq. (7). A Fourier backtransform then yields the memory
function γ(t). The latter can be obtained more directly along the lower
route, which is based on the velocity autocorrelation function (VACF) Z(t)
and employs a deconvolution in time domain (Eq. (23)).

Fig. 3 Dynamic friction and generalised mobility of three prototypical liquids. Columns show simulations results for a mono-atomic fluid, liquid water,
and a supercooled liquid, obtained from the data analysis depicted in Fig. 2, with the mean-square displacement (MSD, not shown) as initial input. a–c The
dynamic friction (red) is the real part of the memory kernel γ̂ðωÞ, as computed from Eq. (6). It interpolates between the hydrodynamic value ζ0/m
(horizontal lines) and a rapid decrease to zero at high frequencies (ω≫ωc); thin red lines mark exponential decays, � e�ω=ωc , to guide the eye. In case of
the Lennard-Jones fluid (a), ζ(ω) is consistent with Stokes's small-ω asymptote [grey line, Eq. (18)], with parameters taken from a fit to the long-time tail of
Z(t) (inset of Fig. 4a). The elastic response Im γ̂ðωÞ (turquoise) exhibits a local maximum at high frequencies, defining the characteristic frequency ωc

(vertical lines), and follows the high-frequency asymptote [Eq. (15), grey line], with all parameters fixed by short-time fits to the MSD data. The frequency
ωc is close to, but different from the Einstein frequency ω0. d–f Numerical results for the generalised mobility ŶðωÞ, which describes the response to an
applied small, oscillatory force (see “Methods”). The real part Re ŶðωÞ (green) approaches the hydrodynamic mobility 1/ζ0 (horizontal lines) as ω→ 0 and
vanishes rapidly at large frequencies. The imaginary part (yellow) encodes the elastic response, which has a resonance near ωc (vertical lines); at larger
frequencies, the data match with theoretical predictions [grey lines, Eq. (14)].
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the onset of friction is not in the structural relaxation of the fluid.
Close to the glass transition, the small-frequency friction ζ0 is
governed by self-similar relaxation processes and obeys asymp-
totic scaling laws39,40; the magnitude (prefactor) of these laws,
however, is set at high frequencies.

Friction depends on the coupling of fast and slow processes.
The obtained data of ζ(ω) cover the full range of the dynamic
response, thereby connecting physics at different scales. Before
discussing the remaining panels (d–f) of Fig. 3, we rationalise key
features of ζ(ω) by tracing their origins to the dynamics of the
fluid particles at short and long times (going backwards in Fig. 2).
The relevant properties are prominently visible in the second
derivative of the MSD, the velocity autocorrelation function
(VACF), ZðtÞ :¼ ∂2tMSDðtÞ=6, after numerical differentiation
with respect to the lag time t (Fig. 4a–c). The following should be
contrasted to Ornstein’s model for Brownian motion, employing
a single exponential decay of velocity correlations, ZðtÞ �
v2th expð�ζ0t=mÞ, which implies a constant (Markovian) friction,
ζ(ω) ≈ ζ0; by vth we denote the thermal velocity, and m is the
molecular mass. As a distinct feature of molecular fluids, obeying
Newton’s equations, the VACF’s true short-time decay is
parabola-shaped16, Zðt ! 0Þ ’ v2th 1� ω2

0t
2=2

� �
, introducing the

Einstein frequency ω0. For dense liquids, the VACF, after a sign
change, generically displays a regime of anti-correlations, which
reflect the transient caging by neighbouring molecules (Fig. 1c).
For water and the supercooled liquid, these anti-correlations relax
slowly with an intermediate power-law decay, Z(t) ~−t−5/2

(insets of Fig. 4b, c); such a decay was observed earlier in
supercooled liquids41,42 and it is a well-established long-time tail
in colloidal suspensions43–45 and for diffusion in an arrested,
disordered environment46,47.

The famous long-time tail encoding hydrodynamic
memory16,48,49, Z(t→∞) ~ t−3/2, is clearly developed in our data
for the LJ fluid after another sign change (inset of Fig. 4a), and in

this situation, Stokes’s hydrodynamics describes the slow motion
of single molecules (Fig. 3a). For the other two liquids studied, the
tail is not visible in our data due to a small prefactor, which
following mode-coupling arguments decreases as either viscosity
or diffusivity increases16.

The dynamic friction is closely linked to the complex-valued,
generalised mobility ŶðωÞ via ζðωÞ ¼ Re½ŶðωÞ�1�. This mobility
encodes the response to a small, oscillatory force and is accessible
in, e.g., scattering experiments50. Here, we computed ŶðωÞ from
the VACF upon employing a fluctuation–dissipation relation (see
“Methods” and Fig. 3d–f). Our data reveal a generic, rapid
decrease of the dissipative part, Ŷ0ðωÞ :¼ Re ŶðωÞ, upon increas-
ing frequency towards the microscopic regime, ω≫ ωc; con-
comitantly, the elastic response, Ŷ00ðωÞ :¼ Im ŶðωÞ, has a
resonance near ωc due to vibrational motion of molecules in
their cages. In the low-frequency limit, the reciprocal of the
macroscopic friction is recovered, Ŷðω ! 0Þ ¼ 1=ζ0. In the
examples studied, both regimes are separated by at least two
decades in time, which show material-specific features: the
mobility of water molecules is 2.5-fold enhanced over its
macroscopic value near ω/2π ≈ 1.3 THz; similarly, a factor of 30
is observed for the supercooled liquid. At variance, the
hydrodynamic long-time tail, as for the LJ liquid, demands
Ŷ0ðω ! 0Þ to be approached from below. The interplay of slow
and fast processes enters the response ŶðωÞ, and thus the
dynamic friction ζ(ω), at all frequencies, which is borne out by the
Kramers–Kronig relations. In particular, non-analytic behaviour
of Ŷ00ðωÞ as ω→ 0 influences the detailed onset of friction at large
frequencies.

