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Pattern formation in colloidal explosions
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Abstract – We study the non-equilibrium pattern formation that emerges when magnetically
repelling colloids, trapped by optical tweezers, are abruptly released, forming colloidal explosions.
For multiple colloids in a single trap we observe a pattern of expanding concentric rings. For
colloids individually trapped in a line, we observe explosions with a zigzag pattern that persists
even when magnetic interactions are much weaker than those that break the linear symmetry in
equilibrium. Theory and computer simulations quantitatively describe these phenomena both in
and out of equilibrium. An analysis of the mode spectrum allows us to accurately quantify the
non-harmonic nature of the optical traps. Colloidal explosions provide a new way to generate
well-characterized non-equilibrium behaviour in colloidal systems.

Copyright c© EPLA, 2011

Introduction. – Pattern formation is an important
and widespread phenomenon in the natural world and
provides striking examples of order produced by non-
equilibrium processes [1]. For instance, the confinement
of charged particles to spatially localized traps can lead
to one-dimensional Wigner crystals or the spontaneous
formation of zigzag or helical particle patterns. Such
confined particle geometries are often used for ion stor-
age and quantum-computing experiments [2,3]. But when
the confinement is too weak, the particles can escape
from the traps. Often, particle trajectories produced from
such “explosions” proceed in an incoherent manner, but
in the case of long-ranged interactions, more interest-
ing spatio-temporal patterns may form. In this letter,
we investigate the dynamical behaviour of strongly inter-
acting superparamagnetic colloidal particles that have
first been confined with an optical laser trap. When
the trap is abruptly turned off, the long-ranged repul-
sive inter-colloidal interactions generate a “colloidal explo-
sion” with characteristic non-equilibrium patterns that
depend on the initial conditions and on the strength of the

interactions.
Colloidal systems offer the unique ability to simultane-

ously visualize and carefully control the non-equilibrium
behaviour using external fields, which allows for detailed

comparisons between experiments and theory [4]. Recent
examples include non-linear instabilities in sedimenting
suspensions [5], dynamic lane formation in oppositely
charged particles under electric fields [6], driven dislo-
cation nucleation [7] and stochastic resonance [8]. Here
we exploit the ability to exquisitely tune inter-colloidal
magnetic interactions through the application of an
external magnetic field [9] while simultaneously placing
colloids into a well-defined initial configuration using
optical tweezers. The single-particle trajectories are
directly monitored by video-microscopy [10]. To explore
the physics of colloidal explosions we study two basic
geometries, namely the one-dimensional (1d) and two-
dimensional (2d) configurations shown in fig. 1. Even
thought these geometries are fairly simple, they exhibit
non-trivial non-equilibrium behaviour. This study opens
up the possibility of exploring many other geometries and
explosion patterns.

Experimental and simulation details. – We use
superparamagnetic latex spheres of radius a= 1.35µm
(Dynabeads, Invitrogen) in a water solvent, contained in
a 200µm thick quartz glass sample cell. The gravitational
length of the particles is much smaller than their diameter
so after sedimentation this is effectively a 2d system. The
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Fig. 1: (Color online) (a) Microscopy images (92× 23µm2) showing an exploding 1d array of N = 19 magnetic particles
with a spacing L= 4µm upon removing the optical traps at t= 0 s at an external magnetic field B = 1.90mT and stiffness
k0 = 0.37± 0.01 pN/µm. From top to bottom: t < 0 s, 0.2 s, 1 s, and 5 s. (b) The experimental particle trajectories of the exploding
chain (top) and for an exploding 2d colloidal disc (bottom) of N = 28 particles at a magnetic field of B = 2.25mT. The color
code indicates the time in seconds. (c) Brownian dynamics trajectories for an exploding chain (top) and for a colloidal disc
compare well to the experiments.

application of a perpendicular magnetic field induces long-
range repulsive magnetic interactions between the colloids
of the form

V magmn =
µ0
4π

χ2B2

r3mn
, (1)

where µ0 is the permeability of free space, B is the mag-
netic field, and rmn = |rm− rn| is the distance between
particles n andm, and the colloids have a magnetic suscep-
tibility of χ= 3.95× 10−12Am2/T [11]. The particle
trajectories are obtained using video-microscopy [10,12].
The colloids are trapped using acousto-optical-

deflection controlled optical laser tweezers (see, e.g., [8]).
The trapping potential for particle n is modeled as

