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The chemical Fokker-Planck equation and the corresponding chemical Langevin equation are com-
monly used approximations of the chemical master equation. These equations are derived from an
uncontrolled, second-order truncation of the Kramers-Moyal expansion of the chemical master equa-
tion and hence their accuracy remains to be clarified. We use the system-size expansion to show that
chemical Fokker-Planck estimates of the mean concentrations and of the variance of the concen-
tration fluctuations about the mean are accurate to order �−3/2 for reaction systems which do not
obey detailed balance and at least accurate to order �−2 for systems obeying detailed balance, where
� is the characteristic size of the system. Hence, the chemical Fokker-Planck equation turns out
to be more accurate than the linear-noise approximation of the chemical master equation (the lin-
ear Fokker-Planck equation) which leads to mean concentration estimates accurate to order �−1/2

and variance estimates accurate to order �−3/2. This higher accuracy is particularly conspicuous for
chemical systems realized in small volumes such as biochemical reactions inside cells. A formula is
also obtained for the approximate size of the relative errors in the concentration and variance pre-
dictions of the chemical Fokker-Planck equation, where the relative error is defined as the difference
between the predictions of the chemical Fokker-Planck equation and the master equation divided by
the prediction of the master equation. For dimerization and enzyme-catalyzed reactions, the errors
are typically less than few percent even when the steady-state is characterized by merely few tens of
molecules. © 2011 American Institute of Physics. [doi:10.1063/1.3625958]

I. INTRODUCTION

Chemical master equations (CMEs) are the accepted
mathematical description of chemical systems in well-mixed
conditions.1 These equations provide a mesoscopic descrip-
tion of chemical kinetics, interpolating between the micro-
scopic regime of molecular dynamics, and the macroscopic
regime of rate equations (REs). It has been shown that CMEs
are exact descriptions for any well stirred and thermally
equilibrated gas-phase chemical system.2 More recently, it
has been rigorously confirmed that their validity extends to
chemical reactions in well-stirred dilute solutions.3 However,
well before these rigorous demonstrations of the microscopic
physical basis of the CME, scientists have employed these
equations to probe the nature of mesoscopic chemical kinet-
ics and, in particular, to understand how this may differ from
kinetics on macroscopic length scales (see McQuarrie for a
review4 of the literature up till 1967).

We briefly review the CME formalism. Consider a gen-
eral chemical system consisting of a number N of distinct
chemical species interacting via R elementary chemical reac-
tions of the type

s1jX1 + · · · + sNjXN

kj−→ r1jX1 + · · · + rNjXN. (1)

Here, j is an index running from 1 to R, Xi denotes chemical
species i, sij , and rij are the stoichiometric coefficients, and

a)Author to whom correspondence should be addressed. Electronic mail:
ramon.grima@ed.ac.uk.

kj is the macroscopic rate of reaction. If this system is well
mixed, then its mesoscopic state is fully determined by the
vector of the absolute number of molecules of each species,
�n = (n1, . . . , nN )T , where ni is the number of molecules of
the ith species. The CME is then a time-evolution equation for
the probability of the system being in a particular mesoscopic
state,1, 5

∂P (�n, t)

∂t
= �

R∑
j=1

(
N∏

i=1

E
−Sij

i − 1

)
f̂j (�n,�)P (�n, t), (2)

where � is the volume of the compartment in which the re-
actions occur and Ex

i is a step operator – when it acts on
some function of the absolute number of molecules, it gives
back the same function but with ni replaced by ni + x. The
chemical reaction details are encapsulated in the stoichiomet-
ric matrix Sij = rij − sij and in the microscopic rate func-
tions f̂j (�n,�). The probability that the j th reaction occurs in
the time interval [t, t + dt) is given by �f̂j (�n,�)dt . For el-
ementary reactions, the microscopic rate function takes one
of four different forms, depending on the order of the j th re-
action: (i) a zeroth-order reaction by which a species is in-
put into a compartment gives f̂j (�n,�) = kj ; (ii) a first-order
unimolecular reaction involving the decay of some species h

gives f̂j (�n,�) = kjnh�
−1; (iii) a second-order bimolecular

reaction between two molecules of the same species h gives
f̂j (�n,�) = kjnh(nh − 1)�−2; (iv) a second-order bimolecu-
lar reaction between two molecules of different species, h and
v, gives f̂j (�n,�) = kjnhnv�

−2.
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The RE description of the same system is much simpler.
Denoting the macroscopic concentration of species i by φi ,
the set of REs describing the macroscopic kinetics of the re-
active system represented by Eq. (1) are given by

∂φi

∂t
=

R∑
j=1

Sijfj ( �φ), (3)

where �φ = (φ1, . . . , φN )T is the vector of macroscopic con-
centrations and fj is the macroscopic rate function of the
j th reaction which has the general mass-action form, fj ( �φ)
= kj

∏N
m=1 φ

smj

m . The REs provide a continuous deterministic
“many molecule” description of kinetics. This strongly con-
trasts with the CME description which constitutes a discrete,
stochastic, “any number of molecule” description that is faith-
ful to the underlying microscopic basis of chemical reactions.

Unfortunately, one of the main advantages of CMEs over
their RE cousins, their discrete description, is also the source
of their computational intractability. Differential-difference
equations, such as the CME,4 do not lend themselves easily
to analysis. In contrast, there is a vast body of literature in
engineering, mathematics, and physics dealing with the anal-
ysis and solution of differential and partial differential equa-
tions. Thus at an early stage, considerable effort was invested
in obtaining a partial differential approximation of the CME.
In the 1940s, Kramers6 and Moyal7 developed a Taylor series
expansion of the CME; by assuming that all terms with deriva-
tives greater than two are negligible, one obtains the chemical
Fokker-Planck equation (CFPE, Ref. 8), a second-order par-
tial differential equation of the form

∂P (�n, t)

∂t
= �

R∑
j=1

(
−

N∑
i=1

Sij

∂

∂ni

+ 1

2

N∑
i,w=1

SijSwj

∂2

∂ni∂nw

)

× f̂j (�n,�)P (�n, t). (4)

As Gardiner mentions in his book,8 “this procedure enjoyed
wide popularity – mainly because of the convenience and sim-
plicity of the result” and also because “it is often simpler to
use the Fokker-Planck equation than the Master equation.”
A major and important difference between the CME and the
CFPE is that ni is a positive integer for the CME while it is a
real number for the CFPE.

Several authors have questioned the validity of the CFPE
approximation. The approximation is obtained by a perfunc-
tory truncation of the Taylor expansion and hence it appears to
be an uncontrolled and unjustified approximation of the CME.
van Kampen, in particular, was a leading and influential critic
of the CFPE approximation. In the 1960s and 1970s, he de-
veloped a systematic perturbative expansion of the CME in
powers of the inverse square root of the system volume �

(the system-size expansion) and used it to show that to low-
est order in the expansion, i.e., in the limit of large volumes –
the macroscopic limit, one obtains a Fokker-Planck equation
which is of a different form than the CFPE.9, 10 Of particu-
lar concern is that van Kampen’s Fokker-Planck equation is
linear, whereas the CFPE is nonlinear. Note that by nonlin-
ear Fokker-Planck equation, here, we mean one such that its
drift and diffusion coefficients are generally nonlinear func-

tions of the molecule numbers ni ; this convention is adopted
since it is in mainstream use, for example, see the book by
van Kampen.5 Taking into account higher order terms in the
system-size expansion do not lead to the CFPE as well. How-
ever, interestingly, in the limit of large volumes, the CFPE
does reduce to van Kampen’s linear Fokker-Planck equation.8

This led van Kampen to conclude that any features arising
from the nonlinear character of the CFPE are spurious and
not to be taken seriously.11 We note that the limit of large
volumes in van Kampen’s system-size expansion is taken at
fixed macroscopic concentrations and hence it corresponds to
the limit of large molecule numbers.5 Hence, van Kampen’s
conclusions can be equivalently stated as: the CFPE becomes
a legitimate approximation of the CME in the limit of large
molecular populations.

A few studies at the time12, 13 did suggest that the
CFPE’s validity extended beyond the linear regime. Of par-
ticular importance is a result of Horsthemke and Brenig13

which motivated the present study. The authors considered a
simple dimerization reaction O → X,X + X → Y whereby
molecules of a monomer species X are introduced in a com-
partment of volume � and subsequently they bind to each
other to form dimers Y . Assuming stationary conditions,
the CME and CFPE are solved exactly. It is shown that
the average concentration of monomers and the variance of
the fluctuations from the two formalisms agree exactly to
order �−1 and are, respectively, equal to φ + (8�)−1 and
(3/4)φ �−1, where φ is the macroscopic concentration ob-
tained by solving the corresponding RE in steady-state condi-
tions. The same example can be found worked in van Kam-
pen’s book5 wherein he shows that the linear-noise approxi-
mation gives mean and variance equal to φ and (3/4)φ �−1.
As we mentioned before, a linearization of the CFPE will
lead to the linear-noise approximation and hence from this
example we can conclude that the nonlinearity of the CFPE
is non-spurious since it leads to a more accurate concentra-
tion estimate than that which is obtained from the linear-noise
approximation. However, one could argue that this higher ac-
curacy is only particular to the dimerization example and not
a general feature of the CFPE. Because of this or other rea-
sons, the results of Hortshemke and Brenig do not appear to
have received the attention they deserved at the time and van
Kampen’s conclusions about the CFPE were accepted, by and
large, by the statistical physics community.