The origin of friction is non-local in time. The rapid decrease of
Ŷ0ðωÞ is mathematically justified from the short-time properties
of the VACF. Physical molecular trajectories, being solutions to
Newton’s equations, are smooth and yield a smooth function Z(t);

Fig. 4 Velocity autocorrelators and corresponding memory functions for the three investigated liquids. Columns show results for a mono-atomic fluid,
liquid water, and a supercooled liquid. a–c simulation results for the velocity autocorrelation function (VACF, brown symbols) display a parabolic decrease
at short times (grey lines) and power-law decays at long times (insets, negative values are dotted). The VACF is obtained from the second derivative of the
mean-square displacement with respect to lag time. d–f The memory function γ(t) encodes the autocorrelation of Brownian forces on the molecules
(Eq. (2)). For each liquid, γ(t) was computed from a cosine transform of ζ̂ðωÞ [blue lines, Eq. (9)] with input data from Fig. 3a–c] and is compared to the
deconvolution results in time domain [orange lines, Eq. (23)]. The data follow the predicted short-time decay Eq. (16) (grey lines) and exhibit power-law
decays consistent with Eq. (19) (insets), preceded by an ultra-slow decay in case of the supercooled liquid (f).
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in particular, all derivatives Z(n)(t) exist at t= 0 and are finite.
Thus, invoking exact sum rules [Eq. (10)], all moments of the
spectrum Ŷ0ðωÞ are finite, which requires an exponentially fast
decay as ω→∞. (This is a special case of a more general char-
acterisation of exponentially decaying probability measures51.)
Combining with the large-ω asymptote of the imaginary part,
Ŷ00ðωÞ ’ 1=mω � Ŷ0ðωÞ (see “Methods”) and using ζðωÞ ¼
Ŷ0ðωÞ= Ŷ0ðωÞ2 þ Ŷ00ðωÞ2� �

proves that ζðωÞ ’ ðmωÞ2 Ŷ0ðωÞ as
ω→∞ and thus an exponentially fast suppression of the friction.
We stress further that such behaviour is not contained in
representations of ζ(ω) as a truncated continued fraction16,52.

It is tempting to use a systematic short-time expansion of Z(t)
to predict the large-frequency behaviour of the friction. However,
Z(t) being an even function due to time-reversal symmetry in
equilibrium renders the large-ω asymptotes zero, Ŷ0ðωÞ � 0 and
thus ζ(ω)≡ 0, even if the complete Taylor series of Z(t) in t= 0
was known (see “Methods”). Note that Ŷ00ðωÞ and the elastic
counterpart of ζ(ω) are well captured by such an expansion
(Fig. 3d–f). This observation underlines that, on all scales, friction
emerges as a phenomenon that is non-local in time, i.e., it cannot
be anticipated from the local behaviour of the molecular
trajectories.

Our numerical and theoretical findings are supported by an

analytically solvable example. The choice ZðtÞ ¼ v2th½1þ ðt=τÞ2��1

combines the smoothness and time-reversal symmetry of
molecular autocorrelation functions with a long-time tail. It yields
an exponential decay of the mobility, Ŷ0ðωÞ ¼ ðπτ=2mÞ e�jωτj
(dissipative part), and hence a rapid suppression of fric-
tion, ζðω ! 1Þ�ðωτÞ2e�ωτ , as demanded above (see “Methods”
and Fig. 5).

Irreversible momentum transfer drives the onset of friction. A
pressing question is about the physical mechanism that generates
the onset of friction. Motivated by our results for the supercooled
liquid (Fig. 3c), we performed a control simulation for the LJ fluid
with the structural relaxation switched off by pinning all particles
but one. The rattling motion in such a frozen-in cage (Fig. 2)
experiences a dynamic friction that closely resembles our generic
findings for ζ(ω) at high frequencies, ω≳ ωc (Fig. 6). Upon
decreasing frequency from ωc to zero, the two dynamics deviate
strongly as is most evident in the elastic response: whereas
Im γ̂ðωÞ decreases for the unconstrained fluid and exhibits a zero
crossing enforced by hydrodynamics [Eq. (17) and Fig. 3a], it
remains positive for the pinned case and grows as
Im γ̂ðω ! 0Þ�1=ω, reminiscent of what one obtains for an
Ornstein–Uhlenbeck (OU) particle in a harmonic trap1. For even
smaller frequencies, ω ≲ τ�1

LJ , the dissipation diverges too,
approximately as ζ(ω→ 0) ~ ω1/2, which we attribute to the
irregular shape of the confining cages; for the OU model with
harmonic confinement, ζ(ω)≃ const. At high frequencies, how-
ever, the confinement is not relevant, and we conclude that it is
the fast, yet irreversible momentum transfer to neighbouring
molecules that drives the onset of friction. This is corroborated by
the observation that instantaneous momentum exchange implies
a non-zero limit, ζ(ω→∞) > 0, as in the case of hard spheres30.
The fact that dissipation is linked to trajectories for which the
time-reversed path is extremely improbable leads us to speculate
that the onset frequency ωc is intimately related to the largest
Lyapunov exponent λmax of the fluid, which is close to, but dif-
ferent from the Einstein frequency ω0 (Posch & Hoover25).