V trapn = V0

[

1− exp
(

− k0
2V0
δr2n

)]

, (2)

which takes into account, in a generic way, the fact that the
trap has a finite range of attraction. Here, rn is the particle
position, Rn = nLx̂ is the trap position, δrn = rn−Rn
and V0 is the depth of the potential well. The softness of
the trap is characterized by the dimensionless parameter

α=
k0L

2

V0
. (3)

When α= 0 the trapping is purely quadratic, V trapn =
k0δr

2
n/2, for all δrn, whereas for α> 0 the trap is quadratic

for small δrn, but becomes increasingly non-harmonic at
larger δrn and has a finite height V0 above which the
particle can escape from the trap. It is important to note
that k0 and V0 can be changed in the experiment but
that their ratio remains virtually constant and therefore
characterizes the optical trap [13,14].
The maximum particle velocities observed in the exper-

iments were of order 2µm/s in the explosion so that the

Reynolds number Re∼ 10−5 is small. Simple overdamped
Brownian Dynamics (BD) simulations with a single fit
parameter to the field B in eq. (1) were found to closely
mimic the experimental trajectories as demonstrated in
fig. 1(b) and (c). Combining the repulsive and trapping
potentials, eqs. (1) and (2), at finite temperature T leads
to the following dimensionless equation of motion

ṙn = 3b
2
∑

m �=n

rmn

r5mn
− δrn exp

(

−α
2
δr2n

)

+
√
2ǫ sn. (4)

Here and afterwards, the length, the energy, and the
time are expressed in terms of L, k0L

2, and 6πηa/k0
(η is the dynamic viscosity of the solvent), respectively.
The stochastic force s(t) obeys the properties 〈sn(t)〉= 0
and 〈sn(t)sn′(t′)〉= δnn′δ(t− t′) with the first δ being
Kronecker’s delta function and the second being Dirac’s.
Apart from the parameter characterizing the softness of
the trapping potential, α, the dynamics is governed by
dimensionless parameters

b2 =
µ0χ

2B2

4πk0L5
, ǫ=

kBT

k0L2
. (5)

These two additional parameters describe, respectively,
the intensity of the magnetic field and the intensity
of thermal motion. The fact that we work at a given
temperature T , and at certain values of L and k0, fixes
the value of ǫ. To integrate eq. (4), we apply a standard
algorithm [15].

Explosion of a disc. – We first describe the 2d geom-
etry dealing with explosions from a disc composed of a
variable number of colloids, as shown for an example with
N = 28 particles in fig. 1(b). To create such a disc configu-
ration in our simulations, all the colloids are captured by a
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(a) (b) (c)

Fig. 2: (Color online) Particle trajectories for explosions from
two-dimensional discs of N = 28 particles with and without
delay. The values of parameters b= 0.274 and α= 0 are chosen
to provide the best fit to the experiment. (a) No delay, Δτ = 0;
(b) delay time Δτ ≈ τD/10; (c) delay time Δτ ≈ τD/5.

wide single trap, Rn = (0, 0). However, as we argue below,
our experimental optical trap is characterized by the value
α≈ 30, implying that the effective entrapment range is
such that the trap cannot easily hold more than one colloid
at a time. In the experiments, we therefore gathered all
the colloids together into a disc, which was easily done
with a single trap in the absence of the magnetic field. As
soon as the colloids have been gathered in the disc, the
trap was switched off and, at the same time, the magnetic
field was quickly switched on. Typically, this procedure
is done within the time Δτ � 1 s. As the characteristic
diffusion time for the particles used in experiments is
τD ∼ a2/D≈ 10 s (where D is the particle diffusivity), the
condition Δτ < τD ensures that the gathered colloids have
not significantly diffused away from their initial configu-
ration.
We observe a clear pattern of concentric rings as the

colloids move to minimize the magnetic repulsion between
them (see fig. 1(b) and (c)). The velocities v of particles
are maximal in the beginning of the explosion and decay as
the particles move apart. As the repulsive interactions are
long ranged, in an unbounded domain without thermal
fluctuations this process never stops and the particles
move out to infinity. Nevertheless, at finite temperature
a characteristic explosion time τe can be defined as the
time to reach a regime of motion with a small enough
velocity such that the Péclet number Pe = av/D∼ 1. At
smaller velocities, diffusion starts to dominate.
In fig. 2 we illustrate simulated trajectories for explo-