Approximately 40 years later after the inception of the
system-size expansion, Gillespie revived the question of the
validity of the CFPE by deriving it without invoking trunca-
tion of the Kramers-Moyal expansion of the CME.14 To be
precise, he derived the chemical Langevin equation (CLE),

∂

∂t
ni(t) = �

R∑
j=1

Sij f̂j (�n(t),�)

+�1/2
R∑

j=1

Sij

√
f̂j (�n(t),�))�j (t), (5)

where �j (t) are temporally uncorrelated, independent Gaus-
sian white noises. This stochastic differential equation is ex-
actly equivalent to the CFPE in the sense that its solution



084103-3 Accuracy of the Fokker-Planck equation J. Chem. Phys. 135, 084103 (2011)

generates exact sample paths of the CFPE, Eq. (4). Es-
sentially, he showed that the CFPE approximation is valid
provided two conditions are satisfied. A large number of
molecules suffices to ensure that both conditions are satis-
fied; however, this is not a necessary condition. This suggests
that there are regimes in which the particle numbers may not
be very large and yet the CFPE may still provide a reason-
ably good approximation of the CME. However, Gillespie’s
derivation does not provide us with a means to estimate the
accuracy of the CFPE for general chemical systems.

Questions regarding the validity and accuracy of the
CFPE and the CLE are more important now than ever be-
fore. In the past decade, interest has virtually exploded in re-
alistic stochastic simulations of biochemical reactions inside
cells.15–18 The exact method of sampling the trajectories of
the CME, the stochastic simulation algorithm,19 is computa-
tionally expensive and the CME is analytically intractable;
thus approximate methods such as the CFPE and the CLE
have come to the foreground as an alternative means to ob-
tain numerical and theoretical insight into the functioning of
intracellular biochemical networks.20–24 These networks are
typically characterized by a large number of bimolecular re-
actions in which at least one of the species is present in very
small molecule numbers,16, 25, 26 indeed the precise conditions
in which the fidelity of the CFPE remains unclear. Hence, the
question of the accuracy of the CFPE has nowadays become a
practical one – how much can we trust the conclusions derived
from the CFPE or the corresponding CLE?

In this article, we derive formulas to estimate the relative
error in the CFPE predictions of the mean concentrations and
of the variance of the fluctuations about the mean. The re-
sults are valid for all monostable chemical reaction networks.
As a by-product of our derivation, we will also clarify the
connection between the CFPE and van Kampen’s system-size
expansion, in particular, showing that the nonlinear charac-
ter of the CFPE is not completely spurious and that generally
CFPE estimates are more accurate than those obtained from
the linear Fokker-Planck equation. The article is organized as
follows. In Sec. II, we use the multivariate system-size expan-
sion to derive expressions for the mean concentrations and for
the variance of the fluctuations as predicted by the CME accu-
rate to order O(�−2). In Sec. III, we develop the system-size
expansion of the CFPE and use it to derive expressions for
the mean concentrations and for the variance of the fluctua-
tions accurate to the same order as derived for the CME in
Sec. II. In Sec. IV, we use the results in Secs. II and III to de-
rive expressions for the relative error in the predictions of the
CFPE. We also compare the predictions of the CFPE and the
linear Fokker-Planck equation. These results are tested on two
bimolecular reaction systems – dimerization and an enzyme-
catalyzed reaction – in Sec. V. We conclude by a discussion
in Sec. VI.

II. PERTURBATIVE EXPANSION OF THE CME

A. The multivariate system-size expansion of the CME

We will now probe the mesoscopic description provided
by the CME using the system-size expansion developed by

van Kampen.5 This method allows one to derive expressions
for the mean concentrations and for the variance of the fluc-
tuations about these concentrations, as predicted by the CME,
accurate to the order of any desired power of the inverse
square root of the volume. The only requirement for the ex-
pansion to hold is that the steady-state of the chemical system
is asymptotically stable. For the applications that we are inter-
ested in, namely, biochemical reactions in intracellular condi-
tions, the number of molecules can be very small, in some
cases just few tens of molecules of a given species per cell.
We will derive equations accurate to O(�−2) – this accuracy
should be more than sufficient for the applications mentioned
since terms of lower order, O(�−1), already imply corrections
to the concentrations of the order of a single molecule in the
compartment. To our knowledge, this is the first time that the
system-size expansion has been carried to this order for a gen-
eral system of N interacting chemical species. van Kampen
has treated a one species example to the same order in his
book,5 while Elf and Ehrenberg27 have derived the multivari-
ate expansion to O(�0).

The starting point of the system-size expansion is to write
the absolute number of molecules of species i as

ni

�
= φi + �−1/2εi, (6)

where φi is the macroscopic concentration of species i as de-
termined by the REs. This has the effect of transforming all
functions of ni in the CME into functions of εi . The expan-
sion of the CME proceeds by writing Eq. (2) in terms of the
new variables. Details of this transformation can be found in
Ref. 28; here, we will simply state the relevant results and use
them for our present derivation. The variable change causes
the probability distribution of molecular populations, P (�n, t),
to be transformed into the probability distribution of fluctua-
tions, �(�ε, t), where �ε = (ε1, . . . , εN )T . The time derivative,
the step operator and the microscopic rate function in the
CME, read in the new variables

∂P (�n, t)

∂t
= ∂�(�ε, t)

∂t
− �1/2

N∑
i=1

∂φi

∂t

∂�(�ε, t)
∂εi

, (7)

N∏
i=1

E
−Sij

i − 1 =
∞∑

k=1

(−1)k�−k/2ak
j , (8)

f̂j =
2∑

k=0

�−k/2bk
j + c2

j�
−1 + c3

j�
−3/2, (9)

where

ak
j = 1

k!

(
N∑

i=1

Sij

∂

∂εi

)k

, (10)

bk
j = 1

k!

(
N∑

w=1

εw

∂

∂φw

)k

fj ( �φ), (11)

c2
j = −1

2

N∑
w=1

φw

∂2fj ( �φ)

∂φ2
w

, (12)

c3
j = −1

2

N∑
w=1

εw

∂2fj ( �φ)

∂φ2
w

. (13)
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Note that in Eq. (9), the microscopic rate function is ex-
pressed in terms of the macroscopic rate function. As we
shall shortly see, this is convenient from a calculation point of
view since the final expressions for the means and variances
will be solely in terms of functions which appear in the REs.
Note that the upper limit of the sum in Eq. (9) is 2 because
all reactions involve at most the interaction of two molecules
and hence bk

j equals zero for k > 2. Although our analysis is
specifically for elementary reactions, one can easily extend
the approach to include “elementary complex” reactions.27

However, we shall not pursue this here.
Substituting Eqs. (7)–(9) in Eq. (2) we get the following

new form of the CME,

∂�(�ε, t)
∂t

= �0
R∑

j=1

(
a2

j b
0
j − a1

j b
1
j

)
�(�ε, t)

+�−1/2
R∑

j=1

(
a2

j b
1
j − a1

j b
2
j − a1

j c
2
j − a3

j b
0
j

)
�(�ε, t)

+�−1
R∑

j=1

(
a2

j b
2
j + a2

j c
2
j + a4

j b
0
j − a1

j c
3
j − a3

j b
1
j

)
�(�ε, t)

+�−3/2
R∑

j=1

(
a2

j c
3
j + a4

j b
1
j − a3

j b
2
j − a3

j c
2
j − a5

j b
0
j

)

×�(�ε, t) + O(�−2). (14)

Note that terms proportional to �1/2 do not appear in the ex-
pansion of the CME. This is because when one substitutes
Eqs. (7)–(9) in Eq. (2), one equates terms of this order on both
sides of the CME which simply gives us back the macroscopic
REs, Eq. (3).

To proceed further, we need the explicit dependence of
the right-hand side of Eq. (14) on the new variables εi . This
is obtained by substituting Eqs. (10)–(13) in Eq. (14) which
leads to

∂�(�ε, t)
∂t

= �0

(
−Jw

i ∂i(εw�) + 1

2
Dip∂2

ip�

)

+�−1/2

(
−1

2
J

wp

i ∂i(εwεp�) + 1

2
φwJ

w(2)
i ∂i�

+ 1

2
Jw

ip∂2
ip(εw�) − 1

6
Dipw∂3

ipw�

)

+�−1

(
1

2
J

w(2)
i ∂i(εw�) + 1

4
Jwm

ip ∂2
ip(εwεm�)

− 1

4
J

w(2)
ip φw∂2

ip� − 1

6
Jw

ipm∂3
ipm(εw�) + 1

24
Dipmw∂4

ipmw�

)

+�−3/2

(
− 1

4
J

w(2)
ip ∂ip(εw�) + 1

24
Jw

ipmr∂ipmr (εw�)

− 1

12
Jwk

ipm∂ipm(εwεk�) + 1

12
J

w(2)
ipm φw∂ipm�

− 1

120
Dipmrs∂ipmrs�

)
+ O(�−2). (15)

Note that in the above equation, we have used the Einstein
summation convention where all twice repeated indices are
understood to be summed over 1 to N . The partial derivative
∂n
i..j denotes ∂n/∂εi ..∂εj . We have also used the following two

convenient definitions:

Dij..r =
R∑

k=1

SikSjk . . . Srkfk( �φ), (16)

J st..z
ij..r = ∂

∂φs

∂

∂φt

. . .
∂

∂φz

Dij..r , J
s(2)
ij..r = J ss

ij..r . (17)

From Eq. (3), it follows that Di = ∂φi/∂t and consequently
J s

i represents the i-s element of the Jacobian matrix associ-
ated with the REs of the system.

Note that Eq. (15) to order �0 is the linear Fokker-
Planck equation which was mentioned in the Introduction.
The drift vector is linear in the ε variables while the dif-
fusion tensor is independent of them. Both depend on time
via their own dependence on the macroscopic concentrations.
This level of approximation is frequently called the linear-
noise approximation, a nowadays popular means of estimat-
ing the size of the concentration fluctuations about the macro-
scopic concentrations.27 We are interested in the dynamics on
mesoscopic length scales and hence we shall consider terms
of higher order than �0 in Eq. (15).