Dynamic friction implies intricate memory of Brownian
motion. Within the framework of the generalised Langevin
equation [Eq. (1)], momentum relaxation is governed by a
memory function γ(t) that is fully determined by ζ(ω) [Eqs. (7)
and (9)]. At the same time, γ(t) is also the autocorrelator of
Brownian, random forces on the molecules, up to a constant

Fig. 5 Theoretical model justifies exponentially fast onset of friction and persistent memory. Exact results (grey solid lines) for the model of Z(t) in
Eq. (20), combining the smoothness and time-reversal symmetry of molecular autocorrelation functions with a long-time tail. As a sensitive test of our
numerical procedures, symbols show numerical results from the mean-square displacement as input, sparsely sampled on a geometrically spaced grid. The
panels show a the complex-valued, generalised mobility ŶðωÞ, b the dynamic friction ζ(ω) and its elastic counterpart Im γ̂ðωÞ, and c the memory function
γ(t) in time domain. The latter inherits the long-time tail �t�2 from the velocity autocorrelation function, but of opposite sign (inset). The tail induces non-
analytic behaviour of ζ(ω) at small frequencies, which crosses over to �ω2 due to the smooth, exponential cutoff of the Fourier integrals (inset of panel b).
Same colour code as in Figs. 3 and 4.

Fig. 6 Friction emerges due to rattling motion in immobile cages.
Dynamic friction ζ(ω) (red symbols) obtained in a control simulation of a
single particle moving in a frozen-in cage formed by neighbouring particles
(Fig. 1c). The setup was created by pinning the particles of the Lennard-
Jones fluid except for one; results correspond to an ensemble average over
106 typical cages. The imaginary part of the memory kernel γ̂ðωÞ
(turquoise) ties in with the high-frequency prediction (grey). Dashed lines
show the results for the unconstrained fluid at the same conditions for
comparison (Fig. 3a).
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prefactor, and ζ(ω) encodes the corresponding spectrum [Eq. (2)].
Within Ornstein’s idealised model of Brownian motion, one
assumes independent Brownian forces, implying a flat, white
spectrum, ζ(ω) ≈ ζ0, and a delta-peaked memory function γ(t).
For molecular liquids, however, the memory functions display a
universal parabola-shaped short-time decay [Fig. 4d–f and Eq.
(16)]. For water and the LJ fluid, the short-time regime of γ(t) is
followed by oscillatory behaviour including sign changes and,
finally, different power-law decays for the two liquids encoding
different physics (insets of Fig. 4d, e also see Fig. 5c); generally,
power-law tails of the memory function are directly inherited
from the VACF without a change of exponent [Eq. (19)]. For the
supercooled liquid, γ(t) remains positive and exhibits the onset of
a plateau (near t ≈ 0.3τLJ), which decays logarithmically slowly
over 2 decades in time (Fig. 4f). From the modelling perspective,
it is desirable to approximate the memory functions such that the
initial decay, the typical persistence time, and the integral of γ(t)
are reproduced, the latter yielding ζ0 [Eq. (13)]. For all three
liquids, the complexity and the long-lived nature of the memory,
however, preclude simple models of γ(t) such as the superposition
of few exponential decays. The quantitative knowledge of ζ(ω), as
obtained here, paves the way for more favourable approximations
of memory in the frequency domain, which can yield mathe-
matically and physically consistent interpolations of Brownian
motion from the fastest to the slowest scales.

Discussion
Based on theoretical arguments and corroborated by simulation
data that cover up to three orders in magnitude and 4 decades in
frequency, we have shown that the friction ζ(ω) in molecular
liquids emerges rapidly at a large, liquid-specific frequency ωc

from the time-reversible motion of the atoms. This onset of
friction is driven by the irreversible momentum transfer to
neighbouring molecules, but also influenced by the slowest pro-
cesses at hydrodynamic scales. The exponentially fast decay of

dissipation spectra such as ζ(ω) is easily shadowed by approx-
imations, and as a modelling constraint it is under-investigated in
the existing microscopic theories of liquids. The observation that
the high-frequency behaviour of ζ(ω) is reproduced by the motion
of a single particle in an immobile cage refines the question on the
quantitative link between friction and microscopic chaos. Con-
cretely: whether and how does the frequency dependence of
transport coefficients relate to the Lyapunov spectrum of the
liquid23,24?

Going beyond the dynamics of single molecules and their
friction, the relation to the visco-elastic properties of complex
fluids is of ongoing interest for the physics of polymers, living
cells, and the glass transition. The potentially tight coupling
between single-particle and collective responses was phrased as an
ad hoc extension of Stokes’s friction law to the frequency domain,
ζðωÞ ¼ 6πRe½η̂ðωÞ�a, referred to as generalised Stokes–Einstein
relation (GSER), which has found wide applications in the con-
text of microrheology experiments18–21. It links the dynamic
friction ζ(ω) of a probe particle to the dynamic shear modulus,
ĜðωÞ ¼ �iωη̂ðωÞ, a complex-valued function encoding the stress
response of the macroscopic fluid sample to a small, oscillatory
shear strain. The generalised viscosity η̂ðωÞ tends to the hydro-
dynamic shear viscosity η0 as ω→ 0, with Re η̂ðωÞ representing
the spectrum of shear stress fluctuations (up to a constant factor)
by a fluctuation–dissipation relation. Thus, if the GSER holds the
single-particle memory γ(t) is proportional to the autocorrelator
of shear stresses, which means that the Brownian force on the
particle and the fluctuation of the shear stress are statistically
equivalent variables.