sions of a disc ofN = 28 particles for different delays Δτ , in
which the explosion time τe ≈ τD/6. Note that the trapped
colloids can come very close to each other. To ensure that
the colloids do not overlap in simulations, we have addi-
tionally included in eq. (4) steep repulsive interactions
of the Weeks-Chandler-Andersen form [16]. These results
confirm that our way of creating a disc in the experiment
is practically similar to the use of a single wider trap in
the simulations as described above. We emphasize that the
results remain robust even for delay times that are longer
than in the experiment and comparable with the time of
explosion, as, e.g., in fig. 2(c).
In fig. 3 we show simulation trajectories for discs

composed of different number of colloids. The initial
configuration in the form of a 2d disc can be considered as

a pattern of concentric rings that helps explain the non-
equilibrium pattern seen in the explosions. AsN increases,
the number of rings grows, with a single particle remain-
ing near the centre for N = 6, marking the beginning of a
second ring, and then again at N = 16, marking the begin-
ning of a third ring, and again at N = 31, marking the
beginning of a fourth ring. The pattern formation is caused
by the initial shell-like ordering of the particles that is
driven by the combination of repulsive magnetic fields and
confinement [9]. The particles in each shell move outwards
in the same manner until the repulsive magnetic interac-
tions between the particles are less than kBT (kB is Boltz-
mann’s constant) and diffusion begins to dominate. We
note that this colloidal system is reminiscent of Coulomb
explosions induced by strong laser fields stripping off the
electrons of molecules and atomic clusters [17,18].

Explosion of a chain. – Whereas the broad features
of the colloidal disc explosions are fairly straightforward
to explain, the behaviour of the 1d configuration is
more subtle. This is not unexpected since 1d chains of
interacting particles form some of the richest and most
important models in theoretical physics. Examples include
the Frenkel-Kontorova model [19], 1d models of Wigner
[20,21], colloidal [22,23] and microfluidic droplets [24,25]
crystals and other closely related systems such as polymer
chains [26] and dusty plasmas [27].
The experiment shown in fig. 1(a) and (b) is for N = 19

colloids placed with a lattice spacing of L= 4.00µm apart.
When the optical traps are removed in the presence of the
magnetic field, the particle chain explodes and the evolv-
ing pattern shows an almost perfect zigzag symmetry. To
analyze the underlying equilibrium behaviour in the pres-
ence of a magnetic field, but before the optical traps are
switched off, i.e. before the explosion, we begin by treat-
ing the deterministic (ǫ= 0) case for N →∞ colloids. For
a strong enough inter-colloidal repulsions, and for strong
enough optical traps, we expect that the linear symmetry
will be broken, leading to an equilibrium transition from
a linear to a quasi–one-dimensional zigzag state as, e.g.,
in the Frenkel-Kontorova model [19], dusty plasmas [27],
quantum wires [28] and 1d Wigner crystals [21]. The zig-
zag state can be described by the order parameter h, where
hn/L= nx̂+(−1)n(h/2)ŷ is the equilibrium displacement
from the centre of the trap of particle n. Combining
the induced interaction (1) with the laser traps potential
(2) leads to an interaction energy (per particle) U(h) that
can be written in the dimensionless form

U(h) = b2
∞
∑

m=1

f3m(h)+
1− exp(−αh2/8)

α
, (6)

with fm(h) = (m
2+ pmh

2)−1/2 and pm = [1− (−1)m]/2.
The equilibrium displacement h∗ can be found as a
function of b and α by minimizing the potential (6).
The critical field bc at which the transition from the line
to the zigzag state with h= h∗ 	= 0 occurs is found to
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N = 3 N = 5 N = 6 N = 8 N = 9 N = 10

N = 12 N = 15 N = 16 N = 20 N = 25 N = 31

Fig. 3: (Color online) Particle trajectories for explosion from two-dimensional discs composed of different number N of colloids.
Parameters are b= 0.274, α= 0.

be bc =
√

8/[93ζ(5)]≈ 0.288, with ζ(x) =∑∞m=1m−x the
Riemann Zeta function. Close to the critical point, where
|b− bc| ≪ bc and h∗≪ 1, we obtain a square-root law

h∗ =±
√

8(b2− b2c)
b2c(αc−α)

(7)

with αc = 635ζ(7)/[31ζ(5)]≈ 19.9. We note that the
nearest-neighbor (NN) approximation, where only one
term with m= 1 in relation (6) is retained, works very
well: We obtain bNNc = 1/

√
12≈ 0.289 and αNNc = 20.

