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Supplement A: General formulation of master
equations for elementary and non-elementary

processes

Consider a general chemical system confined in a com-
partment of volume Ω and consisting of a number N of
distinct chemical species interacting via R chemical re-
actions of the type

s1jX1 + . . .+ sNjXN
kj−→ r1jX1 + . . .+ rNjXN . (A1)

Here j is an index running from 1 to R, Xi denotes chem-
ical species i, sij and rij are the stoichiometric coeffi-
cients, and kj is the macroscopic rate of reaction. Note
that these reactions are not necessarily elementary (uni-
molecular or bimolecular reactions). If the jth reaction
is elementary then its rate kj is a constant while if it is
non-elementary kj is a function of macroscopic concen-
trations. The general form of the master equation for
both cases is [1]

∂P (~n, t)

∂t
= Ω

R∑
j=1

( N∏
i=1

E
−Sij

i − 1

)
f̂j(~n,Ω)P (~n, t), (A2)

where P (~n, t) is the probability that the system is in a
particular mesoscopic state ~n = (n1, ..., nN )T and ni is
the number of molecules of the ith species. Note that
Ex

i is a step operator – when it acts on some function of
the absolute number of molecules, it gives back the same
function but with ni replaced by ni+x. The chemical re-
action details are encapsulated in the stoichiometric ma-
trix Sij = rij − sij and in the microscopic rate functions

f̂j(~n,Ω). The probability that the jth reaction occurs in

the time interval [t, t+ dt) is given by Ωf̂j(~n,Ω)dt.
For elementary reactions, the microscopic rate function

takes one of four different forms, depending on the order
of the jth reaction: (i) a zeroth-order reaction by which a

species is input into a compartment gives f̂j(~n,Ω) = kj ;
(ii) a first-order unimolecular reaction involving the de-

cay of some species h gives f̂j(~n,Ω) = kjnhΩ−1; (iii) a
second-order bimolecular reaction between two molecules
of the same species h gives f̂j(~n,Ω) = kjnh(nh − 1)Ω−2;
(iv) a second-order bimolecular reaction between two

molecules of different species, h and v, gives f̂j(~n,Ω) =
kjnhnvΩ−2. Note that these forms for the microscopic
rate functions have been rigorously derived from micro-
scopic physics [2, 3] and hence the validity of Eq. (A2)
for elementary reactions is guaranteed [13].

For non-elementary reactions, the form of the mi-
croscopic rate function has to be basically guessed by
analogy with the prescription for elementary reactions.
For example, for the set of reactions (3) in the main
text, the second reaction is a non-elementary first-order
reaction with a time-dependent macroscopic rate con-
stant k′(t) = k2[ET ]/(KM + [XS(t)]), where [ET ] is the
constant macroscopic total enzyme concentration and
[XS(t)] is the instantaneous macroscopic concentration
of species S. Hence one would use the microscopic rate

function f̂(~n,Ω) = k2[ET ](nS/Ω)/(KM+nS/Ω) based on
the formula stated above for an elementary first-order re-
action. Of course master equations based on microscopic
rate functions obtained from this procedure are ad-hoc
and have no fundamental basis.

Supplement B: General formulation of the linear
noise approximation in steady-state conditions

Here we provide a step by step recipe to construct the
linear noise approximation (LNA) of the master equa-
tion, Eq. (A2), for the set of reactions (A1). We note
that this approximation is only valid for a monostable
system (the condition is formally given by Eq. 3.4 in Ch
X of the book by van Kampen [1]). Let the macroscopic
steady-state concentration of species i be given by [Xi]
and the derivative with respect to this variable be de-
noted by ∇i. Furthermore we shall distinguish matrices
by underlining them. The five steps to constructing the
LNA in steady-state conditions (for both elementary and
non-elementary reactions) are then as follows:

1. Construct the N × R stoichiometric matrix, S ,
whose i− j element is given by rij − sij .

2. Construct the macroscopic rate function vector ~f

with elements fj = kj
∏N

m=1([Xm])smj and the di-
agonal matrix F with elements Fii = fi.

3. Construct the Jacobian matrix J whose i − j ele-

ment is given by ∇j( S . ~f)i. Construct the diffusion
matrix D = S · F · S T .

4. The stochastic differential equations (linear
Langevin equations) approximating the chemical
master equation for the set of reactions (A1) in the
limit of large molecule numbers are given by [4]

∂

∂t
~η(t) = J · ~η(t) + Ω−1/2 S ·

√
F ~Γ(t), (B1)
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where ηi(t), the ith entry of the vector ~η(t),
denotes the fluctuations about the macroscopic
steady-state concentration of species i, i.e., ηi(t) =

(ni(t)/Ω) − [Xi]. The R dimensional vector ~Γ(t)
is Gaussian white noise defined by 〈Γi(t)〉 = 0 and
〈Γi(t)Γj(t

′)〉 = δi,jδ(t− t′).