A critical assessment of the validity of the GSER is permitted
by comparing our data for ζ(ω) to results for η̂ðωÞ, calculated
within the same simulations (see Fig. 7 and “Methods”). Gener-
ically, the dissipative part, Re η̂ðωÞ, decays exponentially fast as
ω→∞, which is required by analogous arguments as given for
ζðωÞ and Ŷ0ðωÞ. For high frequencies, only the imaginary part

Fig. 7 Test of the generalised Stokes–Einstein relation (GSER). a–c The generalised viscosity Re η̂ðωÞ (violet symbols) of the three liquids under
investigation (columns) is compared to the GSER prediction ζ(ω)/6πa (red dashed lines), based on the dynamic friction data of single molecules (Fig. 3a,
c), and correspondingly for the imaginary counterparts of the elastic responses (orange symbols and turquoise dashed lines). The effective particle radius a
for each liquid is chosen such that the viscosity and friction curves coincide at ω= 0. The pink solid line in a is an empirical fit of a compressed exponential,
Re η̂ðωÞ ’ η0 expð�ðω=ωηÞβÞ with β= 1.29 and ωη = 1.19 ω0. In b, c the data for the elastic responses are shifted by the indicated factors for clarity. d–f The
GSER is tested by plotting the ratios ζðωÞ=6π½Re η̂ðωÞ�a (violet) and m½Im γ̂ðωÞ�=6π½Im η̂ðωÞ�a (orange); deviations from unity quantify the GSER violation.
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survives due to its slow decay, η̂ðωÞ ’ G1=ð�iωÞ, inducing a
non-zero and real-valued modulus, Ĝðω � ωcÞ � G1 > 0.
Therefore, our data clearly demonstrate that, indeed, liquids
respond to high-frequency shear like a non-dissipative, elastic
solid as put forward by the classical work of Frenkel53. However,
the attempt to predict the elastic modulus G∞ from the vibra-
tional motion of molecules in their cages, by virtue of the GSER,
would considerably overestimate the modulus by factors of ≈2
for the three liquids studied (Fig. 7d–f). In passing, we note that
Maxwell’s model for viscoelasticity16,52,53, η̂ðωÞ ¼ G1τ=ð1�
iωτMÞ with some relaxation time τM, breaks down at high fre-
quencies as it implies a slowly decaying real part,
Re η̂ðω ! 1Þ � ω�2, in sharp contrast to exact sum rules28 and
to the exponentially fast decay for molecular liquids. Therefore,
treatments of sound-like, elastic waves on the footing of this and
similar models appear incomplete.

The passage from the elastic to the viscous limit occurs upon
decreasing frequency, leading in case of the LJ fluid to a mono-
tonic increase of Re η̂ðωÞ, which, empirically, follows a com-
pressed exponential over almost the full frequency domain
(Fig. 7a). In particular, η̂ðωÞ � η0 is constant for ω≲2τ

�1
LJ , which

defines the hydrodynamic regime. For these frequencies, the
single-molecule response is very well described by Stokes’s
dynamic friction [Eq. (18)], making the GSER violation apparent
for Newtonian fluids, for which η̂ðωÞ ¼ η0. It is evidenced further
by the dissimilarity of the elastic parts, Im γ̂ðωÞ and Im η̂ðωÞ.

For water, the viscosity and friction spectra share similar fea-
tures and coincide fairly well (Fig. 7b), including the elastic parts.
Thus, the GSER serves as a reasonable qualitative description, in
particular for frequencies below ≈2 THz, i.e., slower than the
vibrations of the first hydration shell54. In supercooled liquids,
the Stokes–Einstein relation for molecules (i.e., the GSER for
ω→ 0) holds in the presence of a huge variation of the viscosity.
In particular, the ratio ζ0/η0 is observed to be constant over a wide
temperature range—in line with the mode-coupling theory of the
idealised glass transition40. At very low temperatures, however,
marked deviations from the Stokes–Einstein relation (mostly
studied for ω→ 0) have received considerable attention as they
signify the opening of additional relaxation channels not included
in the standard theory55–59. For the moderately supercooled
liquid studied here exemplarily, both viscous and elastic responses
satisfy the GSER over a wide frequency window (Fig. 7c). Nota-
bly, the elastic components collapse almost perfectly in this case,
Im γ̂ðωÞ � Im η̂ðωÞ, which we attribute to the same (apparent)
power-law scaling, ≈ω−0.75, at intermediate frequencies. Yet, the
collective response lacks the elastic peak of Im γ̂ðωÞ at ωc, causing
the breakdown of the GSER at large frequencies. This suggests
that a future frequency-resolved study of systematic deviations
from the GSER upon further supercooling can clarify the separate
contributions of fast and slow processes to the decoupling of
diffusion and viscosity (“Stokes–Einstein violation”) close to the
glass transition temperature.

We conclude that molecular friction in liquids arises from a
complex interplay of processes on very disparate time scales. The
large variability of ζ(ω) observed over orders of magnitude reveals
the strongly non-Markovian nature of Brownian motion in any
liquid environment, with far-reaching implications for nanoscale
processes. Examples are as diverse as reaction rates and barrier
crossings in macromolecular dynamics5–7 and flows near
liquid–solid interfaces44,60–62; the ability to quantify the corre-
sponding memory is vital for their realistic descriptions. From a
numerical point of view, our ansatz-free approach has immediate
applications to and extends current methods37,38 for the analysis
of high-resolution microrheology data1–3,21, which involves
deducing frequency-dependent moduli from the displacement
statistics along the same lines as done here for the dynamic

friction. Relying merely on the existence of a steady state [Eq.
(12)], the developed methodology is not limited to friction, but
can be transferred to the analysis of non-Markovian time series
from simulation and experiment. It finds novel uses in, e.g., the
anomalous diffusion within living cells11 and the kinetics of
chemical reactions63. It opens a promising avenue for research on
the migration of malignant cells in tissue64 and on predictive
stochastic models of financial market65 and geographic66 data.