We note that the existence of the equilibrium zigzag
state is determined by the value of the softness para-
meter, α. For potentials with α<αc, the 1d line state
is stable for b < bc, whereas for b > bc the zigzag state
is stable and the displacement h∗ grows with increas-
ing b. However, for 0<α<αc, increasing the field
further eventually leads to an instability at a larger
field b∗∗ where the equilibrium zigzag state is unsta-
ble, i.e. the barrier to the particles leaving the wells
disappears. Within the NN approximation we find that
b∗∗ = b

NN
c (αNNc /α)

5

4 exp[−(αNNc −α)/16], although finite
temperature means particles can escape at lower fields,
b′∗∗ = b∗∗{1− (1/40) exp[(αc−α)/12](30kBT/V0)2/3}. For
softer potentials with α>αc, there is no transition to
an equilibrium zigzag state. In this case, the particles
experience a colloidal explosion and leave their wells
before an equilibrium zigzag state can occur. In the
absence of thermal fluctuations, increasing the field
would yield an explosion of the 1d line state at b= bc. At
finite temperature, particles can escape at smaller fields,
b′c ≈ bc[1−

√

(1−αc/α)kBT/2V0].
The question then arises whether for the experiments

set-up used in fig. 1, α is small enough to allow an
equilibrium zigzag transition. To test this we measured
the probability density functions for displacements along
(P (δx)) and perpendicular to (P (δy)) the trapped chain
for different magnetic fields. As can be seen in fig. 4, P (δy)
widens for increasing magnetic fields, but always retains its
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Fig. 4: (Color online) Probability density distribution in the
transversal direction, P (δy), for increasing magnetic field B.
The inset shows, respectively, the standard deviations σx (solid
line) and σy (dashed line) of P (δx) and P (δy) as functions
of magnetic field. Points represent experimentally measured
data, the lines provide the fit obtained via BD simulations with
α= 30.

single-peaked structure. This confirms that the system
is not in an equilibrium zigzag state, despite the zigzag
symmetry in the explosion pattern originating from
these states. The inset of fig. 4 presents, respectively, the
standard deviations σx and σy for distributions P (δx) and
P (δy) as functions of the magnetic field. The observation
that σx decreases and σy increases upon increasing
the magnetic field points to, respectively, hardening
of the longitudinal and softening of transverse normal
modes [21].
We also measured the phonon dispersion relations by

tracking the particle displacements u(hn) from their
equilibrium positions hn. The Fourier transforms u(q)
of the displacement vectors are directly related to the
dynamical matrix Dµν(q) [10]:

〈

u∗µ(q)uν(q)
〉

= kBT D
−1
µν (q), (8)
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Fig. 5: (Color online) The longitudinal and transverse normal
mode spring constants k||,⊥ for different magnetic fields as a
function of the wave number q. Points are experimental data.
Lines are from BD simulations with α= 30.

where the average is over all independent configurations.
The eigenvalues of Dµν(q) yield the normal mode spring
constants. Figure 5 shows the phonon-dispersion relations
as a function of q for different values of the magnetic field
and the hardening and softening of the longitudinal and
transverse modes, respectively, is indeed evident.
We analyzed these results further using BD simulations.

Given the spring constant, the interparticle distance L and
the temperature, there are only two parameters left to
determine, the ratio between B and b and the potential
softness parameter α. A fit to the data in both fig. 4
and fig. 5 yields a single proportionality constant B/b and
also fixes α= 30± 5. There is good quantitative agreement
with the data in both figures. The values of b < bc, suggest
that we are below the critical field, and furthermore the
fact that α>αc suggests that for this experimental system
no equilibrium zigzag state is possible.
We note that varying α affects the transverse and

longitudinal modes differently. For α= 0, k||,⊥(q= 0) = 1
(b < bc), whereas for α 	= 0 we obtain at q= 0: k|| 	= k⊥ 	= 1,
in agreement with experiment. Note that k||,⊥ are in
units of k0. These deviations can be traced back to the
softness of the trapping potentials. At finite temperature,
the particles explore the non-harmonicity of the potential,
leading to what appears to be a weaker effective spring
force. As before, the accurate NN approximation helps
illuminate these results. The normal modes correspond
to u(hn)∝ n̂ exp(−λt+ inq), where λ is the decay rate,
q ∈ [0, π] is the wave number, and n̂= x̂ or ŷ. For the line
state we obtain, in dimensionless form,

k
||
NN = 1+4

(

b

bNNc

)2

sin2
(q

2

)

, (9)

k⊥NN = 1−
(

b

bNNc

)2

sin2
(q

2

)

, (10)

from which we draw three important conclusions.

