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Paramagnetic colloidal particles that are optically trapped in a linear array can form a zigzag pat-
tern when an external magnetic field induces repulsive interparticle interactions. When the traps are
abruptly turned off, the particles form a nonequilibrium expanding pattern with a zigzag symmetry,
even when the strength of the magnetic interaction is weaker than that required to break the linear
symmetry of the equilibrium state. We show that the transition to the equilibrium zigzag state is al-
ways potentially possible for purely harmonic traps. For anharmonic traps that have a finite height,
the equilibrium zigzag state becomes unstable above a critical anharmonicity. A normal mode anal-
ysis of the equilibrium line configuration demonstrates that increasing the magnetic field leads to a
hardening and softening of the spring constants in the longitudinal and transverse directions, respec-
tively. The mode that first becomes unstable is the mode with the zigzag symmetry, which explains
the symmetry of nonequilibrium patterns. Our analytically tractable models help to give further in-
sight into the way that the interplay of factors such as the length of the chain, hydrodynamic in-
teractions, thermal fluctuations affects the formation and evolution of the experimentally observed
nonequilibrium patterns. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4823501]

I. INTRODUCTION

Confining repelling particles to linear spatially localized
traps can lead to the formation of zigzag patterns due to a
competition between interparticle repulsion and the forces
of confinement. Examples include the Frenkel-Kontorova
model,1 dusty plasmas,2, 39 one-dimensional Wigner3, 40, 41

and ion Coulomb4 crystals, colloidal particles,5–8 and mi-
crofluidic droplet crystals.9, 10 One particularly fruitful way
to study such systems is to use colloidal particles. These
offer the possibility to simultaneously visualize and care-
fully control nonequilibrium behavior using external fields,
which facilitates detailed comparisons between experiments
and theory.11 On the one hand, a simple system can be built
by confining colloidal particles between two walls or plac-
ing them on a spatially confined surface and inducing repul-
sive interactions between the particles.12–14 On the other hand,
optical trapping techniques can be used to localize each col-
loid in an individual optical trap, leading to a one-dimensional
colloidal chain of hydrodynamically coupled particles in the
form of a line5, 6 or a ring.7 In this study, we focus on the in-
terplay of both these ingredients to create an initially linear
chain of colloids.

We have recently shown that repulsively interacting
paramagnetic beads, confined by optical traps, can generate
nonequilibrium patterns when the traps are abruptly turned
off.15 The advantage of our system is the general ability to
tune interparticle magnetic interactions through the applica-
tion of an external magnetic field.16–19 At the same time,
the colloidal particles are placed in a well-defined initial

configuration using optical tweezers. When the traps are
abruptly turned off, the long-ranged repulsive intercolloidal
interactions generate a dynamically expanding structure that
depends on the initial conditions and on the strength of the in-
teractions. The goal of this work is to use detailed calculations
and Brownian Dynamics (BD) simulations to investigate how
an initially one-dimensional configuration of colloids forming
a linear chain can generate a dynamically expanding pattern
with the observed zigzag symmetry. To understand the equi-
librium zigzag transitions and nonequilibrium zigzag patterns,
we significantly extend our previously developed theory.15 In
particular, by obtaining simple analytically tractable models,
we gain insight into the way that hydrodynamic interactions
(HI) and thermal fluctuations affect the nonequilibrium pat-
tern formation. We also show how defects in the zigzag pat-
tern can arise for finite-length chains.

The paper is outlined as follows. We start by describing
our system in Sec. II. In Sec. III, we focus on the equilib-
rium zigzag transition and consider the cases of both har-
monic and anharmonic traps. In Sec. IV, we perform a nor-
mal modes analysis which is particularly helpful in clarifying
the appearance of zigzag symmetry in nonequilibrium pat-
terns. In Sec. V, we develop a theory describing nonequilib-
rium zigzag patterns. Here we first consider an infinite chain
of colloids in the presence of no thermal noise and then ex-
plore the role and interplay of thermal fluctuations, hydro-
dynamic interactions, and a finite number of colloids com-
prising the chain. Our main findings are then summarized in
Sec. VI.
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II. CHAIN OF OPTICALLY TRAPPED COLLOIDS
IN MAGNETIC FIELD

Consider a chain of identical paramagnetic colloids
trapped optically and subject to a static magnetic field. Ex-
perimentally, we use paramagnetic latex spheres of radius
a = 1.35 μm (Dynabeads, Invitrogen) immersed in a wa-
ter solvent filling a 200 μm thick quartz glass sample cell.
The gravitational length of the particles is much smaller than
their sizes and after sedimentation the system becomes effec-
tively two-dimensional, with the colloidal configuration in the
horizontal plane given by unit vectors ê1 and ê2. The static
spatially uniform magnetic field is applied in the vertical di-
rection, B0 = B0ê3. Being paramagnetic, each colloid is po-
larized along the field and behaves as the induced dipole,
whose magnetic moment m can be approximated by the lin-
ear law, m = χB0, provided that the fields are smaller than the
saturation magnetization. Here, χ = 3.95 × 10−12 A m2 T−1

is the effective magnetic susceptibility.20

Because of the confinement, r · m = 0 and the field in-
duced by each magnetic dipole is B = −μ0m/(4πr3), where
μ0 is the permeability of free space and r is the vector in the
plane (x1, x2) with the origin at the colloid center. Each mag-
netic dipole interacts with the external field and the fields in-
duced by all other dipoles. As a result, the energy of interac-
tion −m(l) · B(l′) of a pair of particles with positions r(l) and
r(l′) corresponds to strictly repulsive interactions described by
the potential

VM (r(l), r(l′)) = μ0

4π

χ2B2
0

|r(l) − r(l′)|3 , (1)

where we have omitted the constant contribution caused by
the interaction with the external field, −m · B0.

Initially, each particle is individually trapped by using
optical tweezers. The positions of traps correspond to a one-
dimensional array with the spatial period d and are given by
R(l) = ld ê1. Although often the optical tweezers are theoret-
ically described as purely harmonic springs, this approxima-
tion is valid only close to the trap center. A real trap has a finite
range of entrapment, beyond which the particle is practically
no longer trapped. For this reason, we model the trapping po-
tential for particle with the position r(l) via an anharmonic
well with a Gaussian profile

VT (r(l), R(l)) = V0 − V0 exp

[
−1

2

k0

V0
δr2(l)

]
, (2)

which is consistent with recent measurements of the optical
trapping potential.21 Here, δr(l) = r(l) − R(l) and the addi-
tive constant is chosen such that the minimum corresponds to
VT = 0. The parameters V0 and k0 specify, respectively, the
depth of the well and the stiffness of the potential. The an-
harmonic nature or softness of the trap is characterized by the
dimensionless parameter

α = k0d
2

V0
. (3)

Rewriting Eq. (2) relative to the characteristic energy k0d
2, we

obtain VT /(k0d
2) = α−1 − α−1 exp[−α δr2/(2d2)] with the

effective range of attraction
√

2/α in units of lattice spacing d.