Methods
Generalised Langevin equation. A labelled fluid particle of mass m, position r(t),
and momentum pðtÞ ¼ m_rðtÞ obeys the generalised Langevin equation (GLE)67:

_pðtÞ ¼ �
Z t

0
ds γðt � sÞ pðsÞ þ ξðtÞ; ð1Þ

where the Brownian force ξ(t) is a stochastic process with zero mean and covar-
iance

hξðtÞ � ξðt0Þi ¼ mkBTγðjt � t0 jÞ 1 ð2Þ

to satisfy the fluctuation–dissipation theorem. Rewriting Eq. (1) for the the velocity
autocorrelation function (VACF), Z(t)= 〈p(t) ⋅ p(0)〉/(3m2), describing momen-
tum relaxation, yields

_ZðtÞ ¼ �
Z t

0
ds γðt � sÞZðsÞ ; Zð0Þ ¼ kBT

m
: ð3Þ

Its Fourier–Laplace transform [Eq. (8)] provides the link to and the definition of
the (complex-valued) memory kernel γ̂ðωÞ,

ẐðωÞ ¼ kBT=m
�iωþ γ̂ðωÞ : ð4Þ

Linear response. For a mass m driven by a periodic force FðtÞ ¼ Fω cosðωtÞ with
frequency ω and amplitude Fω, the stationary response �vðtÞ, averaged over many
realisations of the experiment, is given by67

m
d
dt

�vðtÞ ¼ FðtÞ �
Z t

�1
mγðt � sÞ �vðsÞ ds ; ð5Þ

corresponding to Eq. (1) after shifting the lower integral boundary to −∞ to
ensure relaxation of transients. The upper boundary can be shifted to +∞ with the
convention that the response function γ(t < 0)= 0. By linearity of the equation, the
solution is of the form �vðtÞ ¼ Re vωe

�iωt½ � with complex amplitude vω, and
inserting into Eq. (5) yields vω ¼ ŶðωÞ Fω in terms of the generalised mobility,

ŶðωÞ :¼ ½�iωmþmγ̂ðωÞ��1 ; ð6Þ

also referred to as complex-valued admittance. Its central ingredient is the one-
sided Fourier transform of the response function, γ̂ðωÞ :¼ R1

0 eiωtγðtÞ dt. Com-
paring to Eq. (4), which describes equilibrium correlations, yields the
fluctuation–dissipation relation: ẐðωÞ ¼ kBT ŶðωÞ.

Friction describes the resistance to a prescribed velocity, as in Stokes’s
pendulum experiments17. Thus, inverting the above argument, the force response
to an oscillatory velocity vðtÞ ¼ vω cosðωtÞ has complex amplitude
Fω ¼ ŶðωÞ�1 vω , and we identify ŶðωÞ�1 as a generalised friction. However,
merely the real part describes dissipation and deserves to be called a friction, which
is seen from the mean dissipated power:

T�1
p

R Tp

0 vðtÞ 	 FðtÞ dt ¼ Re ŶðωÞ�1� � jvωj2=2, averaged over a full cycle of length
Tp= 2π/ω. Thus, we set the dynamic friction as

ζðωÞ :¼ Re ŶðωÞ�1� � ¼ mRe γ̂ðωÞ; ð7Þ

in particular, ζ(ω) ≥ 0. This is in line with the conventional (Markovian) Langevin
equation, _pðtÞ ¼ �ðζ0=mÞ pðtÞ þ ξðtÞ. There, the response is governed by
ŶðωÞ ¼ ½�iωmþ ζ0��1, implying a static friction, ζ(ω)= ζ0.

Equations (6) and (7) (and variants thereof) are the basis of (passive)
microrheology experiments18–21, which use observations of Brownian motion to
infer the friction ζ(ω) and Im γ̂ðωÞ of a probe particle in a complex medium and
relate it via the GSER to the local visco-elastic properties. The macroscopic shear
viscosity, η0 ¼ ðkBTÞ�1 R1

0 CΠðtÞ dt, is the Green–Kubo integral of the
autocorrelation, CΠ(t)= 〈δΠ⊥(t) δΠ⊥(0)〉/V, of shear stress fluctuations δΠ⊥(t),
given as an off-diagonal element of the stress tensor16; V denotes the sample
volume. Similarly by a fluctuation–dissipation relation, the frequency-dependent
response coefficient η̂ðωÞ to oscillatory shear is the Fourier–Laplace transform [Eq.
(8)] of CΠ(t)/kBT, and thus η̂ðω ! 0Þ ¼ η0.
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Mathematical framework. For the harmonic analysis of the autocorrelation
function C(t) of a stationary time series, we use the Fourier–Laplace transform

ĈðzÞ ¼
Z 1

0
eiztCðtÞ dt ; ð8Þ

which is well-defined for all frequencies z in the upper complex plane, Cþ ¼
fz j Im z > 0g. Along the imaginary axis, z= iy, it recovers the conventional Laplace
transform. For real frequencies ω, the real and imaginary parts of ĈðωÞ describe
physically accessible spectra, which are related to each other by Kramers–Kronig
integrals52,67; for example, Re ĈðωÞ for fixed ω is determined by the full function
Im ĈðωÞ. The real part is positive, Re ĈðωÞ≥ 0, and most importantly, we have the
unique Fourier backtransform:

CðtÞ ¼ 1
π

Z 1

�1
e�iωtRe ĈðωÞ dω: ð9Þ

If C(t) is n-times continuously differentiable at t= 0, this implies sum rules for the
spectrum (k= 0, 1, …, n):

1
π

Z 1

�1
�iωð ÞkRe½ĈðωÞ� dω ¼ CðkÞð0Þ < 1 : ð10Þ

In equilibrium, only positive frequencies are needed as Re ĈðωÞ ¼ Re Ĉð�ωÞ, and
the integrals are real-valued.