B. Time-evolution equations for the moments

We now proceed to construct equations for the moments
of the ε variables. We start by expanding �(�ε, t) as a series in
powers of the inverse square root of the volume

�(�ε, t) =
∞∑

j=0

�j (�ε, t)�−j/2, (18)

from which it follows that the moments possess an equivalent
expansion:

〈εkεm . . . εr〉 =
∞∑

j=0

[εkεm . . . εr ]j�
−j/2, (19)

where

[εkεm . . . εr ]j =
∫

εkεm . . . εr �j (�ε, t)d�ε. (20)

The angled brackets denote the statistical average. Some
subtle points associated with the perturbative expansion in
the probability density and with the physical interpretation
of [εkεm . . . εr ]j are discussed in Appendix A. The time-
evolution equations for the moments are obtained as follows.
One starts by substituting Eq. (18) in Eq. (15), multiplying the
resulting equation on both sides by εkεm . . . εr and integrating
over d�ε. Equating terms of order �−j/2 on both sides of the
equation gives the time-evolution equation for [εkεm . . . εr ]j .
Finally, one constructs the time-evolution equation for the
moments using Eq. (19).
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As mentioned earlier, our aim is to determine the mean
concentrations and the variance of the fluctuations about the
means and hence we must relate the latter to the moments of
the ε variables above. Using Eqs. (6) and (19), one can easily
verify that the mean concentration of species i and the vari-
ance of the fluctuations about it, accurate to order �−2 are,
respectively, given by〈

ni

�

〉
= φi + �−1/2〈εi〉 = φi + �−1/2

3∑
j=0

[εi]j�
−j/2

+O(�−5/2), (21)

σ 2
i =

〈(ni

�

)2
〉
−

〈
ni

�

〉2

= �−1
(〈
ε2
i

〉 − 〈εi〉2
)

= �−1

⎛
⎜⎝ 2∑

j=0

[ε2
i ]j�

−j/2 −
⎛
⎝ 1∑

j=0

[εi]j�
−j/2

⎞
⎠

2

−�−1[εi]0[εi]2

⎞
⎟⎠ + O(�−5/2). (22)

Hence, it is clear that to determine the mean and variance ac-
curate to order �−2, we shall need to determine the first and
second moments of the ε variables accurate to orders �−3/2

and �−1, respectively.
We proceed by implementing the calculation recipe out-

lined just after Eq. (20) to derive equations for the corrections
to the second moments accurate to order �−1,

∂

∂t
[εrεk]0 = Jw

r [εwεk]0 + (r ↔ k) + Drk, (23)

∂

∂t
[εrεk]1 = Jw

r [εwεk]1 + 1

2
Jwp

r [εwεpεk]0 − 1

2
Jw(2)

r φw[εk]0

+ (r ↔ k) + Jw
kr [εw]0, (24)

∂

∂t
[εrεk]2 = Jw

r [εwεk]2 + 1

2
Jwp

r [εwεpεk]1 − 1

2
Jw(2)

r φw[εk]1

− 1

2
Jw(2)

r [εwεk]0 + (r ↔ k) + Jw
kr [εw]1

+ 1

2
Jwm

rk [εwεm]0 − 1

2
J

w(2)
rk φw. (25)

Details of the calculations leading to the above equations
are illustrated by a step-by-step derivation of Eq. (25) in
Appendix B. Note that the short-hand notation (r ↔ k) stands
for all the expressions of the same form as the ones preceding
the notation but with r and k interchanged. For example in
Eq. (24), (r ↔ k) stands for Jw

k [εwεr ]1 + (1/2)Jwp

k [εwεpεr ]0

− (1/2)Jw(2)
k φw[εr ]0. This notation will be used throughout

the rest of the article since it enables the equations to be writ-
ten in a compact way.

The equation for [εrεk]0, Eq. (23), is a Lyapunov equa-
tion which can be solved either analytically (see, for example,
Refs. 27 and 30) or else numerically, for example, using the

built in functions of Matlab and Mathematica. Solution of the
equation for [εrεk]1, Eq. (24), requires the solutions of the
equations for the first and third moments to order �0,

∂

∂t
[εr ]0 = Jw

r [εw]0, (26)

∂

∂t
[εrεkεl]0 = Jw

l [εwεkεr ]0 + (l ↔ k) + (k ↔ r)

+Drl[εk]0 + (k ↔ l) + (r ↔ l). (27)

Note that in Eq. (27), (l ↔ k) + (k ↔ r) stands for two ex-
pressions; the first expression corresponds to the first term on
the right-hand side of Eq. (27) with l and k interchanged and
the second expression is the first expression just obtained with
k and r interchanged. By a similar reasoning, it follows that
(k ↔ l) + (r ↔ l) in Eq. (27) stands for Drk[εl]0 + Dlk[εr ]0.
Note that in steady-state conditions, [εr ]0 = [εrεkεl]0 = 0 and
consequently there is no correction to the second moments to
O(�−1), i.e., [εrεk]1 = 0.

Solution of the equation for [εrεk]2, Eq. (25), requires the
solutions of the corrections to the first and third moments to
order �−1/2 and the second and fourth moments to order �0,

∂

∂t
[εr ]1 = Jw

r [εw]1 + 1

2
Jwp

r [εwεp]0 − 1

2
Jw(2)

r φw, (28)

∂

∂t
[εrεkεl]1 = Jw

l [εwεkεr ]1 + 1

2
J

wp

l [εwεpεrεk]0

− 1

2
J

w(2)
l φw[εrεk]0 + (l ↔ k) + (k ↔ r)

+Drl[εk]1 + Jw
rl [εwεk]0 + (k ↔ l) + (r ↔ l)

+Drkl, (29)

∂

∂t
[εrεkεlεm]0 = Jw

r [εwεkεlεm]0 + (r ↔ m) + (m ↔ k)

+ (k ↔ l) + Drm[εkεl]0 + (m ↔ l)

+ (l ↔ k) + (r ↔ m) + (m ↔ l)

+ (k ↔ m). (30)

The procedure to obtain the second moments to order �−1

is now clear. One first solves Eq. (23) to get [εrεk]0; then
one solves Eqs. (26) and (27) and substitutes in Eq. (24) to
get [εrεk]1; finally, one solves Eqs. (28)–(30) and substitutes
these, together with the solution of Eq. (23), in Eq. (25) to
get [εrεk]2.

The first moment equations and the corresponding equa-
tions for the mean concentrations can be obtained in an anal-
ogous manner as for the second moments. The equations for
[εr ]0 and [εr ]1 have been already derived, Eqs. (26) and (28),
respectively. The equations for [εr ]2 and [εr ]3 are given by

∂

∂t
[εr ]2 = Jw

r [εw]2 + 1

2
Jwp

r [εwεp]1 − 1

2
Jw(2)

r [εw]0, (31)

∂

∂t
[εr ]3 = Jw

r [εw]3 + 1

2
Jwp

r [εwεp]2 − 1

2
Jw(2)

r [εw]1. (32)

The procedure to obtain the first moments to order �−3/2 is
now also clear. One first solves Eq. (26) to get [εr ]0; then
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one solves Eq. (23) and substitutes in Eq. (28) to obtain [εr ]1;
finally, one uses the solutions already obtained when deriv-
ing the second moments to solve Eqs. (31) and (32) for [εr ]2

and [εr ]3.
Given the first and second moments accurate to �−3/2

and �−1, one finally determines the mean concentrations and
the variance of the fluctuations about them accurate to �−2

from Eqs. (21) and (22). Although the procedure of obtaining
the latter final expressions is fairly laborious, as we shall see
in Sec. III, in order to obtain the leading order error in the
predictions of the CFPE, it will only be necessary for us to
solve very few of these equations explicitly.

III. PERTURBATIVE EXPANSION OF THE CFPE

In this section, we use the system-size expansion to de-
rive expressions for the mean concentrations and the fluc-
tuations about them, as predicted by the CFPE, accurate to
O(�−2). To the best of our knowledge, this is the first time
that the expansion has been used on the CFPE although the
method is similar, in principle, to the small-noise expansion
of Fokker-Planck equations as presented by Gardiner.8 The
CFPE is obtained by truncating the Kramers-Moyal expan-
sion to include at most second-order derivatives

∂P (�n, t)

∂t
= �

R∑
j=1

(
N∏

i=1

E
−Sij

i − 1

)
f̂j (�n,�)P (�n, t)

= �

R∑
j=1

(
N∏

i=1

e−Sij ∂/∂ni − 1

)
f̂j (�n,�)P (�n, t)

� �

R∑
j=1

(
−

N∑
i=1

Sij

∂

∂ni

+ 1

2

N∑
i,w=1

SijSwj

∂2

∂ni∂nw

)

× f̂j (�n,�)P (�n, t). (33)

Note that the second step above, follows by Taylor expanding
the step operator.

Next, we perform the system-size expansion on the
CFPE, Eq. (33), i.e., we make the variable transformation
given by Eq. (6) which transforms functions of ni into func-
tions of the new variables εi . The probability distribution
P (�n, t) is transformed into a new one �F (�ε, t). Note that the
subscript F will be used to distinguish quantities calculated
using the CFPE from those previously calculated using the
CME. The time derivative on the left-hand side of the equa-
tion and the microscopic rate function f̂j (�n) transform as in
the case of the CME and are given by Eqs. (7) and (9) together
with the definitions Eqs. (11)–(13) and with �(�ε, t) replaced
by �F (�ε, t). The operators involving derivatives with respect
to absolute particle number transform as follows:

N∑
i=1

Sij

∂

∂ni

= �−1/2a1
j , (34)

1

2

N∑
i,w=1

SijSwj

∂2

∂ni∂nw

= �−1a2
j , (35)

where the operators ak
j are as defined in Eq. (10). Hence, the

CFPE in the new variables reads

∂�F (�ε, t)
∂t

= �0
R∑

j=1

(
a2

j b
0
j − a1

j b
1
j

)
�F (�ε, t)

+�−1/2
R∑

j=1

(
a2

j b
1
j − a1

j b
2
j − a1

j c
2
j

)
�F (�ε, t)

+�−1
R∑

j=1

(
a2

j b
2
j + a2

j c
2
j − a1

j c
3
j

)
�F (�ε, t)

+�−3/2
R∑

j=1

a2
j c

3
j�F (�ε, t). (36)

Note that whereas the transformation given by Eq. (6) on the
CME leads to an infinite series in powers of the inverse square
root of the volume, Eq. (14), the same transformation on the
CFPE leads to a finite series with the highest order term being
of order �−3/2 (this is only true for elementary reactions).