We see that the limit of α → 0 of expression (2) corresponds
to the purely harmonic potential, VT (r(l), R(l)) = k0δr

2(l)/2,
for all δr(l). For α > 0 the trapping is nearly quadratic for
small δr(l) but becomes increasingly anharmonic at larger
δr(l) and has a finite height V0. Above this barrier the par-
ticle can escape from the trap. It is important to note that k0

and V0 can be changed in the experiment but that their ratio
always remains virtually constant and therefore characterizes
the optical trap.21

Based on these basic ingredients, the repulsive, Eq. (1),
and optical trap, Eq. (2), potentials, the total energy of the
colloidal chain can be written as a superposition

U = 1

2

∑
l

∑
l′ �=l

VM (r(l), r(l′)) +
∑

l

VT (r(l), R(l)), (4)

in which we ignore hard-core repulsive interactions. Note
that the trap potential plays the role of a restoring force that
tends to hold a given particle at a prescribed position, whereas
the force exerted on the particle due to magnetic interactions
tends to push the particle away from this position. Depending
on the relative strengths of these two competing tendencies,
different equilibrium states are possible. One expects that as
the magnetic field is increased the initial line configuration is
broken and the transition to an equilibrium zigzag state takes
place, which is discussed next.

III. EQUILIBRIUM ZIGZAG TRANSITION

A. Interaction potential for zigzag configuration

We now analyze properties of the equilibrium zigzag
state for the simplest situation with the total number of parti-
cles N → ∞ and no thermal noise; the impact of finite temper-
ature is discussed in Sec. III D. Since the magnetic energy re-
mains invariant under translation, the equilibrium zigzag con-
figuration can be presented via

h(l)

d
= l ê1 + (−1)l

h

2
ê2, (5)

with l = 0, ±1, ±2, . . . , ±M, M = (N − 1)/2 → ∞. Here, h(l)
is the equilibrium displacement of particle l from the center
of its trap and h is the dimensionless order parameter char-
acterizing the transition to the zigzag state. The state with
h = 0 corresponds to the trivial line state, while the ground
state with h �= 0 describes the zigzag configuration.

The total equilibrium energy Ueq of the colloidal config-
uration is given by Eq. (4) with r(l) = h(l). Because the chain
of colloids under consideration is infinite, each particle makes
an identical contribution U0 into the total energy Ueq. As a
result, we simplify our analysis by studying the averaged en-
ergy per particle, U0 = limN → ∞Ueq/N. It follows from
Eq. (4) that U0(h) = (1/2)

∑
l′ �=l VM (h(l), h(l′))

+ VT (h(l), R(l)), where parts of the sum can be evalu-
ated analytically, see Refs. 22 and 23. Representing the sum
over l′ as two sums over m = 1, 2, . . . M (M → ∞) with l′ = l
− m and l′ = l + m and noticing that the summands with the
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same m are equal, we arrive at

U0(h)

k0d2
= b2

∞∑
m=1

f 3
m(h) + 1 − g(h)

α
, (6)

fm(h) = 1√
m2 + pmh2

, pm = 1 − (−1)m

2
, (7)

g(h) = exp

(
−1

8
αh2

)
, (8)

b2 = μ0

4π

χ2B2
0

k0d5
. (9)

The first term in potential (6) describes repulsive interactions
between a given particle with all its neighbors, as accounted
by the summation index m: m = 1 corresponds to the near-
est neighbors, m = 2 to the next nearest neighbors, and so
on. The second term describes the optical trapping with the
dimensionless parameter α characterizing the softness of the
trap, as given by Eq. (3). The dimensionless parameter b in-
troduced by Eq. (9) stands for the intensity of the magnetic
field relative to the characteristic energy of trapping, k0d2.

For convenience, we renormalize potential (6) such that
U0(0) = 0 (h = 0 means the line state) and hereafter measure
it in the units of k0d2. As a result, for the rescaled potential,
we have

U0(h) = b2

[ ∞∑
m=1

f 3
m(h) − ζ (3)

]
+ 1 − g(h)

α
, (10)

where we have introduced the Riemann zeta function ζ (x)
= ∑∞

m=1 m−x .
The infinite sum in relation (10) can be evaluated only

numerically, which significantly restricts the possibility of an-
alytic analysis. Quite a helpful simplification of Eq. (10) is
the nearest-neighbor (NN) approximation. Neglecting all the
terms except for that one with m = 1 in Eq. (6) and again
renormalizing the potential such that it vanishes at h = 0, in
the NN approximation, we obtain

UNN
0 (h) = b2

[
1

(1 + h2)3/2
− 1

]
+ 1 − g(h)

α
. (11)

As we see below, this approximation works very well. Next,
we consider the case of a purely harmonic trap, α = 0, and
then discuss how the softness of the trap affects the results.

B. Harmonic trap

In the limiting case of harmonic trap, α = 0, the trapping
term α−1[1 − g(h)] in Eqs. (10) and (11) reduces to a purely
quadratic contribution, (1/8)h2. The requirement of energy
minimum, which is given by the conditions U ′

0(h∗) = 0 and
U ′′

0 (h∗) > 0, determines the stable equilibrium solution as a
function of the field, h∗ = h∗(b). Hereafter, primes abbreviate
the derivatives with respect to h. The condition, U ′

0(h∗) = 0,
admits the trivial line state, h∗ = 0, and a nontrivial zigzag
state with h∗ �= 0, obeying an equation

−b2
∞∑

m=1

pmf 5
m(h∗) + 1

12
= 0. (12)

We expect that the line state, h∗ = 0, is stable at fields b < bc

and the zigzag transition occurs at some critical field b = bc.
Accordingly, the threshold value bc is obtained from Eq. (12)
at h∗ = 0, which gives

bc =
√

8

93 ζ (5)
≈ 0.288 (13)

as the maximum field at which h∗ is a stable solution. Here,
we have taken into account that

∑∞
m=1 pmm−5 = ∑∞

n=1(2n

− 1)−5 = (31/32)ζ (5).
Since Eq. (12) admits no analytical solution for

h∗(b) �= 0, we consider two further approximations below.

1. Analytical solution close to critical point

Here we analyze potential (10) for the case where α = 0
and the system is close to the critical point, where h is small.
By expanding the sum as a series with respect to h,

∞∑
m=1

f 3
m = ζ (3) − 93

64
ζ (5)h2 + 1905

1024
ζ (7)h4 + O(h6),

we obtain for the potential

U0(h) = β(b)h2 + γ (b)h4 + O(h6), (14)

with

β(b) = 1

8
− 93

64
ζ (5)b2, γ (b) = 1905

1024
ζ (7)b2.