(a)

(b)

(c)

(d)

Fig. 6: (Color online) Particle trajectories showing zigzag explo-
sions for chains with different number of colloids: N = 9 (a),
N = 19 (b), and N = 29 (c). (d) A pattern with defects for
N = 29. Parameters are b= 0.8bc, α= 30.

First, this result shows hardening and softening of
the spring constants with the field in, respectively, the
longitudinal and transverse directions. Since k||,⊥ ∝ σ−1x,y,
this is consistent with the inset of fig. 4. Note that the
dependencies of k||,⊥ on q at a given b provided by eqs. (9)
and (10) are in qualitative agreement with those obtained
via relation (8) and presented in fig. 5. Second, eqs. (9)
and (10) show that as b goes beyond bc, the mode that
first becomes unstable is the zigzag mode, q= π. Third, in
a system with a finite number of particles the spectrum of
decay rates is discrete. There are other eigenvalues present
as well (cf. markers in fig. 5), so that the zigzag mode is
better separated from other eigenmodes in chains with
smaller number of beads, N . Hence, while the perfect
zigzag pattern is the most probable in explosion of shorter
chains, the probability of imperfections in this pattern
increases with the chain length. We indeed observed this
effect in simulations of longer chains.
In fig. 6 we show explosion patterns for 1d chains of

different lengths. We fix the magnetic field to a subcritical
value b= 0.8bc and the softness parameter to α= 30 (as
in the experiments) which guarantees that the explosion
occurs from the equilibrium line state. As can be seen
from the trajectories, similar explosion patterns with the
zigzag symmetry can be found in shorter and longer
chains. However, for the longer chains, explosion patterns
with defects also occur, see fig. 6(d). The simplest defect
corresponds to a pair of neighbouring colloids shooting
out in the same direction. Defects appear because phonon
modes other than the zigzag mode play an increasingly
important role with increasing N .
For systems with α<αc an equilibrium zigzag state

can always be induced when b′∗∗ > b> bc. In contrast to
systems without an equilibrium zigzag state, we observe
perfect zigzag symmetry in the explosions for all N we
investigated. The different behaviour results because in
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this case the non-equilibrium pattern simply reflects the
broken symmetry in equilibrium.
The fact that a single fit to B/b and α provides an

accurate fit to all the data from figs. 4 and 5, combined
with the single-peaked probability distributions, strongly
suggests that the explosions observed in fig. 1 are for the
situation where there is no equilibrium zigzag pattern.
The zigzag pattern we observe is entirely due to a non-
equilibrium pattern formation effect that shadows the
hidden equilibrium symmetry breaking.
Finally, we also considered the role of hydrodynamic

interactions (HI) by using 3d Stokesian dynamics. We find
very similar behaviour to that seen with BD simulations
that neglect the HI. The real HI will be modulated by
the surface, but given the small overall effect of HI, we
argue that explicitly including them is not important for
the colloidal explosions we studied.

Conclusions. – In summary, we have exploited the
ability to carefully control and characterize a colloidal
model system to generate non-equilibrium pattern forma-
tion in colloidal explosions. For a 2d initial geometry, we
observe patterns with expanding concentric rings that can
be explained by the initial shell-like ordering. For the 1d
geometry, we observe explosions with a zigzag pattern at
fields strengths well below those that would break the
linear symmetry in equilibrium. Furthermore, a quantita-
tive comparison to phonon dispersion relationships allows
us to characterize the non-harmonic nature of the traps.
More generally, we have introduced “colloidal explo-

sions,” a new way to generate well-characterized non-
equilibrium behaviour in colloidal systems. It should be
possible to create such explosions with a range of different
kinds of confining potentials and repulsive inter-particle
interactions. This methodology can be applied to a wide
variety of other geometries, leading to potential applica-
tions, for example, in microfluidics.
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