The derivation of the equations for the time evolution of
the moments of the ε variables proceeds in an exactly anal-
ogous manner as to that presented in detail in Sec. II. The
probability distribution is written as a series in powers of the
inverse square root of the volume,

�F (�ε, t) =
3∑

j=0

�F,j (�ε, t)�−j/2, (37)

and the moments are then generally given by

〈εkεm . . . εr〉F =
3∑

j=0

[εkεm . . . εr ]F,j�
−j/2, (38)

where

[εkεm . . . εr ]F,j =
∫

εkεm . . . εr �F,j (�ε, t)d�ε. (39)

The equations for the mean concentrations and the variance
of the fluctuations about them are given by Eqs. (21) and (22)
with the subscript F carried throughout. The time-evolution
equations for the corrections to the moments can be derived
as before. Although there is some repetition involved, we will
state these equations in full so that the differences between
them and those derived using the CME are very clear.

The equations for the corrections to the second moments
accurate to order �−1 are

∂

∂t
[εrεk]F,0 = Jw

r [εwεk]F,0 + (r ↔ k) + Drk, (40)

∂

∂t
[εrεk]F,1 = Jw

r [εwεk]F,1 + 1

2
Jwp

r [εwεpεk]F,0

− 1

2
Jw(2)

r φw[εk]F,0 + (r ↔ k) + Jw
kr [εw]F,0,

(41)
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∂

∂t
[εrεk]F,2 = Jw

r [εwεk]F,2 + 1

2
Jwp

r [εwεpεk]F,1

− 1

2
Jw(2)

r φw[εk]F,1 − 1

2
Jw(2)

r [εwεk]F,0

+ (r ↔ k) + Jw
kr [εw]F,1 + 1

2
Jwm

rk [εwεm]F,0

− 1

2
J

w(2)
rk φw. (42)

Note that these are the same as Eqs. (23)–(25) but with
subscript F ; the implicit reason for this is that only terms
containing a1

j and a2
j contribute to the equations for the

second moments and all such terms are equally present in
Eqs. (14) and (36). Note also that Eqs. (23) and (40) lead to
the same solution, i.e., [εrεk]0 = [εrεk]F,0. The solution of
[εrεk]F,1 is dependent on the solutions of the time-evolution
equations for [εr ]F,0 and [εrεkεl]F,0. The equations for the lat-
ter are the same as Eqs. (26) and (27) but with subscript F ; this
is since Eqs. (14) and (36) are equal to order �0. It follows that
[εr ]0 = [εr ]F,0 and [εrεkεl]0 = [εrεkεl]F,0 from which we can
conclude using Eq. (41) that [εrεk]1 = [εrεk]F,1. However, as
we now show, generally [εrεk]2 	= [εrεk]F,2.

The solution of [εrεk]F,2 is dependent on the solutions
of the time-evolution equations for [εr ]F,1, [εrεkεl]F,1 and
[εrεkεlεm]F,0 which are

∂

∂t
[εr ]F,1 = Jw

r [εw]F,1 + 1

2
Jwp

r [εwεp]F,0 − 1

2
Jw(2)

r φw,

(43)

∂

∂t
[εrεkεl]F,1 = Jw

l [εwεkεr ]F,1 + 1

2
J

wp

l [εwεpεrεk]F,0

− 1

2
J

w(2)
l φw[εrεk]F,0 + (l ↔ k) + (k ↔ r)

+Drl[εk]F,1 + Jw
rl [εwεk]F,0 + (k ↔ l)

+ (r ↔ l), (44)

∂

∂t
[εrεkεlεm]F,0 = Jw

r [εwεkεlεm]F,0 + (r ↔ m) + (m ↔ k)

+ (k ↔ l) + Drm[εkεl]F,0 + (m ↔ l)

+ (l ↔ k) + (r ↔ m) + (m ↔ l)

+ (k ↔ m). (45)

Equations (43) and (45) have the same form as
Eqs. (28) and (30), respectively. This combined with the fact
that the right-hand sides of Eqs. (43) and (45) are functions
of [εrεk]F,0 and that [εrεk]0 = [εrεk]F,0, implies that [εr ]1

= [εr ]F,1 and [εrεkεlεm]0 = [εrεkεlεm]F,0. However, note that
Eq. (44) has one term missing compared to its counterpart
Eq. (29) and hence generally [εrεkεl]1 	= [εrεkεl]F,1 from
which it follows using Eq. (42) that [εrεk]2 	= [εrεk]F,2.

The only remaining equations to be considered are those
paralleling Eqs. (31) and (32) for which we find

∂

∂t
[εr ]F,2 = Jw

r [εw]F,2 + 1

2
Jwp

r [εwεp]F,1 − 1

2
Jw(2)

r [εw]F,0,

(46)

∂

∂t
[εr ]F,3 = Jw

r [εw]F,3 + 1

2
Jwp

r [εwεp]F,2 − 1

2
Jw(2)

r [εw]F,1.

(47)

By similar arguments to the above, these equations imply
[εr ]2 = [εr ]F,2 and [εr ]3 	= [εr ]F,3.

Hence, in summary, we have obtained the following
results:

1. [εr ]0 = [εr ]F,0, [εrεk]0 = [εrεk]F,0, [εrεkεl]0 = [εrεkεl]F,0,

[εrεkεlεm]0 = [εrεkεlεm]F,0,

2. [εr ]1 = [εr ]F,1, [εrεk]1 = [εrεk]F,1, [εrεkεl]1 	= [εrεkεl]F,1,

3. [εr ]2 = [εr ]F,2, [εrεk]2 	= [εrεk]F,2, and
4. [εr ]3 	= [εr ]F,3.

Note that these results are not for the moments but for the
corrections to the moments; the real physical meaning of these
results in terms of means and variances will be elucidated in
Sec. IV.

Using Eqs. (32) and (47), Eqs. (25) and (42), and
Eqs. (29) and (44), we can, respectively, write down simple
equations for the differences in the corrections to the first,
second, and third moments as predicted by the CFPE and the
CME,

∂

∂t
	r = Jw

r 	w + 1

2
Jwp

r 	wp, (48)

∂

∂t
	rk = Jw

r 	wk + Jw
k 	wr + 1

2
(Jwp

r 	wpk + J
wp

k 	wpr ),

(49)

∂

∂t
	rkl = Jw

l 	wkr + Jw
k 	wlr + Jw

r 	wlk + Drkl, (50)

where we have used the convenient definitions

	r = [εr ]3 − [εr ]F,3, (51)

	rk = [εrεk]2 − [εrεk]F,2, (52)

	rkl = [εrεkεl]1 − [εrεkεl]F,1. (53)

IV. COMPARISON OF THE PREDICTIONS OF
THE CFPE AND THE CME

In this section, we will use the results derived in Sec. III
to obtain formulas for the absolute and relative errors (to lead-
ing order) in the CFPE predictions of the mean concentrations
and the variance of the fluctuations. Using these formulas, we
will be able to deduce the general conditions in which the dif-
ferences between the CFPE and the CME are minimal. Fur-
thermore, we will show that the CFPE is generally more ac-
curate than the linear Fokker-Planck equation of van Kampen
and that the mean concentrations of the CFPE to order �−1

are precisely the same as those obtained from effective meso-
scopic rate equations.28
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A. Estimating the absolute and relative errors
in CFPE predictions

We will now derive expressions for the leading order term
of the absolute and relative errors made by the CFPE in pre-
dicting the mean concentrations and the variance of the fluc-
tuations about the mean concentrations. We will also obtain
an expression for the leading order term of the absolute error
made by the CFPE in predicting the skewness of the probabil-
ity distribution of the concentrations.

The mean concentration predicted by the CME, 〈ni/�〉,
is given by Eq. (21) while the mean concentration predicted
by the CFPE, 〈ni/�〉F is given by the same equation but with
the subscript F carried throughout. Subtracting the two ex-
pressions and using the summary of results in Sec. III together
with Eq. (51) we get the absolute error in the CFPE concen-
tration 〈

ni

�

〉
−

〈
ni

�

〉
F

= 	i�
−2 + O(�−5/2). (54)

The relative error follows easily:

Ei
mean =

[〈
ni

�

〉
−

〈
ni

�

〉
F

]〈
ni

�

〉−1

= 	i

φi

�−2 + O(�−5/2).

(55)
Similarly, using Eq. (22) and the summary of results in Sec.
III together with Eq. (52), we find the absolute and relative
errors in the variance of the fluctuations to, respectively, be
given by

σ 2
i − σ 2

F,i = 	ii�
−2 + O(�−5/2), (56)

Ei
var = σ 2

i − σ 2
F,i

σ 2
i

= 	ii

σ 2
i,LNA

�−2 + O(�−5/2), (57)

where σ 2
i,LNA is the variance in the concentration of species

i as estimated by the linear-noise approximation, i.e., σ 2
i,LNA

= �−1([ε2
i ]0 − [εi]2

0). Hence, the recipe for calculating the er-
rors of the CFPE predictions is now complete. One first solves
Eqs. (48)–(50) and then substitutes their solution in Eqs. (54)–
(57). Note that this calculation recipe is valid for all times and
not only in steady-state conditions.