In the case of no field, b = 0, the potential U0∝h2 with a co-
efficient β(0) > 0, as expected. So, U0 has a global minimum
at h = h∗ = 0, which corresponds to the trivial ground state
in the form of line. As the field b is increased, β(b) decreases
and becomes negative. As γ > 0, the fact that β(b) < 0 im-
plies that the global minimum is at a nontrivial h = h∗ �= 0,
which corresponds to the zigzag state. The onset of the zigzag
state occurs when β(bc) = 0, providing the same value of bc

as in Eq. (13).
Rewriting potential (14) close to the threshold, where

h 
 1 and b = bc + δb, |δb| 
 bc, we end up with

U0(h) ≈ 1

8

(
b2

c − b2

b2
c

)
h2 + γ (bc)h4. (15)

As follows from Eq. (15), for the line state, h∗ = 0, we have
U ′′

0 (0) = (b2
c − b2)/(4b2

c ), which has to be positive for stabil-
ity. Thus, the line state is stable for b < bc, as expected. To
obtain the solution beyond the critical point, we minimize po-
tential (15) for h∗ �= 0. As a result, we arrive at a Landau-like
square-root law describing the zigzag state,

h∗ = ±
√

C(b2 − b2
c ), b > bc, (16)

with the constant C = (64)/[1905 b4
c ζ (7)], see also Fig. 1. We

note that the same expression can be obtained by simplify-
ing Eq. (12) directly close to the threshold. For the zigzag
state, we find that U ′′

0 (h∗) = (b2 − b2
c )/(2b2

c ), indicating that
it is stable for b > bc. We also note that a similar square-root
buckling singularity was pointed out for a chain of particles
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FIG. 1. Diagram showing the transition from the line (h∗ = 0) to the zigzag
(h∗ �= 0) state for the harmonic trap, α = 0, as the field b is increased. The
exact solution is according to Eq. (12). The approximate solutions for small h
(dashed-dotted line) and in the NN-approximation (dashed line) are described
by formulas (16) and (19), respectively. Note that the exact solution and that
in the NN-approximation are practically indistinguishable in the scale of the
figure.

with screened electrostatic interactions8, 40, 41 and for a sys-
tem of multilayered crystalline sheets of macroions under slit
confinement.24

2. Nearest neighbor approximation

Another possibility that admits analytical analysis is the
NN approximation. As earlier, the line state is stable below the
critical point. The stable solution at supercritical conditions
can be obtained from Eq. (12), where only the leading term,
m = 1, is retained in the sum

−b2(1 + h2
∗)−5/2 + 1

12
= 0. (17)

By putting h∗ = 0 in Eq. (17), we find the critical field,

bNN
c = 1√

12
≈ 0.289, (18)

which is very close to the general result, cf. Eq. (13). Taking
into account Eq. (18), it follows from Eq. (17) that

hNN
∗ = ±b−2/5

c

√
b4/5 − b

4/5
c , b > bc, (19)

where bc is defined by expression (18). Note that in contrast to
result (16), solution (19) is valid not only close to the thresh-
old but at any value of b > bc.

3. Comparison of results

Finally, we solved Eq. (12) numerically and determined
the corresponding dependence h∗(b). The results are illus-
trated in Fig. 1, where we also perform the comparison with
the approximate solutions, Eqs. (16) and (19).

As expected, the solution valid for weak supercritical-
ity, Eqs. (16), works well in the vicinity of the critical point
b = bc and starts to deviate for larger fields. We also empha-
size the impressively good agreement of the exact solution
with that in the NN approximation, Eq. (19). Physically, this
finding indicates that the long-range nature of the repulsive

interactions is not important: each colloid in the ground state
interacts with its neighbors only, while the contribution made
by interactions with the next neighbors is nearly vanishing.
Mathematically, this point is ensured by a rather fast conver-
gence of the sum in Eqs. (10) and (12).

C. Anharmonic trap

We now proceed to the discussion of how the anhar-
monicity of the trap affects the equilibrium states. The trivial
line state, h∗ = 0, is independent of the softness parameter
and for α > 0 remains stable for subcritical fields, b < bc.
To investigate the effect of anharmonic trap on the nontrivial
state, h∗ �= 0, Eq. (12) should be replaced by

−b2
∞∑

m=1

pmf 5
m(h∗) + 1

12
exp

(
−1

8
αh2

∗

)
= 0, (20)

which determines extrema of potential U0(h) for arbitrary α

and allows to obtain the dependence h∗ = h∗(b, α). The criti-
cal value bc follows from Eq. (20) at h∗ = 0, which does not
differ from the similar condition in the case of α = 0, see
Sec. III B. As a result, independent of α, the value bc is given
by expression (13), or by formula (18) in the NN approxima-
tion, and the line state, h∗ = 0, is stable at any b < bc, and for
any α.

1. Analytical solution close to critical point

We note that in the case of arbitrary α, Eq. (20) admits
no analytic solution, even in the NN approximation. However,
the dependence h∗(b) can be obtained close to the threshold,
where h 
 1 and |b − bc| 
 bc. The representation of po-
tential (15) remains formally similar, though with a modified
coefficient,

U0(h) ≈ 1

8

(
b2

c − b2

b2
c

)
h2 + 	 h4, 	 = γ (bc) − α

128
.

(21)
Note that in contrast to γ (bc) > 0 in Eq. (15), the coefficient
	 = 	(α) can change the sign depending on α. The border
value of αc is determined by the condition 	(αc) = 0, which
yields

αc = 128γ (bc) = 635 ζ (7)

31 ζ (5)
≈ 19.9. (22)

Thus, for traps with α < αc, 	 > 0 and the situation is quali-
tatively similar to the case of harmonic trap. For traps with α

> αc, 	 < 0 and the solution becomes drastically different.
To interpret this difference, consider the nontrivial solu-

tion of equation U ′
0(h∗) = 0 with U0 given by Eq. (21). Close

to the threshold, we obtain

h∗ = ±
√

8
(
b2 − b2

c

)
b2

c (αc − α)
, (23)

which coincides with Eq. (16) in the case of α = 0.
As follows from Eq. (23), h∗(b) demonstrates a supercrit-

ical pitchfork bifurcation as a function of b for α < αc, which
is stable, as shown earlier, in Sec. III B. It shows a subcriti-
cal pitchfork bifurcation for α > αc, see also Fig. 2. Because
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FIG. 2. Bifurcation diagram showing equilibrium states for different values
of α. The line state h∗ = 0 exists for all α and is stable for b < bc. The
solution describing the stable equilibrium zigzag state (db/dh∗ > 0) is shown
by bold lines; it exists for traps with α < αc in the range of bc < b < b∗∗ with
b∗∗ the turning point, see Eq. (25). The branches where db/dh∗ < 0 (lines of
normal thickness) are unstable.

U ′′
0 (h∗) = (b2 − b2

c )/(2b2
c ), the latter solution corresponds to

the maximum of potential and is therefore unstable. As a re-
sult, we can conclude that for traps characterized by α > αc

the transition to the zigzag state is impossible in principle.
For such traps, the line state is stable for b < bc. Beyond the
threshold value the particles escape from the traps before the
zigzag state can form, which corresponds to a dynamical ex-
pansion of configuration,15 with formally h → ∞.