Next, we introduce a memory function of C(t) solely by invoking results from
complex analysis68. ĈðzÞ as above is a holomorphic function with Re ĈðzÞ≥ 0, i.e.,
iĈðzÞ is of Herglotz–Nevanlinna type, and ðIm zÞ jĈðzÞj is bounded in Cþ .
Suppose that C(t) has a regular short-time expansion,
Cðt ! 0Þ ’ C0 1� νt � 1

2 at
2

� �
, which implies

ĈðzÞ ’ C0 �izð Þ�1 � νC0 �izð Þ�2 � aC0 �izð Þ�3 ð11Þ
for large frequencies, ∣z∣ →∞ with j arg zj > δ for some δ > 0. Under these mild
requirements, one shows68: For given ĈðzÞ there is a unique memory kernel M̂ðzÞ
such that

ĈðzÞ ¼ C0

�iz þ M̂ðzÞ ð12Þ

with iM̂ðzÞ of Herglotz–Nevanlinna type and M̂ðzÞ ’ ν þ a=ð�izÞ as ∣z∣ → ∞. In
particular, M̂ðzÞ corresponds to the autocorrelation function of another (a priori
unknown) observable. Iterating the argument yields the continued-fraction
representation of ĈðzÞ, well-known from the Zwanzig–Mori projection
formalism16.

In the context of the VACF, one puts C0= v2th, ν= 0, and a ¼ ω2
0 and infers for

the memory kernel M̂ðzÞ ¼: γ̂ðzÞ that Re γ̂ðzÞ≥ 0 and γ̂ðzÞ ’ ω2
0=ð�izÞ as ∣z∣→∞.

This justifies Eq. (4) independently of the notion of a GLE, after taking z along the
real line.

By means of Eq. (9), γ̂ðzÞ specifies the memory function γ(t), which has a
physical interpretation as the autocorrelator of the fluctuating acceleration ξ(t)/m
in Eq. (1), divided by v2th. At low frequencies, mγ̂ðz ! 0Þ ¼ ζ0 implies a
Green–Kubo relation for the hydrodynamic friction:

ζ0 ¼ m
Z 1

0
γðtÞ dt : ð13Þ

Short-time expansion. The smoothness of physical molecular trajectories, being
solutions to Newton’s equations, allows for a short-time expansion of the VACF.
Combining with the time-reversal symmetry in equilibrium, Z(t)= Z(−t), only
even powers in t contribute and one obtains Zðt ! 0Þ ’ kBT

P1
k¼0 ckt

2k=ð2kÞ!
with Taylor coefficients ck given from equilibrium matrix elements of powers of
the underlying Liouville operator52. To connect with the notation of the main
text, c0= 1/m, c1=c0 ¼ �ω2

0, and we put c2/c0=:Ω4. Fourier–Laplace
transforming term by term yields the high-frequency expansion of ẐðωÞ and
thus of ŶðωÞ ¼ ðkBTÞ�1ẐðωÞ, which is purely imaginary: Ŷðω ! 1Þ ’P1

k¼0 ck ð�iωÞ�1�2k ¼ c0=ð�iωÞ þ c1=ð�iωÞ3 þ ¼ . Using Eq. (7), we have
ζðωÞ ¼ jŶðωÞj�2Re ŶðωÞ, which implies that for high frequencies the friction
vanishes, ζ(ω)≡ 0, at all orders in ω→∞. A similar situation is familiar from
calculus text books: f(x)= e−1/x has a Taylor series f(x)≡ 0 at x= 0; the radius of
convergence is 0.

The expansion of ŶðωÞ can be represented as a continued fraction that has the
same large-ω asymptotics up to terms of order ω−5:

ŶðωÞ ’ 1=m

�iωþ ω2
0

�iωþ ω2
1

�iωþ ¼

; ð14Þ

introducing ω2
1 :¼ Ω4 � ω4

0

� �
=ω2

0 for brevity. This truncation is an excellent

description of our data for Ŷ00ðωÞ at high frequencies, with ω0 and Ω obtained from
fits to Z(t), see Fig. 3d–f. For the memory kernel γ̂ðωÞ, one reads off

γ̂ðω ! 1Þ ¼ ω2
0=ð�iωÞ � ω2

0ω
2
1= �iωð Þ3 þO ω�5

� �
; ð15Þ

using Eq. (6), implying for the memory function in time domain:

γðt ! 0Þ ¼ ω2
0 1� ω2

1t
2=2

� �þ O t4
� �

: ð16Þ

Long-time tails. In an unbounded fluid, momentum conservation leads to per-

sistent velocity correlations, Zðt ! 1Þ ’ v2thðt=τ1Þ�3=2, which was explained in
terms of hydrodynamic backflow and diffusion of a momentum vortex16,48,49. The
tail induces a small-ω singularity in the frequency domain69, which reads for the
memory kernel: mγ̂ðω ! 0Þ ’ ζ0 1þ ðτ1ζ0=mÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�4πiωτ1

p Þ½ �, using Eq. (4) and
the hydrodynamic friction ζ0 :¼ mγ̂ð0Þ ¼ kBT=

R1
0 ZðsÞ ds.