Note also that since the denominator in Eq. (57) is the
linear-noise approximation estimate for the variance then the
leading relative error term in the variance is proportional to
�−1. In contrast, the leading relative error term in the mean
concentrations, Eq. (55), is proportional to �−2. Hence, the
CFPE’s estimates of mean concentrations are generally ex-
pected to be more accurate than those of the variance of the
fluctuations about the mean concentrations.

Finally, we obtain the absolute error in the CFPE pre-
diction of the skewness of the probability distribution of the
concentration of species i. The skewness is defined as

si =
〈(

ni

�
−

〈
ni

�

〉)3〉
σ−3

i . (58)

The absolute error in the skewness is then Ei
skew = si − sF,i ,

where sF,i is the skewness predicted by the CFPE, i.e.,
Eq. (58) with subscript F throughout. As before, by using us-
ing Eqs. (21) and (22) together with the summary of results in

Sec. III and Eq. (53) we get

Ei
skew = 	iii

σ 3
i,LNA

�−2 + O(�−5/2). (59)

B. The CFPE is more accurate than
the linear-noise approximation

We can now answer the question: which of the two, CFPE
or linear Fokker-Planck equation, is the most accurate? We
note that the linear Fokker-Planck equation (or equivalently
the linear-noise approximation) is obtained by keeping only
terms of order �0 in Eq. (14). If we do the same on the ex-
pansion of the CFPE, i.e., Eq. (36), then we also get the same
linear Fokker-Planck equation. This equality implies that the
CFPE becomes correct for large enough volumes or equiv-
alently for large enough molecular populations. This result
was known to van Kampen and is discussed in the book by
Gardiner.8

Within the linear-noise approximation, one can calculate
the two quantities [εr ]0 and [εrεk]0 using Eqs. (26) and (23),
respectively. The quantities [εr ]m and [εrεk]m, where m > 0
are all zero in this approximation since the expansion has only
terms to order �0. Now the initial condition for the CME
is a delta function centered on the number of molecules as
given by the REs, i.e., at time t = 0, the average number of
molecules of the CME and the REs agree and hence it fol-
lows that [εr ]0 = 0 initially and for all times.5 These results
together with Eqs. (21) and (22), would seem to imply that
within the linear-noise approximation, the mean concentra-
tions are accurate to order �−1/2 while the variance is accu-
rate to order �−1. However, by considering terms of higher
order than those leading to the linear-noise approximation,
one arrives at the conclusion that actually the variance within
this approximation is accurate to higher order than �−1. This
can be deduced by noting that [εr ]0 = 0 for all times implies
[εwεkεl]0 = [εrεk]1 = 0 also for all times. Hence, it follows
from Eq. (22) that the variance in the linear-noise approxima-
tion is accurate to order �−3/2.

Now from Eqs. (54) and (56), it is evident that generally
the mean concentration and variance prediction of the CFPE
are accurate to at least order �−3/2. Hence, the mean con-
centration prediction of the CFPE is more accurate than that
which can be obtained from the linear Fokker-Planck equa-
tion. It is also clear that the higher accuracy comes from tak-
ing into account the nonlinear character of the CFPE since
the 	i term in Eq. (54) is obtained by considering terms in
Eqs. (14) and (36) of higher order than the linear-noise ap-
proximation.

We can also derive an explicit equation for the mean con-
centrations predicted by the CFPE accurate to order �−1,

∂t

〈
ni

�

〉
F

= ∂tφi + �−1/2(∂t [εi]F,0�
0 + ∂t [εi]F,1�

−1/2)

+O(�−3/2)

= ∂tφi + Jw
i

(〈
ni

�

〉
F

− φi

)
+ 1

2
�−1(Jwp

i [εwεp]F,0

− J
w(2)
i φw) + O(�−3/2). (60)
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Note that the first step proceeds by taking the time deriva-
tive of Eq. (21) and the second step follows from using Eqs.
(26) and (43), bearing in mind that [εi]F,0 = [εi]0. Hence, the
computation of the mean concentrations to this order requires
only the solution of the REs and of the Lyapunov equation
Eq. (23). Note that Eq. (60) is exactly the same as the effec-
tive rate equations recently derived by Grima from the CME
(Eq. (60) is the same as Eq. (22) together with Eq. (24) in
Ref. 28).

C. The CFPE is highly accurate for equal-step
reactions involving one species

Consider the case, where we have N species interacting
via R elementary reactions of the equal-step type, i.e., in each
individual reaction, either p molecules of a species are gen-
erated or p molecules are destroyed or no molecules are gen-
erated or destroyed. In such a case, the stoichiometric matrix
elements are Sij = ±p or 0, where p is a non-zero positive
integer. Three examples of equal-step reactions are

Ø
k1→ X1, A + X1

k2
⇀↽
k3

2X1, X1
k4→ Ø,

Ø
k1→ 2X1

k2→ Ø,

Ø
k1
⇀↽
k2

X1, Ø
k3
⇀↽
k4

X2, X1 + X2
k5→ Ø.

(61)

The first reaction is autocatalytic, where A is some very abun-
dant species whose number of molecules is considered con-
stant; this is a one-step, one species reaction scheme. The
second reaction involves the burst input of two molecules and
their dimerization, a two-step one species reaction scheme.
The third reaction involves the production and degradation of
two species and their bimolecular interaction; this is a one-
step, two species reaction scheme.

For equal-step reactions, one species reaction schemes,
the quantity D111 evaluates to zero in steady-state conditions

D111 =
R∑

j=1

(S1j )3fj (φ1)

= p2
R∑

j=1

S1j fj (φ1) = 0. (62)

Note that in the last step, use was made of the steady-state
condition: ∂tφ1 = ∑R

j=1 S1j fj (φ1) = 0. From Eqs. (48)–(50),
we can then deduce that 	1 = 	11 = 	111 = 0. Hence, it fol-
lows from Eqs. (54) and (56) that the mean concentrations and
the variance of fluctuations predicted by the CFPE for one
species, equal-step reactions, are accurate to at least order
�−2. This is impressive when one considers that the linear-
noise approximation of the CME only leads to estimates ac-
curate to order �−1/2 in the mean and order �−3/2 in the vari-
ance. These conclusions lend support to the results of an early
investigation of the one species CFPE.29

However, this high accuracy of the CFPE is not gen-
erally true for multispecies equal-step reactions. For exam-
ple, for the third reaction scheme in the examples consid-
ered above, one finds D111 = D222 = 0 and D112 = D121

= D211 = D221 = D212 = D122 = −k5φ1φ2 	= 0. The non-
zero values of Dijk for some index values implies that the
mean and variance predictions of the CFPE in this case are
accurate to order �−3/2.

D. CFPE is highly accurate for multispecies reactions
obeying detailed balance

In the previous subsection, we have seen how Dhkl is zero
for one species, one-step reaction schemes and how this leads
to a particularly high accuracy in the predictions of the CFPE.
We now want to find the condition which forces Dhkl = 0 for
chemical reactions involving any number of species. Consider
the case where all reactions are reversible. Since each reaction
can be paired with its reverse, it follows that the formula for
Dhkl can then be written as

Dhkl =
R∑

j=1

ShjSkjSlj fj ( �φ)

=
R/2∑
z=1

Shz+Skz+Slz+fz+( �φ) + Shz−Skz−Slz−fz−( �φ)

=
R/2∑
z=1

Shz+Skz+Slz+[fz+( �φ) − fz−( �φ)], (63)

where the subscripts + and − indicate quantities evaluated
for the forward and backward reactions, respectively. The re-
versibility condition imposes Shz+ = −Shz− and was used in
deriving the last step. Furthermore, a system of reversible re-
actions will always reach chemical equilibrium and in such
conditions the system is characterized by detailed balance,
i.e., fz+( �φ) = fz−( �φ), the forward and reverse rates of each
elementary reversible reaction balance.30 Hence, by Eq. (63),
Dhkl = 0, in detailed balance conditions, and consequently by
Eqs. (48) and (50) and Eqs. (54) and (56), the CFPE’s predic-
tions of mean and variance are accurate to order �−2. Equi-
librium conditions always imply detailed balance and hence
our results suggest that the size of the differences between the
predictions of the CFPE and the CME increases with how far
is the system from equilibrium.

V. APPLICATIONS

A. Dimerization

As a first application of our theory, we will estimate the
relative errors in the CFPE predictions for a dimerization reac-
tion. This is the simplest case of a bimolecular reaction mech-
anism. The main purpose of considering such a reaction is that
both its CME and CFPE are exactly solvable and hence it pro-
vides us with a direct test of our expressions for the leading
order error in the means and the variances as predicted by the
CFPE. The set of reactions under study are

Ø
k1→ X,

X + X
k2→ Y.

(64)
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Monomers, denoted as X, are pumped into some compart-
ment at a rate k1. Pairs of monomers react with rate constant
k2 to form a dimer molecule, Y . The concentration of dimers
increases with time; however, the concentration of monomers
becomes constant after a short time, i.e., the monomers reach
a steady-state. Since Y is not involved in the reaction, the
mathematical description is solely in terms of the number of
molecules of the monomers for the CME and the CFPE and
in terms of the monomer concentration for the RE.