We also note that Eqs. (21) and (23) are formally valid
in the NN approximation, in which bc is given by Eq. (18),
γ NN (bc) = (15/8)b2

c , and αNN
c = 20. The latter is again very

close to result (22).

2. Equilibrium states: General picture

To obtain the complete picture of equilibrium states for
arbitrary h∗, we solved Eq. (20) numerically. This equation
corresponds to the requirement U ′

0(h∗) = 0 and determines
extremal solutions h∗ �= 0. The corresponding solutions h∗ as
functions of b for different α are presented in Fig. 2. To elu-
cidate which of the branches are stable, we provide a general
requirement necessary for stability,

U ′′
0 (h∗) = h∗

2b

(
db

dh∗

)
exp

(
−α

8
h2

∗
)

> 0, (24)

which is obtained by differentiating potential (10) and using
Eq. (20). Since α, b, and h∗ are positive, the stability is deter-
mined by the sign of the derivative db/dh∗.

We now interpret the dependencies h∗(b) starting at van-
ishing b, where the line state (h∗ = 0) is stable, and then
gradually increasing the field, b. The numerical results con-
firm the main conclusion following from formula (23). The
critical value α separates two classes of systems that exhibit
qualitatively different behavior.

Consider first the case of relatively stiff traps character-
ized by α < αc. The trivial line state (h∗ = 0, b < bc) bi-
furcates at b = bc into a zigzag state via the pitchfork bifur-
cation so that h∗ �= 0 at b > bc. As follows from Eq. (24),
the zigzag state is stable since U ′′

0 (h∗) ∝ (db/dh∗) > 0. Note

that in the limiting case of harmonic trap, α = 0, the transi-
tion to the stable zigzag state exists for any b > bc, which is
in agreement with the results in Sec. III B. For 0 < α < αc,
we observe a new feature caused by softness of the trapping
potential, which is not captured by asymptotic solution (23).
By increasing b further we reach a turning point (b∗∗, h∗∗), at
which U ′′

0 (h∗) = (db/dh∗) = 0. This behavior of h∗(b) corre-
sponds to a saddle-node bifurcation. In the NN approxima-
tion, we obtain analytic expressions for the turning point

bNN
∗∗ = bNN

c

(
αNN

c

α

)5/4

exp

(
−αNN

c − α

16

)
, (25)

hNN
∗∗ = ±

√
αNN

c − α

α
(α < αc). (26)

Beyond the field b∗∗, no equilibrium solutions with fi-
nite h∗ exist. The remaining part of the branch with finite h∗
in the range, b < b∗∗, h∗ > h∗∗, is characterized by U ′′

0 (h∗)
∝ (db/dh∗) < 0, and is therefore unstable. This solution cor-
responds to the maximum of the potential and sets the poten-
tial barrier separating the domains of the equilibrium zigzag
state and the formal solution with h∗ → ∞. The latter so-
lution means that all the particles escape from their traps
and move apart due to repulsion. Thus, for the traps with
α < αc the stable zigzag state exists in the finite range of
fields, bc < b < b∗∗.

In summary, for softer traps, α > αc, there is no stable
zigzag state. Instead, for b < bc the fixed point is the line, and
for b > bc the fixed point is a solution with h∗ → ∞. For
α < αc, the line is still stable for b < bc. For bc < b < b∗∗, a
stable zigzag state is possible, and for b > b∗∗ the only solu-
tion is that with h∗ → ∞.

Thus, the softness of the trap potential, α, determines
whether an equilibrium zigzag transition can be observed. We
recall that up to now we have considered the case of zero tem-
perature. In a real system, one has to take into account thermal
fluctuations. This issue is discussed in Sec. III D.

D. Impact of thermal noise

Here we briefly discuss how the critical values bc and b∗∗
are affected by the temperature. First of all, it is important
to note that in contrast to purely one-dimensional systems, in
which phase transitions may not exist due to thermal noise,25

our system is a two-dimensional (or only a quasi-one dimen-
sional) system and thus can exhibit a true phase transition.
Then, consider the case of a purely harmonic trap, α = 0,
in which at zero temperature we have a square-root singu-
larity, as given by Eq. (16). Generally, the sharp deterministic
threshold is known to be blurred by thermal fluctuations, lead-
ing to a smooth transition regime for the noisy system;26 see
also Ref. 8, presenting a recent detailed study of the noisy
zigzag transition. At any nonzero temperature, the singular-
ity at the threshold is replaced by a bifurcation region, whose
range depends on the thermal energy kBT. Outside this region,
the system is strongly stable and the thermal fluctuations do
not modify the stability of the system, which is in either the
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linear (with the averaged transverse displacement 〈δy〉 = 0) or
a single zigzag (with 〈δy〉 = h∗ or 〈δy〉 = −h∗) configuration.
Within the bifurcation region, the system is very sensitive to
any small perturbation and it randomly flips between the two
symmetric zigzag states with 〈δy〉 = h∗ and 〈δy〉 = −h∗. Un-
like in Ref. 8, our system is additionally characterized by an
anharmonic trapping potential, α > 0, meaning that thermal
noise can lead to the instability of the equilibrium configu-
rations and trigger dynamically expanding zigzag patterns at
fields effectively lower than those prescribed by the determin-
istic values bc and b∗∗.

Consider first the case of α > αc, when there is no stable
zigzag state. The potential barrier 
U = U0(h∗) − U0(0) can
be evaluated close to the threshold b = bc. Note that in the
case under consideration, formula (23) provides the solution
corresponding to the maximum of potential. Taking into ac-
count that U0(0) = 0 and substituting Eq. (23) into Eq. (21),
we evaluate the height of potential. Since we measure energy
in the scales of k0d2, we have


U

kBT
= k0d

2

kBT

(
b2

c − b2
)2

2b2
c (α − αc)

.

Solving for b′
c which holds when 
U/(kBT) = 1 provides an

estimate for the critical field at finite temperature,

b′
c ≈ bc

[
1 −

√
(α − αc)

2α

kBT

V0

]
, (27)

where bc has the meaning of the critical field at kBT = 0. From
Eq. (27) we see that at vanishing temperature, the critical field
b′

c = bc, as expected. At nonzero temperature, however, the
critical field becomes smaller than bc, because thermal fluc-
tuations allow the particles to escape from the potential well.
Note that this shift is determined by the ratio of thermal en-
ergy to the characteristic depth of the well V0.

We now obtain a similar estimate for the case of explo-
sion from the zigzag state, h∗ �= 0, which is only possible if
α < αc. At zero temperature this happens when b = b∗∗ and
h∗ = h∗∗. To evaluate the height of potential barrier we first
find h∗ in the vicinity of the turning point (b∗∗, h∗∗), which
can be done in the NN approximation:

h∗ = h∗∗ + δh, δh = ±αc

α

√
α(b2∗∗ − b2)

5 b2∗∗(αc − α)
.