In the framework of the creeping flow equations, Stokes found17

mγ̂ðω ! 0Þ ’ 6πη0að1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi�iωτfl

p Þ � iωmfl=2 ð17Þ

in terms of the vorticity diffusion time τfl and an effective particle mass mfl;
matching with the previous expression for the asymptote of γ̂ðωÞ, one identifies
τfl ¼ 4πðζ0=mÞ2τ31 . The real part yields the dynamic friction,

ζðω ! 0Þ ’ 6πη0að1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωτfl=2

p
Þ ; ð18Þ

showing that its macroscopic limit, ζ0= 6πη0a, is approached from above as ω→ 0
(see Fig. 3b). For water and the supercooled liquid, a different type of power-law
decay, Z(t) ~−t−5/2, was found (Fig. 3e, f).

For a general long-time tail of the VACF, Z(t) ~ t−σ with σ > 1, the memory
function γ(t) asymptotically inherits a power-law decay with the same exponent,
but of opposite sign70:

γðtÞ ’ �γ̂ 0ð Þ2ZðtÞ=Zð0Þ ; t ! 1 ; ð19Þ

which follows from Eq. (3) and by invoking a Tauber theorem69. Without any
adjustable parameter, the prediction is in excellent agreement with our data for γ(t)
in case of the LJ fluid. Inspection of a few examples (Figs. 4d, e and 5c) suggests
that, in order to accommodate the sign change of the tail, the number of zero
crossings (knots) in γ(t) is increased by one relative to Z(t).

Analytically solvable example. Consider the following analytically tractable
model for the VACF:

ZðtÞ ¼ v2th
1þ ðt=τÞ2 ; v2th ¼ kBT=m ; ð20Þ

with relaxation time τ and thermal velocity vth (Supplementary Fig. 1d). It favourably
combines the physically required smoothness at t= 0 and time-reversibility,
ZðtÞ ¼ Zð�tÞ, with a power-law decay at long times, Zðt ! 0Þ ’ v2thðt=τÞ�2; in
particular, only even powers of t contribute to the the short-time expansion:
Zðt ! 0Þ ’ v2th 1� ðt=τÞ2 þ Oðt4Þ� �

. From the one-sided Fourier transform of Z(t),

we obtain the real and imaginary parts of ẐðωÞ as Re ẐðωÞ ¼ D1e�jωτj and
Im ẐðωÞ ¼ D1½e�ωτEiðωτÞ � eωτEið�ωτÞ�=π, being even and odd functions in ω,
respectively (Fig. 5a). Here, Ei(⋅) denotes the exponential integral, and
D1 ¼ v2thτπ=2 is the long-time limit of the diffusivity, DðtÞ ¼ R t

0 ZðsÞ ds ¼
v2thτ arctanðt=τÞ. In application of theorem 1.2 by Mimica51, we confirm that

lim
ω!1 ð�ωÞ�1log ðReZ ðωÞÞ ¼: τrc ð21Þ

yields the radius of convergence, τrc= τ, of the short-time expansion of Z(t); in
particular, τrc > 0.

Given Z(ω), the explicit expression for the complex memory kernel γ̂ðωÞ
and the friction ζ(ω) follow from Eqs. (4), (7), see Fig. 5b. The low- and high-
frequency asymptotes correspond to ζðω ! 0Þ ’ ζ0ð1þ jωτjÞ and ζðω ! 1Þ ’
ζ0ðπωτ=2Þ2e�jωτj, respectively, with ζ0 ¼ kBT=D1 . The friction attains its
maximum ≈1.2ζ0 near ωmax � 0:892τ�1 and falls off rapidly for larger ω; the
position of the maximum of Im γ̂ðωÞ sets the onset frequency ωc ≈ 4.01τ−1. The
memory function γ(t) is obtained numerically from ζ(ω) using Eq. (9), with the
short- and long-time asymptotes γðt ! 0Þ ’ 2τ�2½1� 5ðt=τÞ2� and
γðt ! 1Þ ’ �ðζ0=mÞ2ðt=τÞ�2, respectively (Fig. 5c).

Adapted Filon algorithm. The computation of the frequency-dependent friction
requires a robust numerical Fourier transform, for which we developed a physics-
enriched version of Filon’s quadrature formula. The goal is to evaluate f̂ ðωÞ ¼R1
0 eiωt f ðtÞ dt for a function f(t) sparsely sampled on an irregular grid t0=

0, t1, …, tn for an arbitrary set of frequencies (ωj). The idea of Filon’s algorithm
is to interpolate f(t) by elementary functions between the grid points (usually
parabolas), thereby reducing the Fourier integral to a finite sum of integrals, for
which analytic expressions exist. Anticipating that the normal physical decay of
correlation functions is exponential, we approximate f ðtÞ � ake

�γk t in the interval
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[tk, tk+1] with ak and γk fixed by f(tk) and f(tk+1). Then,

f̂ ðωÞ �
Z t1

0
eiωt f ðtÞ dt þ

Xn�1

k¼1

Z tkþ1

tk

ake
ðiω�γkÞt dt

þ
Z 1

tn

ane
ðiω�γnÞt dt :

ð22Þ

Spurious low-frequency oscillations of the transform are removed by smoothly
truncating the integral at tn, here by assuming a terminal exponential decay of f(t),
which leads to the last term on the r.h.s. of Eq. (22). In order to preserve the short-
time properties of f(t) we fit a polynomial in t2 to the first few data points and solve
the integral analytically; this improves the high-frequency behaviour of f̂ ðωÞ.