The CME, Eq. (2), for the dimerization reaction reads

∂tP (n1, t) = k1�
(
E−1

1 − 1
)
P (n1, t) + k2

�

(
E2

1 − 1
)
n1(n1 − 1)

×P (n1, t). (65)

Multiplying the equation on both sides by sn1 and summing
over n1 from 0 to infinity, we get the equivalent generating
function equation

∂tF (s, t) = k1�(s − 1)F (s, t) + k2

�
(1 − s2)

∂2F (s, t)

∂s2
,

(66)
where F (s, t) = ∑

n1
sn1P (n1, t). This partial differential

equation is solved in the steady-state with boundary condi-
tions F (1) = 1 and F (−1) = 0 (Ref. 31) leading to

F (s) = z1/2 I1(4Xz1/2)

I1(4X)
, (67)

where z = (1 + s)/2, X = �(k1/2k2)1/2 and In is the mod-
ified Bessel function of the first kind of order n. The mean
concentration and variance of the concentration fluctuations
about this mean according to the CME are then given by the
following expressions:〈

n1

�

〉
= �−1 ∂F (s)

∂s

∣∣∣∣
s=1

= φ1I0(4node)

I1(4node)
, (68)

σ 2
1 = �−2

(
∂2F (s)

∂s2

∣∣∣∣
s=1

+ ∂F (s)

∂s

∣∣∣∣
s=1

−
[
∂F (s)

∂s

∣∣∣∣
s=1

]2
)

=φ2
1[node[I1(4node)]2−node[I0(4node)]2+I0(4node)I1(4node)]

node[I1(4node)]2
,

(69)

where node = �φ1 is the average number of monomers as pre-
dicted by the REs. Note that these expressions are obtained
within an exact approach and are not approximations as the
ones stemming from the system-size expansion of the CME.

Now we obtain expressions for the mean and variance
using the CFPE approach. The CFPE, Eq. (33), for the dimer-
ization reaction reads

∂P (n1, t)

∂t
=

(
− ∂

∂n1
A(n1) + 1

2

∂2

∂n2
1

B(n1)

)
P (n1, t),

(70)
where A = k1� − 2k2n1(n1 − 1)/� and B = k1�

+ 4k2n1(n1 − 1)/�. The exact stationary solution of
this nonlinear second-order partial differential equation can
be shown to be

P (n1) =
exp

[
−n1 + 3k1�

2 arctan H (n1)

2
√

k2

√
k1�2−k2

]
4k2(n1 − 1)n1 + k1�2

(
K1 + K2

∫ n1

1
dη

× exp

[
−3k1�

2 arctan H (η)

2
√

k2

√
k1�2 − k2

+ η

])
, (71)

where H (x) = √
k2(2x − 1)/

√
k1�2 − k2. The constants K1

and K2 are to be determined by the boundary conditions and
the normalization condition. The boundary conditions of the
CFPE are P (n1 = ±∞) = 0. Note that the CFPE unlike the
CME does not generally have a natural boundary at n1 = 0
since the noise can sometimes drive the system to negative
values of n1.32 Note that this problem is also implicit in the
stationary solution of the linear Fokker-Planck equation, a
Gaussian which is non-zero for negative particle numbers5

(see the end of this subsection for a further discussion of
boundary conditions). The condition at −∞ fixes the value
of K2 while the condition at ∞ is automatically satisfied by
the exponential pre-factor. The remaining constant K1 is fixed
by the normalization condition. Since there is no closed form
solution for the integral in Eq. (71), K1 has to be computed
numerically; once P (n1) is determined, the mean and vari-
ance can be straightforwardly numerically computed as well.

The exact relative error in the mean and variance pre-
dictions of the CFPE can now be computed. One first fixes
the rate constants k1 and k2 and node. The normalization
constant K1 is found by numerical integration and from the
ensuing steady-state probability distribution, one finds the
mean, 〈n1〉/�CFPE, and variance σ 2

1,CFPE. The numerical er-
ror in the integration is essentially eliminated by performing
the integration for a set of decreasing step size values and
extrapolating to obtain the integral value at zero step size.
Using the same values of rate constants and node, one uses
Eqs. (68) and (69) to compute the mean and variance accord-
ing to the CME. The exact relative errors in the mean and
variance can then be found using 1 − (〈n1〉/�CFPE)/(〈n1〉/�)
and 1 − σ 2

1,CFPE/σ 2
1 , respectively. The exact absolute values

of the relative errors in the CFPE predictions are shown by
the red open circles in Fig. 1 for parameter values k1 = 1
and k2 = 2. Note that the relative error in the variance is
larger than that in the mean. The errors increase with de-
creasing steady-state numbers of monomers. Even for very
small numbers, the errors are quite small. For example, for a
case in which the REs predict five monomers in steady-state,
the percentage relative errors in the mean and variance pre-
dictions of the CFPE are just 0.5% and 6.5%, respectively.
The high accuracy of the CFPE in low particle number con-
ditions is indeed surprising since typically it has only been
deemed accurate for systems characterized by large particle
numbers.

We can now test the accuracy of the theory developed in
Secs. II–IV by using it to obtain expressions for the approx-
imate relative errors in the mean and variance and then com-
pare these with the exact values as already obtained above.
By inspection of the reaction scheme, Eq. (64), it can be
easily deduced that the stoichiometric matrix is S = (1,−2).
From the definition of the macroscopic rate function vector
(see Introduction) it also follows that it is equal to �f (φ1)
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FIG. 1. Dependence of the absolute value of the relative errors in the CFPE prediction of the mean, |Emean|, and variance, |Evar |, with the steady-state number
of molecules, node , as estimated by the rate equations. The red open circles show the errors computed using the exact solutions of the CFPE and the CME. The
blue lines denote the leading order errors estimated by our theory and given by Eq. (78) in (a) and Eq. (80) in (b). Note that the leading order error estimates are
in good agreement with the errors calculated from the exact solutions. Note also that the error made by the CFPE increases with decreasing molecule numbers
and that the error in the variance is considerably larger than that in the mean, in many cases by more than one order of magnitude. See text for details and
discussion.

= (k1, k2φ
2
1). This is all the information needed to calculate

the estimates for the relative errors using our theory. The
macroscopic concentration and the relevant entries of the D
and J matrices evaluated at steady-state are then given by

φ1 =
(

k1

2k2

)1/2

, (72)

D11 =
2∑

j=1

(S1j )2fj (φ1) = k1 + 4k2φ
2
1,

D111 =
2∑

j=1

(S1j )3fj (φ1) = k1 − 8k2φ
2
1, (73)

J 1
1 = ∂

∂φ1

2∑
j=1

S1j fj (φ1) = −4k2φ1, J 11
1 = ∂

∂φ1
J 1

1 = −4k2.

(74)

These are substituted in Eqs. (48)–(50) which are then evalu-
ated at steady-state, leading to

	111 = −D111

3J 1
1

= −1

2
φ1, (75)

	11 = −J 11
1 	111

2J 1
1

= 1

4
, (76)

	1 = −J 11
1 	11

2J 1
1

= − 1

8φ1
. (77)

The relative error in the mean concentration to leading order
is then given by Eq. (55),

E1
mean = − 1

8n2
ode

. (78)

To compute the relative error in the variance, we need to first
estimate the variance to the linear-noise level of approxima-

tion. This is done by solving Eq. (23) in steady-state

[ε2
1 ]0 = −D11

2J 1
1

= 3k1

8k2φ
. (79)

The variance is then σ 2
1,LNA = �−1[ε2

1 ]0. Using the latter and
Eq. (76), it is found that Eq. (57) evaluates to

E1
var = 1

3node

. (80)

The theoretical absolute values of the relative errors in the
CFPE predictions, as given by Eqs. (78) and (80), are shown
by the solid blue lines in Fig. 1 for parameter values k1 = 1
and k2 = 2. The theory is generally in very good agreement
with the exact solution; small discrepancies are only appar-
ent in the error for the variance at molecule numbers less
than approximately 5 monomers. The comparison has also
been done for many other parameters values and as predicted
by theory, in all cases, the graphs are the same as shown in
Fig. 1.

We have also computed the exact errors by solving the
CFPE with different boundary conditions. One could argue
that constraints should be imposed on the CFPE, such that
it preserves the natural boundary of the CME at n1 = 0.
This can be fulfilled by requiring that the probability cur-
rent of the CFPE vanishes at n1 = 0.33 In such a case, the
stationary solution of the CFPE has the form of Eq. (71)
with K2 = 0 and K1 is found by requiring that the solution
is normalized on (0,∞). The exact errors computed with
this new solution of the CFPE are practically indistinguish-
able from the previous solutions shown in Fig. 1 except for
a small discrepancy at nODE = 3. The excellent agreement
of our theoretical solution with both CFPE solutions is sim-
ply due to the fact that the probability of n1 taking nega-
tive values in Eq. (71) is very small, unless node is also very
small.
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B. Enzyme catalysis: The Michaelis-Menten
mechanism

As a second application, we consider the catalysis of a
substrate species S into a product species P by an enzyme
species via the Michaelis-Menten mechanism,34

Ø
kin→ S, S + E

k0
⇀↽
k1

C, (81)

C
k2→ E + P, (82)

where E denotes the free enzyme, i.e., when it is not bound to
substrate, and C denotes the substrate-enzyme complex. We
will denote substrate, complex, and free enzyme as species
1, 2, and 3, respectively. Note that the product species is
missing from the kinetic description because it is a by-
product of the reaction and thus not involved in the re-
actions. The total enzyme concentration is a constant, φ2

+ φ3 = 〈n2/�〉 + 〈n3/�〉 = ET , since the enzyme is either
bound to substrate or unbound. Hence, we effectively have a
two variable system. The reaction system exhibits a steady-
state in the concentrations of substrate and complex when-
ever the inequality kin ≤ k2ET is satisfied, i.e., when the rate
at which substrate is pumped into the system is less than or
equal to the maximum rate at which the enzyme can convert
substrate to product. Assuming such conditions, our aim is
to calculate the relative errors in the mean and variance pre-
dictions of the CFPE, i.e., Eqs. (55) and (57); to achieve this,
we will first need to solve Eqs. (48)–(50), which we show in
detail now.