Using this result, we evaluate the potential barrier 
U
= U0(h∗∗ + δh) − U0(h∗∗ − δh),


U

kBT
= k0d

2

kBT

5αc

3α
exp

(
α − αc

8

) (
b2

∗∗ − b2

5b2∗∗

)3/2

,

and finally arrive at an estimate for the critical field at finite
temperature,

b′
∗∗ ≈ bc

[
1 − 1

40
exp

(
αc − α

12

) (
30

kBT

V0

)2/3
]

. (28)

Similar to expression (27), we have b′
∗∗ = b∗∗ at T = 0 and a

reduction in the field due to thermal fluctuations that depends
on the dimensionless parameter kBT /V0.

IV. NORMAL MODE ANALYSIS

A. Infinite chain, no thermal noise

We now use a normal mode analysis to investigate the
phonon dispersion relations. We start with the simplest situ-
ation of an infinite chain and no thermal noise. We represent
the instant particle positions as r(l) = R(l) + u(l), where u(l)
is a perturbation describing small deviations from the equilib-
rium line state, h = 0. The total energy of the colloidal con-
figuration (4) is expanded to lowest order around this equilib-
rium state to give U = Ueq + Uharm, where Ueq(0) is indepen-
dent of perturbations and is therefore irrelevant for the normal
mode analysis. For the correction caused by the perturbation,
in the harmonic approximation, we generally have,27, 28 see
also Refs. 3, 12, and 39,

Uharm = 1

2

∑
ll′

∑
μ,ν

uμ(l)�μν(ll′)uν(l′),

(29)

�μν(ll′) = ∂2U

∂xμ(l)∂xν(l′)

∣∣∣∣
eq

,

where μ, ν ∈ {1, 2} and the elements �μν(ll′) of the Hessian
matrix are taken at the equilibrium, r(l) = R(l) for all l. Be-
cause the total energy U comprises the contributions caused
by the optical trapping and magnetic repulsive interactions,
we similarly have �μν(ll′) = �T

μν(ll′) + �M
μν(ll′), where

�T
μν(ll′) = δμνδll′ ,

�M
μν(ll′) = b2δμν

⎛
⎝δll′

∑
l′′ �=l

Cμ

|l − l′′|5 − Cμ

|l − l′|5

⎞
⎠ ,

with the coefficients

C|| ≡ C1 = 12, C⊥ ≡ C2 = −3.

In contrast to studies in Refs. 3, 4, 8, 39, the dynamics
of perturbations in our system is overdamped15, 29 due to the
viscous fluid and is described by equations

u̇μ(l) = −∂Uharm

∂uμ(l)
= −

∑
l′

∑
ν

�μν(ll′)uν(l′), (30)

where the friction coefficient ξ = 6πηa between the particles
and the solvent with the dynamic viscosity η is absorbed in the
time units. To introduce dimensionless variables, the length
and energy are measured, respectively, in the units of d and
k0d2, as before; the time is expressed in the scale of ξ /k0.

Rearranging the summation in Eq. (30) such that l′ = l
+ m with m looping over the neighbors of particle l and using
the symmetry �μν(ll′) = �μν(l′l), we arrive at a set of coupled
differential equations,

u̇μ(l) = Lμuμ(l), (31)

Lμ = −1 + b2Cμ

∞∑
m=1

E−m − 2 + Em

m5
. (32)

The first term in the linear operator Lμ comes from the op-
tical trapping, while the contribution ∝ b2 is caused by re-
pulsive interactions. In the latter, m accounts for the magnetic
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interaction of particle l with its the nearest neighbors (m = 1),
next nearest neighbors (m = 2), and so on. For compactness,
we have introduced a shift operator E±m that acts such that
E±muμ(l) = uμ(l ± m).

The normal modes are readily found by means of the
ansatz,

u(l) ∝ n̂ exp(−λt + ilq), n̂ ∈ {ê1, ê2}, (33)

where λ is the decay rate and q ∈ [0, π ] is the wave number.
We note that (E−m − 2 + Em)uμ(l) = (e−imq − 2 + eimq)uμ(l)
and finally obtain the decay rates and effective spring con-
stants k||, ⊥,

λ||,⊥ = 1 + 4b2C||,⊥
∞∑

m=1

sin2(mq/2)

m5
≡ k||,⊥, (34)

the result valid for subcritical fields, b ≤ bc. The NN approx-
imation, where only one term with m = 1 in sum (34) is re-
tained, works well and makes the result transparent. Relation
(34) is reduced to

λ
||
NN = 1 + 4

(
b

bNN
c

)2

sin2
(q

2

)
≡ k

||
NN, (35)

λ⊥
NN = 1 −

(
b

bNN
c

)2

sin2
(q

2

)
≡ k⊥

NN, (36)

which allows us to draw a number of conclusions. First, this
result shows hardening and softening of the spring constants
with the field in the longitudinal and transverse directions, re-
spectively. Second, it shows that as b approaches its critical
value bc, the mode that first becomes unstable is the mode
with the zigzag symmetry, q = π . Third, in a real system with
a finite number of particles, the spectrum of decay rates is dis-
crete. Its analysis helps in clarifying the impact of the chain
length on the explosion patterns, as discussed in Sec. V D. In
Appendix A, we also show how the dispersion relation (34)
can be generalized for the case of hydrodynamic interactions,
when all particles are globally coupled through the solvent.

B. Chain of finite length at finite temperature

Although highly enlightening, the analysis performed in
Sec. IV A is based on small perturbations and corresponds
to the harmonic approximation (α = 0) for trapping poten-
tial (2). To analyze softer, anharmonic potentials (α > 0) and
achieve quantitative agreement between the experiment and
theory, we apply a complementary approach which is well
suited from both experimental and numerical perspectives.

Experimentally, the phonon-dispersion relations were de-
termined from the single-particle trajectories obtained by
video-microscopy.14 We measured particle displacements u(l)
from their equilibrium positions R(l). The Fourier trans-
forms of the displacement vectors uμ(q) = N−1/2∑

nuμ(n)
exp (−iqn) are directly related to harmonic potential energy
(29) as

Uharm = 1

2

∑
q

∑
μ,ν

u∗
μ(q)Dμν(q)uν(q),

with Dμν(q) the dynamical matrix.27 Applying equipartition,
which implies that every mode has an energy of kBT/2, leads

to a relation14

〈u∗
μ(q)uν(q)〉 = kBT D−1

μν (q), (37)

where the average is over all independent configurations. The
left-hand side of Eq. (37) is accessible in both the experiment
and numerical simulations, whereas the eigenvalues of Dμν(q)
yield the normal mode spring constants.