The dynamic friction ζ(ω) and the memory function γ(t) are obtained from
MSD data as follows (Fig. 2): The timescale-dependent diffusion coefficient,
D(t):= ∂tMSD(t)/6, is obtained from numerical differentiation. In all cases studied,
it grows out from zero, has a maximum, and converges slowly towards the long-
time diffusion constant D∞=D(t→∞), see Supplementary Fig. 1. Using the above
algorithm, we compute71 ẐðωÞ ¼ D1 � iω

R1
0 dt eiωt ½DðtÞ � D1�. Then, ζ(ω) is

given by Eq. (4) and is transformed back to the time domain with the same
algorithm [Eq. (9)]; in particular, we use again a smooth, exponential cutoff. In
Fig. 5, the numerical procedure is successfully tested against the analytical model
with high accuracy.

Deconvolution in time domain. Inversion of the convolution in Eq. (3) yields the
memory function γ(t) directly72, without resorting to the frequency domain.
Numerically, it is not easy to obtain accurate and robust results, and a variety of
algorithms have been developed, see ref. 36 for a comparative study. The presence of
_ZðtÞ in Eq. (3) is removed by integration, yielding ZðtÞ ¼ Zð0Þ � R t

0 ds Gðt � sÞ ZðsÞ
with the integrated memory GðtÞ :¼ R t

0 ds γðsÞ. Discretising on a uniform time grid,
ti= iΔt (i= 0, 1, …), and employing the trapezoidal rule for the integral, a recursion
relation for Gi :¼ GðtiÞ with the initial value G0= 0 follows36:

Gi ¼
1� Zi=Z0

Δt=2
� 2

Xi�1

j¼1

GjZi�j=Z0 ; i≥ 1 : ð23Þ

Going beyond Kowalik et al.36, we introduce a predictor–corrector scheme to
stabilise the numerical solutions: In the predictor step, one evaluates G


i and G

iþ1

from Eq. (23). Afterwards, the weighted average Gi :¼ ðGi�1 þ 3G

i þ G


iþ1Þ=5
manifests itself as the corrector step. Results for G(t) can be found in the
Supplementary Fig. 2. Finally, the memory function γ(t)= ∂tG(t) is obtained by
central differences. If one starts from MSD data on a sparse (e.g., geometrically
spaced) time grid, a cubic spline interpolation of the MSD in the variable t2 is
suitable to sample Z(t) on a uniform grid of up to 105 points.

Molecular dynamics simulations. Simulations of liquid water were performed
with the GROMACS 5.1 package73 using the SPC/E water model, which was shown
to accurately reproduce the linear absorption spectra of water from experiments
and ab-initio MD simulations up to frequencies of about 30 THz74. The system of
3007 molecules in a cubic box of linear size 4.49 nm was equilibrated at 300 K and
1 bar following standard procedures36. Correlation functions were obtained from
an constant-particle-number, constant-volume, constant-energy (NVE) simulation
over 275 ps with the velocity-Verlet integrator and a time step of 1 fs, using double
floating-point precision to achieve good energy conservation. The frequency-
dependent viscosity was computed from additional NVE runs, totalling to 49 ns.

For the other two liquids, we used the massively parallel software HAL’s MD
package75 (version 1.0α6), permitting the sampling of dynamic correlations on a
sparse time grid and featuring smoothly truncated potentials to virtually eliminate
any energy drift. The mono-atomic fluid consists of 105 particles interacting
pairwise via the LJ potential, UðrÞ ¼ 4ε ðr=σÞ�12 � ðr=σÞ�6� �

, truncated for r ≥

2.5σ; a unit of time is defined by τLJ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ε

p
. Equilibration in the NVE

ensemble at number density ϱ= 0.8σ3 and thermal energy kBT= 1.3ε followed the
protocol given by Roy et al. 76. The supercooled liquid was realised by a
Kob–Andersen 80:20 binary mixture77 of 64,000 LJ beads at ϱ= 1.2σ−3 and T*:=
kBT/ε= 0.6, equilibrated over a time span of 9,000 τLJ, and we traced the species of
the larger particles. The chosen temperature is well below the melting point78, T* ≈
1.03, and is on the onset of universal scaling behaviour according to mode-coupling
theory (MCT)40; here, the value of the critical temperature is T


MCT � 0:43.
The simulations generate trajectories r(t) of an ensemble of labelled particles for

each fluid; our main observable is the mean-square displacement MSDðtÞ :¼�jrðtÞ � rð0Þj2� for lag time t. For both liquids, single-particle MSDs were averaged
from ten production runs, each over 108 integration steps of length 0.001 τLJ.

Control simulations of a single particle in its pinned cage are based on an
equilibrated sample of the LJ fluid with 106 particles. MSDs were recorded after
equilibration of the mobile particle in its static environment over 100 τLJ and were
averaged over 106 different cages, computed in parallel, to remove spurious
oscillations. Technically, the setup was realised by making two initially identical
copies of the fluid interact with each other: the first copy contains the immobile
matrix, the second one the tracers (not interacting with each other).

Data availability
The data sets generated and analysed during the current study are available from the
corresponding author upon reasonable request.

Code availability
Primary data were generated with open source software as indicated in the “Methods”
section. The source code used to analyse the data for the current study is available from
the corresponding author upon reasonable request.
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