The stoichiometric matrix and the macroscopic rate func-
tion vector follow directly from their definitions (see Intro-
duction),

S =
(

1 −1 1 0
0 1 −1 −1

)
,

�f (φ1, φ2) = {kin, k0(ET − φ2)φ1, k1φ2, k2φ2}.
The rate equations and the D and J matrices follow by insert-
ing the above in Eqs. (1), (16) and (17) to obtain

φ1 = KM

1 − β

β
, φ2 = ET (1 − β), (83)

J 1
1 = −k0(ET − φ2), J 2

1 = k1 + k0φ1, J
1
2 = −J 1

1 ,

J 2
2 = −(k1 + k2 + k0φ1), (84)

J 11
1 = J 22

1 = J 11
2 = J 22

2 = 0, J 12
1 = J 21

1 = −J 12
2

= −J 21
2 = k0, (85)

D111 = D222 = 0, (86)

D112 = D121 = D211 = −D122 = −D212 = −D221

= ET (k1 + k2)η(1 − β), (87)

D11 = D22 = 2ET (k1 + k2)(1 − β),D12 = D21

= ET (k1 + k2)(1 − β)(η − 2), (88)

where β = 1 − kin/(k2ET ), KM = (k1 + k2)/k0 is the
Michaelis-Menten constant and η = 1 − k1/(k0KM ).

Note that β is a measure of enzyme saturation since as
the input rate of substrate, kin, approaches the maximum rate
at which the enzyme can catalyze the reaction, k2ET , the pro-
portion of enzyme in complex form increases accordingly as
can also be seen from Eq. (83). Note also that η is a measure
of how far is the system from equilibrium. This is since if sub-
strate binding would occur at equilibrium, i.e., kin = k2 = 0,
then the relationship between the macroscopic concentra-
tions would be φ1φ3/φ2 = k1/k0 while generally in steady-
state conditions, i.e., kin > 0, k2 > 0, β ≤ 1, the relationship
between the macroscopic concentrations is φ1φ3/φ2 = KM .
Both β and η are non-dimensional, positive fractions.

Substituting Eqs. (84)–(87) in Eqs. (48)–(50), setting the
time derivative to zero and solving the resulting set of simul-
taneous equations we obtain

	1 = −(1 − β)βη

2KM (1 + uβ2)3 + ET β3(1 + uβ2)η
, 	2 = 0,

(89)

	11 = (1 − β)η(1 + β(uβ(3 + uβ2) + η))

2(1 + uβ2)3 + uβ3(1 + uβ2)η
, (90)

	12 = 	21 = −	22 = − u(1 − β)β2η

2(1 + uβ2)3 + uβ3(1 + uβ2)η
,

(91)

where u = ET /KM .
The leading order term of the relative errors in the mean

concentrations of substrate and complex, as predicted by the
CFPE, are then given by substituting Eq. (83) together with
Eq. (89) in Eq. (55),

E1
mean = −β2η

K2
M�2(1 + uβ2)(2 + uβ2(4 + β(2uβ + η)))

,

E2
mean = 0. (92)

Note that the relative error in the substrate concentration is
always negative, i.e., the CFPE overestimates the mean sub-
strate concentrations and it increases with the distance from
equilibrium, η. There is no error in the CFPE estimate for en-
zyme concentration (at least to order �−2).

To calculate the relative errors in the variance using Eq.
(57), we first need to compute the variance as estimated by
the linear-noise approximation. This is obtained by solving
Eq. (23) using Eqs. (84) and (88),

σ 2
1,LNA = KM (1 − β)(1 + uβ3 + (β − 1)βη)

β2�(1 + uβ2)
,

σ 2
2,LNA = ET (1 − β)β(1 + uβ)

�(1 + uβ2)
. (93)

Finally, substituting the above two equations and Eqs.
(90) and (91) in Eq. (57), we obtain the leading order term of
the relative errors in the variance of the substrate and complex
concentration fluctuations as predicted by the CFPE,

E1
var

= β2η(1 + β(uβ(3 + uβ2) + η))

KM�(1 + uβ3 + (β − 1)βη)(2 + uβ2(4 + β(2uβ + η)))
,

(94)
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FIG. 2. Comparison of the predictions of the CFPE and the CME for the Michaelis-Menten reaction mechanism. The differences between the two are quantified
by calculation of the percentage relative error, i.e., 100 × (prediction of CME – prediction of CFPE)/prediction of CME. Panels (a) and (b) show the maximum
percentage relative error in the CFPE predictions of the variance of the substrate and complex concentration fluctuations, respectively. The figures are generated
using Eqs. (94) and (95) together with Eq. (96); see text for details. The errors increase with decreasing molecule numbers; the magnitude of the error is very
small in all cases implying that the CFPE is a highly accurate approximation of the CME.

E2
var = βη

KM�(1 + uβ)(2 + uβ2(4 + β(2uβ + η)))
.

(95)

Note that both relative errors are always positive implying that
the CFPE underestimates the variance.

We can now use the formulas given by Eqs. (92), (94),
and (95) to estimate the relative error of the CFPE when mod-
eling conditions typical of the intracellular environment. A
principal characteristic of such an environment is that the
number of molecules of some species can be quite small. A
detailed protein abundance profiling of the Escherichia coli
cytosol by Ishihama et al.25 shows that the total number of
enzyme molecules per cell approximately varies from a hun-
dred to a few thousands. It is indeed in this limit of small
numbers that it is frequently thought that the CFPE and the
CLE description are not very accurate. We quantitatively test
this hypothesis using our formulas. We will first express our
error formulas in terms of the average number of molecules
of substrate and free enzyme as predicted by the REs, i.e.,
n1,ODE = φ1� and n3,ODE = φ3�. Using Eqs. (83), we find
that

KM� = βn1,ODE

1 − β
, u = 1 − β

β2

n3,ODE

n1,ODE

. (96)

Substituting Eq. (96) in Eqs. (92), (94), and (95), we get ex-
pressions for the errors in terms of n1,ODE , n3,ODE , β, and η.
Given fixed molecule numbers, n1,ODE and n3,ODE , we can
find the maximum error by varying β and η over their allowed
range [0, 1]. Repeating this procedure for various molecule
numbers, we can obtain simple two-dimensional plots of the
maximum error. The results for the maximum relative error in
the predictions of the variance are shown in Fig. 2. The results
verify that the predictions of the CFPE become increasingly
accurate with increasing molecule numbers. They also show
that the error incurred by using the CFPE for cases of small

molecule numbers is very small: less than 1% for a few tens
of molecule numbers.

It is noteworthy that this accuracy is far better than even
that hypothesized by proponents of the CFPE.14 For exam-
ple, Gillespie in his seminal paper on the derivation of the
CLE (Ref. 14) remarks in his conclusion that the CLE (and
hence the CFPE) approximation is probably not a good one
when one models a system composed of three time-varying
species with total molecular population of 2000, since it ap-
pears quite possible that the molecule number of at least one
of the species becomes significantly small at some point in
time. In contrast, our theory seems to predict that the CFPE
predictions will still be very accurate even when the molecule
numbers are quite low.

We have tested these predictions by numerically solving
the CLE for the Michaelis-Menten process using the Euler-
Mayurama method to obtain the mean substrate concentra-
tions and the variance of the substrate fluctuations about the
means. The same were obtained from stochastic simulation
algorithm simulations of the CME. The results are shown in
Fig. 3. The parameters are chosen to be k0 = 272, k1 = 8,
k2 = 60, ET = 100, kin = 5880, and � = 25 since this gives
conditions similar to those mentioned by Gillespie above.
The RE solutions, Eqs. (83), with the above parameters lead
to φ1 = 12.25, φ2 = 98, and φ3 = 2 which, given a volume
of � = 25, would imply n1,ODE = 306.25, n2,ODE = 2450,
and n3,ODE = 50. The total molecular population of enzyme
(free plus complex form) is 2500 molecules. Each algorithm
(Euler-Mayurama and stochastic simulation algorithm) was
run five times leading to five independent estimates.35 Note
that even though the mean number of free enzyme molecules
is considerably low, the predictions of the CFPE for both the
mean and the variance agree (within sampling error) with
those of the CME. For comparison, we have also plotted
the predictions of the linear-noise approximation (red lines)
and of the mean concentration as predicted by the effective
mesoscopic rate equation Eq. (60) (blue line). The results
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FIG. 3. Comparison of the predictions of the CLE for mean substrate concentration and variance of the fluctuations about the mean, with the predictions of
the CME, the linear-noise approximation (LNA) and the mean concentration as predicted by effective mesoscopic rate equations (EMRE). Note that the CLE,
within statistical error, is in agreement with the CME. The CLE predictions are more accurate than those obtained from the linear-noise approximation. The
mean substrate concentration of the CLE agrees very well with the predictions of EMRE, Eq. (60). See text for details.

clearly confirm that the CFPE is more accurate than the lin-
ear Fokker-Planck equation associated with the linear-noise
approximation and that indeed the mean concentrations of
the CFPE are in excellent agreement with the effective meso-
scopic rate equations derived in Ref. 28. The effective meso-
scopic rate equation for the Michaelis-Menten reaction was
first obtained in Ref. 36 (see Eq. (29) in the latter reference).

For our set of parameters, the theoretical expressions,
Eqs. (92) and (94), evaluate to E1

mean = −2.9 × 10−6 and
E1

var = 3.2 × 10−5; these errors are so small that they are
clearly masked by the sampling error inherent in the calcu-
lation of the mean and the variance from the long-time simu-
lation trajectories. Indeed, in agreement with our theory, from
Fig. 3 one can detect no significant difference between the
CFPE and CME predictions. The numerical experiments were
performed with various other parameter sets – in all cases we
could not detect any discrepancy between the CFPE and CME
predictions within sampling error.

VI. DISCUSSION AND CONCLUSION

Summarizing, in this article we have shown that (i) the
mean and variance predictions of the CFPE are accurate to
order �−3/2. Since those of the linear Fokker-Planck equa-
tion are accurate to order �−1/2 for the mean and �−3/2 for
the variance, it is clear that the CFPE is generally more ac-
curate than the linear Fokker-Planck equation or equivalently
the linear-noise approximation. (ii) For detailed balance con-
ditions, the predictions of the CFPE are even more accurate,
order �−2, i.e., in equilibrium or near equilibrium condi-
tions the CFPE does an excellent job of approximating the
CME. (iii) Accuracy to such high order in inverse powers of
the system volume implies that the CFPE estimates should
be quite good even for small populations of molecules. Our
simulations for dimerization and enzyme-catalyzed reactions
support these theoretical conclusions, with impressively good
agreement down to an average of five molecules for the dimer-
ization example.