In a similar manner, the spring constants can be extracted
from BD simulations. The dynamics of each particle is deter-
mined by the force f comprising deterministic, fd, and stochas-
tic, fs, contributions. The deterministic counterpart fd can be
obtained from the energy of the colloidal chain, Eq. (4). The
impact of thermal fluctuations is modeled by Gaussian white
noise. As a result, the dimensionless Langevin equation gov-
erning the dynamics of particle l can be written as

ṙ(l) = f(l), f(l) = fd (l) + fs(l), (38)

fd (l) = − ∂U

∂r(l)
= 3b2

∑
l′ �=l

rll′

r5
ll′

− δrl exp
[
−α

2
δr2

l

]
, (39)

〈fs(l, t)〉 = 0, 〈fs(l, t)fs(l′, t ′)〉 = 2σ I δll′δ(t − t ′), (40)

where rll′ = r(l) − r(l′), rll′ = |rll′ |, I is the identity tensor of
the second order, and δll′ and δ(t − t′) being, respectively, Kro-
necker’s and Dirac’s delta functions. The parameters α and b
are defined by Eqs. (3) and (9), respectively. The intensity
of thermal fluctuations is determined by the dimensionless
parameter

σ = kBT

k0d2
, (41)

which represents the thermal energy relative to the chosen
energy scale. Note that the fact that we work at a given
temperature T, and at certain values of d and k0, fixes the
value of σ .

Figure 3 shows the phonon-dispersion relations as a func-
tion of q for different values of the magnetic field b < bc,
which manifests good quantitative agreement between the
experiment and BD simulations. To fit these data, we tuned

0

1

2

3

0 1 2 3
q

k
|| ,

k
⊥

k||

k⊥

b = 0.3bc

b = 0.52bc

b = 0.74bc

no HIs

FIG. 3. Comparison of the longitudinal k|| and transverse k⊥ normal mode
spring constants obtained from the experiment (markers) and the BD simu-
lations (lines) for different magnetic fields as a function of the wave number
q. The bold dotted, dotted-dashed, and dashed lines are from BD simulations
with the HI for α = 30. The solid lines show the corresponding curves from
the BD simulation without HI.
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b and α such that a pair of k||(q) and k⊥(q) measured for
the same magnetic field is in correspondence simultaneously,
which eventually leads to correspondence for all pairs of k||(q)
and k⊥(q) at α � 30 ± 5. We note that the variation of parame-
ter α affects the transverse and longitudinal modes differently,
that is why quantitative agreement is not achievable via result
(34), which was derived for strictly harmonic trapping, α = 0.

Note that in contrast to formula (34), which predicts
k||, ⊥(q = 0) = 1, for α �= 0 we obtain at q = 0: k|| �= k⊥,
and both k||, ⊥ < 1. The fact that k||, ⊥ < 1 follows directly
from the anharmonic nature of the trap, as shown explicitly
in Appendix B for the vanishing magnetic field, b = 0. How-
ever, the point that k|| �= k⊥ is further based on the fact that we
work at the magnetic field b > 0, which has different impacts
on the longitudinal and transverse modes.

Finally, we note that the Langevin equations can be
generalized to estimate the influence of HI. In this case,
instead of Eq. (38) one simulates Eq. (A1), in which
f(l′) = fd (l′) + fs(l′) is the total force acting on particle l′ with
the deterministic force given by Eq. (39) and the generalized
relations 〈fs(l, t)〉 = 0, 〈fs(l, t)fs(l′, t ′)〉 = 2σ H−1

ll′ δ(t − t ′) for
the stochastic force. Here, Hll′ is the Oseen tensor introduced
in Appendix A, see expression (A2). To numerically integrate
the Langevin equations, both with and without hydrodynamic
interactions, we applied a standard algorithm.30 To ensure that
the colloids do not overlap in simulations, we have addition-
ally included in the Langevin equations steric repulsive inter-
actions of the Weeks-Chandler-Andersen form.31 For spring
constants, we have found very similar results obtained via BD
simulations with and without HI, see Fig. 3. Note that in the
simulations the HI were taken into account in the simplest
form that neglects the existence of the boundary. The real HI
will be modulated by the surface, see Appendix A, but given
the small overall effect of HI, we can argue that explicitly in-
cluding surface effects is not important for determining the
spring constants.

V. NONEQUILIBRIUM PATTERN FORMATION:
DYNAMICALLY EXPANDING ZIGZAG PATTERN

A. Infinite chain, no thermal noise

To gain insight into the nonequilibrium process triggered
by switching off the optical traps, we first consider an infi-
nite chain of colloids in the limit of vanishing thermal noise.
The positions of beads corresponding to the zigzag config-
uration are described by the vector r(l) = h(l) as given by
Eq. (5) with the transverse displacement now being a func-
tion of time, h = h(t). The motion of particle l satisfies the
equation v(l) = ḣ(l) = fd (l). The force fd(l) is given by ex-
pression (39) evaluated at positions h(l), in which we retain
the term ∝b2 made by repulsive interactions but skip the con-
tribution caused by the optical trapping. Because of symme-
try, the longitudinal components of the velocity and force on
all particles are vanishing and for the transverse ones, we
obtain

v⊥(l) = f ⊥
d (l) = (−1)lF⊥(h), (42)

F⊥(h) = 6b2
∞∑

m=1

pmh f 5
m(h), (43)

where pm and fm(h) in Eq. (43) are given by Eq. (7). By eval-
uating v⊥(l) = ê2 · ḣ(l) = (−1)l(ḣ/2) from Eq. (5) and com-
paring the result with Eq. (42), we arrive at the differential
equation for h = h(t),

dh

dt
= 2F⊥(h), (44)

which we supplement by the initial condition h(t = 0) = h0

> 0. Generally, Eq. (44) admits no analytical solution.
An explicit solution to Eq. (44), however, can be obtained

in the NN approximation, when only the term with m = 1
is retained in the sum. By rescaling the time τ = 12b2t and
proceeding to a new variable z = √

1 + h2, we arrive at the
differential equation z6ż = z2 − 1, which admits an analytic
solution

1

5
z5 + 1

3
z3 + z − atanh

(
1

z

)
= τ + c, (45)

where c is the integration constant determined by the initial

condition at t = 0: z = z0 =
√

1 + h2
0. The asymptotic solu-

tions at small and large values of h are given by expressions

ln

(
h

h0

)
+ 5

4

(
h2 − h2

0

) = τ (h0 ≤ h 
 1), (46)

1

5
h5 + 5

6
h3 = τ (h0 
 h, h � 1). (47)

Thus, at small times the displacement grows exponentially,
h(τ ) ≈ h0exp (τ ), while at larger times the growth signifi-
cantly slows down and then behaves according to a power law
h(τ ) ∼ τ 1/5, independently of the initial conditions.