5. The covariance matrix σ of the fluctuations in
Eq. (B1) is obtained by solving the Lyapunov equa-
tion [4, 5]

J · σ + σ · J T + D /Ω = 0, (B2)

where σij = 〈ηiηj〉. The variance of the fluctua-
tions is hence given by the diagonal elements of σ .

Following this recipe we can explicitly construct
the linear Langevin equations for the full set of el-
ementary reactions of the Michaelis-Menten reaction,

as given by Scheme (1) in the main text. The

macroscopic rate function vector is given by ~f =
(kin, k0[XS ][XE ], k1[XC ], k2[XC ]), where [XE ], [XC ] and
[XS ] denote the macroscopic concentrations of free en-
zyme, complex and substrate species, respectively. The
stoichiometric matrix reads

S =

(
0 +1 −1 −1

+1 −1 +1 0

)
. (B3)

Note that the order of columns in S reflects the order

of reactions in ~f while the rows are related to the species
type (row 1 is for the complex species and row 2 is for
the substrate species). Note also that the free enzyme
species has been removed by conservation of total en-
zyme number. The diagonal matrix F and the Jacobian
J can then be calculated by steps 2 and 3. Finally we ob-
tain by step 4, that in the macroscopic limit, the master
equation, Eq. (6) in the main text, can be approximated
by a pair of Langevin equations

∂

∂t

(
ηC(t)
ηS(t)

)
=k0

(
−(KM + [XS ]) [XE ]
K1 + [XS ] −[XE ]

)
·
(
ηC(t)
ηS(t)

)
+ Ω−1/2

(
0

√
k0[XE ][XS ] −

√
k1[XC ] −

√
k2[XC ]√

kin −
√
k0[XE ][XS ]

√
k1[XC ] 0

)
· ~Γ(t), (B4)

where ηS(t) and ηC(t) denote the fluctuations about
the macroscopic steady-state substrate and complex con-

centrations and ~Γ(t) is a four-dimensional vector whose
entries are white Gaussian noise with the properties
〈Γi(t)〉 = 0 and 〈Γi(t)Γj(t

′)〉 = δi,jδ(t− t′).
The Langevin equations approximating the reduced

chemical master equation, Eq. (4) in the main text,
can be constructed in a similar manner. The non-
elementary set of reactions are here given by Scheme
(3) in the main text. Hence the macroscopic rate func-

tion vector is ~f = (kin, k2[ET ][XS ]/(KM + [XS ]), where
KM = (k1 + k2)/k0 while the stoichiometric matrix is
S = (+1,−1). As before these can be used to compute
the Langevin approximation which reads

∂

∂t
η̃S(t) = −k2

γ
η̃S(t) +

√
2k2[XS ]

Ωγ

(
1 +

[XS ]

KM

)
Γ(t),

(B5)

where η̃S(t) denotes the substrate fluctuations as pre-
dicted by the reduced master equation obtained from the
stochastic quasi-steady state approximation.
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FIG. S1. Plot of the fractional relative error ε versus the
total number of enzyme molecules nT for the case α = 0.5 and
β = 10 (compatible with a highly efficient enzyme, parameters
as given in Supp. C). The data points are obtained from
stochastic simulations. The solid line is simply a guide to the
eye. The total number of enzymes is varied at constant total
enzyme concentration.

Supplement C: Parameter values used in stochastic
simulations

Parameter values for the stochastic simulations shown
in Fig. 1 in the main text are as follows. The enzymes,
Malate dehydrogenase and Chymotrypsin, both have β =
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1; we have simulated only the first of these enzymes by
using Ω = 17 fL, [ET ] = 10nM , k2 = 5 s−1, k1 = 5 s−1,
and k0 = 5 × 107M−1s−1. For the case β = 2.8 (the
enzyme Lactate dehydrogenase), we used Ω = 0.017 fL,
[ET ] = 10µM , k2 = 210 s−1, k1 = 75 s−1, and k0 = 3 ×
106M−1s−1. For the case β = 10 (a case compatible with
a highly efficient enzyme), we used Ω = 170 fL, [ET ] =
1nM , k2 = 1 s−1, k1 = 0.1 s−1, and k0 = 108M−1s−1.
In all cases the total number of enzyme molecules nT was
100. Parameter values for Fig. S1 are β = 10, k2 = 1 s−1,
k1 = 0.1 s−1, [ET ] = 1nM and k0 = 108M−1s−1.

The rate constants for the cases β = 1 and β = 2.8
were obtained from the experimental studies [6–8]. The

rate constants for β = 10 were not for a specific en-
zyme and hence were chosen from the known physiologi-
cal ranges: for k2 the range is 1− 104 s−1 [9], for k0 the
range is 106 − 108 s−1M−1 [10] and for KM the range is
10−1 − 10−7M [9]. Similarly, the total enzyme concen-
trations were chosen from the physiological ranges: nano-
to millimolar concentrations [11]. The compartment vol-
umes for the data in Fig. 1 in the main text were chosen
such that the total number of enzyme molecules nT was
100 in all cases; for Fig. S1 the volumes were chosen such
that nT could be varied over the range 1 to 100.
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