The CFPE’s accuracy is indeed surprising given that it
arises out of a naive truncation of the Kramers-Moyal expan-
sion of the CME and that the CFPE cannot be obtained from

the systematic system-size expansion of the CME. Only the
linear Fokker-Planck equation can be derived from the latter
expansion by considering terms of order �0. This equation
leads to mean and variance estimates which are accurate to
orders �−1/2 and �−3/2. Now if one wants more accurate es-
timates, one needs to consider higher order terms in the ex-
pansion. To get mean concentration estimates to order �−1,
one needs to consider the term in the system-size expansion
proportional to �−1/2.28 To this order, one does not obtain the
CFPE, rather one obtains a partial differential equation with
a third-order derivative. However, it turns out that the mean
calculated from this equation precisely agrees with that calcu-
lated from the CFPE to order �−1. If we even wanted to get
more accurate means and variance, say both to order �−2, we
need to consider terms in the system-size expansion to order
�−3/2. This leads to a partial differential equation for the time
evolution of the probability density function with derivatives
as high as fifth order. Once again this is not the CFPE. How-
ever, under steady-state conditions obeying detailed balance,
the estimates from this high-order differential equation and
the CFPE exactly agree to order �−2. Hence, we have shown
that though it is true that the CFPE does not arise out of the
system-size expansion, nevertheless its predictions are better
than those which can be obtained by considering only the first
term of the expansion (the linear-noise approximation) as is
conventional.27 It follows that the nonlinear character of the
CFPE is not completely spurious as originally suggested by
van Kampen.11

Our study is the first one to our knowledge which sys-
tematically analyzes the validity of the nonlinear multivariate
CFPE and which derives approximate expressions for the size
of the errors in the CFPE estimates – previous studies37, 38

have focused on the CFPE for unimolecular reactions and
for unimolecular and bimolecular reactions involving one
species.29 Our analysis is based on the system-size expan-
sion and thus has the same limitations, namely, that it is
only applicable for chemical systems which are “asymptot-
ically stable in the sense of Lyapunov.” This implies that
from our analysis we cannot draw any conclusions for bistable
systems.5 Within these constraints, the system-size expansion
is a legitimate means of obtaining the moments of the CME
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accurate to any desired order.5 A few authors13 have ex-
pressed reservations regarding the accuracy of the expansion
beyond the linear-noise level, their reasoning stemming from
the fact that Pawula’s theorem39 states that a time-evolution
equation for a probability density function with higher than
second-order derivatives cannot describe a stochastic process.
However, these misgivings are undue – the higher order par-
tial differential equation stemming from the expansion trun-
cated to some order is “not an exact equation for a Markov
process that in some way approximates the original process;
rather it is an approximate equation for the exact P.”11 This
statement of van Kampen is generally true for any legitimate
expansion of the CME, not only the system-size expansion;
for example, Risken and Vollmer40 showed that taking into
account higher order derivatives than two in the Kramers-
Moyal expansion of the CME also leads to more accurate so-
lutions than if one just had to use the CFPE. The accuracy
of the system-size expansion beyond the linear-noise approxi-
mation has also been verified by many recent studies,28, 36, 41, 42

putting at rest any small doubts about its general validity. Fi-
nally, the good agreement of our theoretical expressions for
the errors with simulations is a clear indication of the sound-
ness of our system-size expansion based approach.

Concluding our results offer theoretical and numerical
support for Gillespie’s hypothesis14 regarding the validity of
the CFPE in both mesoscopic and macroscopic systems. Our
formulas provide a simple means to estimate the error in the
predictions of the CFPE and the associated CLE and hence
should be of wide applicability to both theoretical and numer-
ical studies of stochastic chemistry.
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APPENDIX A: SUBTLETIES OF THE PERTURBATIVE
EXPANSION IN THE PROBABILITY DENSITY

By the normalization condition and the expansion of
�(�ε, t) we have∫

�(�ε, t)d�ε = 1 =
∞∑

j=0

∫
�j (�ε, t)�−j/2d�ε. (A1)

Equating powers of the volume we obtain∫
�0d�ε = 1, (A2)∫

�jd�ε = 0,∀j ≥ 1. (A3)

An analogous property has been discussed by Gardiner in the
different though related context of small noise expansions of
the Fokker-Planck equation.8 The two properties above are
useful in the computation of the integrals needed to arrive to
Eqs. (23)–(32); for more details see Appendix B.

It follows from Eqs. (A2) and (A3) that only �0 is a gen-
uine probability density while the higher orders are negative
in some regions of the �ε space. From Eq. (15), we see that to

order �0, the time evolution of �0 is given by a linear Fokker-
Planck equation

∂�0(�ε, t)
∂t

= −Jw
i ∂i(εw�0) + 1

2
Dip∂2

ip�0, (A4)

which again verifies that �0 is a probability density. However,
the time-evolution equations for �j where j ≥ 1, involve
derivatives of order larger than two and hence by Pawula’s
theorem39 �j cannot be genuine probability density func-
tions.

The above arguments also imply that it is not correct to
think of [εkεm..εr ]j , where j ≥ 1, as genuine statistical mo-
ments; rather they are best considered as placeholders or la-
bels for the associated integrals

∫
εkεm..εr�jd�ε. In the main

text, we refer to them as corrections to the moments to order
�−j/2. It is, however, important to bear in mind that though
[εkεm..εr ]j are generally not true statistical moments, their
linear superposition via Eq. (19) is a genuine statistical mo-
ment. Hence, it is best to avoid associating any physical mean-
ing to [εkεm..εr ]j and to simply regard them as a means to
obtain the desired answer, i.e., 〈εkεm..εr〉.

APPENDIX B: DETAILED DERIVATION OF THE
TIME-EVOLUTION EQUATIONS FOR [εrεk ]2

The time-evolution equations are obtained by substitut-
ing Eq. (18) in Eq. (15), multiplying the resulting equation on
both sides by εrεk and integrating over d�ε. Finally, we equate
terms of order �−1 on both sides of the equation to obtain
the time-evolution equation for [εrεk]2. The right-hand side
of the resulting equation simplifies by performing integration
by parts; there are eight integrals which need such evaluation
and we treat each one of them below.

1.

Jw
i

∫
εrεk∂i(εw�2)d�ε = −Jw

i

∫
εw�2[εkδi,r + εrδi,k]d�ε

= −Jw
i ([εwεk]2δi,r + [εwεr ]2δi,k)

= −Jw
r [εwεk]2 − Jw

k [εwεr ]2. (B1)

Note that in Eq. (15), we are summing over all twice
repeated indices, which for the above integral are i and
w. Use was made of this implicit summation on i in the
derivation of the last step.

2.

Dip

∫
εrεk∂ip(�2)d�ε = −Dip

∫
∂p�2[εkδi,r + εrδi,k]d�ε

= Dip(δp,rδi,k + δp,kδi,r )
∫

�2d�ε = 0.

(B2)

In the last step, we have made use of the fact that∫
�2d�ε = 0, as shown in Appendix A.

3.

J
wp

i

∫
εrεk∂i(εwεp�1)d�ε

= −J
wp

i

∫
εwεp�1[εkδi,r + εrδi,k]d�ε
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= −J
wp

i ([εwεpεr ]1δi,k + [εwεpεk]1δi,r )

= −J
wp

k [εwεpεr ]1 − Jwp
r [εwεpεk]1. (B3)

4.

J
w(2)
i

∫
εrεk∂i�1d�ε = −J

w(2)
i

∫
�1[εkδi,r + εrδi,k]d�ε

= −J
w(2)
i ([εr ]1δi,k + [εk]1δi,r )

= −J
w(2)
k [εr ]1 − Jw(2)

r [εk]1. (B4)

5.

Jw
ip

∫
εrεk∂ip(εw�1)d�ε

= −Jw
ip

∫
∂p(εw�1)[εkδi,r + εrδi,k]d�ε

= Jw
ip [εw]1(δp,rδi,k + δp,kδi,r )

= 2Jw
kr [εw]1. (B5)

In obtaining the last step, we have used the implicit sum-
mation over i and p and also the symmetrical property,
Jw

kr = Jw
rk , which follows from the definitions given by

Eqs. (16) and (17).
6.

J
w(2)
i

∫
εrεk∂i(εw�0)d�ε

= −J
w(2)
i

∫
εw�0[εkδi,r + εrδi,k]d�ε

= −J
w(2)
i ([εwεk]0δi,r + [εwεr ]0δi,k)

= −Jw(2)
r [εwεk]0 − J

w(2)
k [εwεr ]0. (B6)

7.

Jwm
ip

∫
εrεk∂ip(εwεm�0)d�ε

= −Jwm
ip

∫
∂p(εwεm�0)[εkδi,r + εrδi,k]d�ε

= Jwm
ip [εwεm]0(δp,rδi,k + δp,kδi,r )

= 2Jwm
kr [εwεm]0. (B7)

Note that in the last step, we have used the symmetrical
property, Jwm

kr = Jwm
rk , which follows from the definitions

given by Eqs. (16) and (17).
8.

J
w(2)
ip

∫
εrεk∂ip(�0)d�ε

= −J
w(2)
ip

∫
∂p�0[εkδi,r + εrδi,k]d�ε

= J
w(2)
ip (δp,rδi,k + δp,kδi,r )

∫
�0d�ε = 2J

w(2)
kr . (B8)

In the last step, we have made use of the fact that∫
�0d�ε = 1, as shown in Appendix A and the symmetry

property used in the evaluation of the previous integral.
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