Figure 4 shows a comparison of the analytical solu-
tion (45) valid in the NN-approximation with the numeri-
cal solution of Eq. (44) that accounts for interactions with

0

1

2

3

4

5

0  100  200  300  400

0

1

2

0  10  20

τ

h
(τ

)

τ

h
(τ

)

NNA, h0 = 10−1

NNA, h0 = 10−3

1000, h0 = 10−1
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FIG. 4. Transverse distance h(τ ) for the infinite zigzag configuration as
a function of the rescaled time τ . The lines represent the solution in the
NN-approximation (NNA), Eq. (45), plotted for different initial conditions,
h0 = h(t = 0) = 0.1 (solid line) and h0 = 0.001 (dashed line), in units of
lattice spacing d. The markers show the results of numerical integration of
Eq. (44) for 1000 neighboring particles, the same initial conditions as for
the approximate solution. The inset shows the solutions at the initial stage of
evolution.
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1000 neighboring particles. If we double the number of neigh-
boring particles, it does not change the results. The NN-
approximation works very well, showing only a slight devi-
ation from the numerical solution at large times τ . At small
distances h (small time τ ), the contribution made by the in-
teraction with the nearest neighbors is dominant. At large dis-
tances (large time τ ), when h becomes larger than the period
of the array, the interactions with more neighboring particles
make some small additional contribution. The reason is that
at large h, the distances to the nearest and the next nearest
neighbors are no longer drastically different.

B. Impact of thermal noise

The nonequilibrium pattern formation at the vanishing
temperature considered in Sec. V A is an idealization that
has to be modified in the presence of thermal fluctuations.
Since the repulsive interactions are long ranged, in an un-
bounded domain without thermal fluctuations, this nonequi-
librium process never stops and the particles move out to in-
finity. In reality, at some point thermal fluctuations that lead
to diffusive behavior will start to dominate. This means that
the nonequilibrium pattern can be characterized by a maximal
spatial extension that is achieved within a certain time. To es-
timate these characteristics, we keep focussing on the infinite
chain of particles and work in the NN-approximation.

A natural dimensionless measure that characterizes the
relative strength of deterministic and diffusive motion of a
particle is the Péclet number, Pe = D/(av), where D = kBT/ξ
is the coefficient of diffusion, v is the characteristic deter-
ministic velocity of the particle, and a is the particle radius.
For our dynamic configuration in the form of nonequilib-
rium zigzag, the absolute value of this velocity follows from
Eqs. (42) and (43). In the NN-approximation, we have

v(h) = 6b2h(1 + h2)−5/2, (48)

which is strongly dependent on the separation distance h. At
small h, the velocity grows linearly with h, v � 6b2h, then
the growth stops and at h = 1/2 the velocity reaches the max-
imum, vm = 96

√
5b2/125. Afterwards, v(h) starts to decay

with h and at large values of h drops as v � 6b2h−4.
Thus, in the beginning of the nonequilibrium process,

in the experiments the deterministic motion dominates, with
the maximum value Pe = avm/D > 1, while at large times,
when the motion becomes practically purely diffusive, Pe < 1.
Therefore, the characteristic time can be defined as the time
to reach a regime of motion with a small enough velocity such
that Pe ≈ 1. In dimensional units this corresponds to the con-
dition v ≈ kBT /(aξ ). Recalling that the velocity is measured
in the scales of k0d/ξ and accounting for Eq. (48), this condi-
tion yields the equation for the maximal distance hm,

hm

(
1 + h2

m

)−5/2 = κ, κ = σ

6b2

d

a
, (49)

where the parameters b and σ are given by Eqs. (9) and (41),
respectively. A reasonable approximation for hm follows from
Eq. (49) considered at large hm, which provides the typical

(a)

 0

 1

 2

 3

 0  5  10  15  20

 0  100  200  300

(c)

t

τ

[y
(t

)−
y
(0

)]
/
d

experiment

simulation
theory
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FIG. 5. (a) Microscopy images (92 × 23 μm2) showing an expanding linear
chain of N = 19 magnetic particles with a lattice spacing d = 4 μm upon re-
moving the optical traps at t = 0 s at an external magnetic field B0 = 1.90 mT
and stiffness k0 = 0.37 ± 0.01 pN/μm. The snapshots from left to right are
for t ≤ 0 s, t = 0.2 s, t = 1 s, and t = 5 s. (b) The experimental and Brownian
dynamics particle trajectories compare well. The simulations are based on
Eqs. (38)–(40) with the dimensionless parameters b = 0.8bc, α = 30, and σ

= 0.001. The color code indicates the time in seconds. (c) Example of particle
trajectories for a single particle in the nonequilibrium pattern, where y(t) is
the transverse displacement of the particle. The lines with markers, solid line,
and dashed line correspond to the experiment, BD simulations as in panel (b),
and the deterministic consideration, see Eq. (44), respectively.

transverse displacement

hm = κ−1/4. (50)

As follows from Eq. (50), for a given lattice period d,
the distance hm grows with the increase in the strength of re-
pulsive interactions and with the decrease in temperature. In
the limit of no thermal noise, kBT → 0, we obtain hm → ∞,
which is consistent with the findings of Sec. V A. For our
experimental system (B0 = 1.9 mT, T = 20 ◦C), we have
κ ≈ 0.02, which leads to hm ≈ 2.6 in lattice units, according
to the approximate formula (50) or to the more exact estimate
hm ≈ 2.4, as prescribed by Eq. (49). Note that these estimates
are in agreement with the trajectories obtained from the ex-
periment and BD simulations, see Figs. 5 and 8.

As the motion of particles remains predominantly de-
terministic until h reaches the value hm, the time τ of the
nonequilibrium expansion of the zigzag pattern can be es-
timated from Eq. (45) taken at h = hm or be alternatively
read off directly from Fig. 4. Note that as can be seen from
Fig. 4, the asymptotic solution for large h, see Eq. (47), starts
to work well already for h � 2.5. Therefore, for the timescale
of interest, we obtain

τ ≈ 1

5
h5

m = 1

5
κ−5/4. (51)

C. Impact of hydrodynamic interactions

To understand the role of HI, which as explained in Ap-
pendix A are taken into account in the simplest form, we ne-
glect thermal fluctuations and first focus on the infinite chain
of particles, as in Sec. V A. Because of symmetry, the HI can
change only the transverse component of velocity. In this case,
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FIG. 6. The dependence 
(h), as given by Eq. (53) evaluated with 10 000
terms in the sum.

according to representation (A1), Eq. (42) has to be replaced
by v⊥

HI(l) = ∑
l′ H

⊥
ll′ f

⊥
d (l′). The sum over l′ is split into the

term with l′ = l and the subsums with l′ = l ± n, n = 1,
2, . . . . Taking into account that f ⊥

d (l ± n) = (−1)nv⊥(l) and
evaluating the necessary components of the Oseen tensor,

H⊥
ll = 1, H⊥

ll±n = 3

4

a

d

n(h),


n(h) = fn(h)
[
1 + pnh

2f 2
n (h)

]
,

with pn and fn(h) defined by Eq. (7), we obtain the velocity of
beads modified by hydrodynamic interactions

v⊥
HI(l) = v⊥(l)

[
1 + 3

2

a

d

(h)

]
, (52)


(h) =
∞∑

n=1

(−1)n
n(h). (53)

Here, v⊥(l) is the velocity of particle l in the absence of HI
and the hydrodynamic correction to velocity is multiplicative
and the effect is governed by the small parameter a/d. For
small h we can evaluate expression (53), which yields

h 
 1 : 
(h) = − ln 2 − 7

16
ζ (3)h2 + O(h4). (54)

Note that in the limit of vanishing h, we have 
(0) = −ln 2,
Eq. (52) is reduced to

h → 0 : v⊥
HI(l) → v⊥(l)

(
1 − 3

2

a

d
ln 2

)
, (55)

and the overall hydrodynamic correction coincides with that
obtained for the zigzag mode for λ⊥, cf. Eq. (A9). The fact
that the function 
(h) is negative is a signature that HI ef-
fectively slow down the nonequilibrium process. As follows
from Fig. 6, the function 
(h) remains negative at distances h
≤ 6, which covers practically the whole range of distances not
masked by thermal fluctuations. As argued in Sec. V B, this
range corresponds to the distances h � 2.5. This means that
the interpretation about HI as a factor equivalent to the effec-
tive slowdown of velocities remains valid for all distances of
interest.

Up to now we have considered the infinite configuration
of particles. Now it is easy to predict what happens in a chain
with a finite number of particles. First, consider the case of

FIG. 7. Comparison of trajectories for a chain of N = 19 particles with (bold
blue lines) and without (thinner red lines) hydrodynamic interactions, ob-
tained by BD simulations with no thermal noise, σ = 0, and b = 0.8bc for the
same time interval of 
τ = 125. The initial state corresponds to the zigzag
configuration with a small transverse displacement h0 = 0.1. An effective
slowdown of the expansion speed becomes evident from the trajectory of the
central particle, which has traveled a shorter distance due to HI.

no HI. Because the chain is no more infinite, the longitudi-
nal component of repulsive forces is compensated only for
particles in the middle of the chain. For particles which have
significantly different numbers of neighbors on the left and on
the right, this force is nonvanishing. As a result, the particles
acquire the longitudinal component of velocity and their tra-
jectories bend from those in the case of infinite chain with the
ideally transverse motion. This effect of deflection is maxi-
mal for the particles at the ends of the chain, while the trans-
verse component of motion is relatively weak, and the parti-
cles move away from the chain, see Fig. 7.

Consider now the impact of HI on this nonequilibrium
process. On the one hand, as follows from the consideration
of the infinite configuration without HI, the transverse veloc-
ity component of particles is maximal at distances h = 1/2
and then decays with h as h−4. On the other hand, the hy-
drodynamic correction to the velocity is generally small and
lowers the instantaneous velocity. Taking into account these
two facts, we can conclude that HI have maximal effect in
the beginning of expansion process. The slowdown of veloc-
ities is, to some extent, equivalent to effectively stronger re-
pulsive forces between the particles. As a result, the particles
trajectories resemble the effect of a slightly stronger repulsive
interactions in the beginning of the nonequilibrium process,
which leads to slightly more pronounced bending of trajecto-
ries compared to the case of no HI, see Fig. 7.

D. General case: Defects in nonequilibrium patterns

The normal mode analysis performed in Sec. IV A for an
infinite chain of particles shows that the mode that first be-
comes unstable is the zigzag mode, the fact that underlies the
physics of nonequilibrium patterns. In contrast to this anal-
ysis, in a real system with a finite number of particles, the
spectrum is discrete. The observed nonequilibrium patterns
do not always have the perfect zigzag symmetry and can in-
volve defects. Before proceeding to BD simulations demon-
strating these features, we consider a simplified model that
reveals the origin of the defects.

Consider a chain of finite number N of particles, which
can be odd, N = 2M + 1, or even, N = 2M. For convenience,
we choose the origin of the coordinate system in the middle of
the pattern such that ideal zigzag patterns would be symmetric
for odd N and antisymmetric for even N. In other words, we
assume that the dimensionless coordinates of laser traps are
given by R(l) = (l, 0), l = 0, ±1, ±2, . . . , ±M for an odd N
and by R(l) = (l∓1/2, 0), l = ±1, ±2, . . . , ±M for an even N
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and estimate the normal modes from Eq. (33). As a result, we
obtain

u(k)
μ (l) ∝ e−λkt cos qkl (l = 0,±1, . . . ,±M),

(56)

qk = 2πk

N − 1
, k = 0, 1, . . . , M (N = 2M + 1),

for an odd number N of colloids, and

u(k)
μ (l) ∝ e−λkt sin qk(l ∓ 1/2), (l = ±1, . . . ,±M),

(57)

qk = (2k − 1)π

N − 1
, k = 1, 2, . . . ,M (N = 2M),

for an even number of colloids. The spectrum of decay
rates can be obtained from the NN-approximation, following
Eqs. (35) and (36),

λ
||
k = 1 + 4b2

b2
c

sin2
(qk

2

)
, λ⊥

k = 1 − b2

b2
c

sin2
(qk

2

)
. (58)

As earlier, the zigzag mode has the shortest spatial
period or, equivalently, the largest wave number, k = M,
qM = π , see Eqs. (56) and (57), giving u(M)

μ (l) ∝ cos πl

and u(M)
μ (l) ∝ sin[π (l ∓ 1/2)]. As follows from relation (58),

the zigzag mode has the slowest transverse decay rate, see
Eq. (59) for λ⊥

M , and first becomes unstable as we approach
the critical field b = bc. Note that other modes have close de-
cay rates and may lead to defects, if the zigzag mode is not
well separated from the others.

It is instructive to analyze what happens as the length of
the chain is changed. If for the zigzag mode, qM = π , the wave
number for other modes k = M − m, m = 1, 2, . . . close to
the zigzag mode is, as follows from Eqs. (56) and (57), qM − m

= qM − βmπ . Here, βm = m/M for the case of odd number
of colloids, N = 2M + 1, and βm = (2m + 1)/(2M + 1) for
the case of even number of colloids, N = 2M. The transverse
decay rates can be represented as

λ⊥
M = 1 − b2

b2
c

, λ⊥
M−m = λ⊥

M + b2

b2
c

sin2

(
βmπ

2

)
. (59)

By inspecting relation (59), we can draw an important
conclusion. In the case of small fields, significantly below the
threshold, b 
 bc, all the modes have the transverse decay
rates λ⊥

M ≈ λ⊥
M−m ≈ 1. Because the repulsive interactions are

relatively weak and the modes are damped, we do not observe
well pronounced zigzag symmetry in the nonequilibrium pat-
terns, which is additionally masked by thermal fluctuations.
The situation becomes qualitatively different as we approach
the threshold. For the fields close to but remaining below the
threshold, b � bc, we obtain from Eq. (59)

λ⊥
M ≈ 0, λ⊥

M−m ≈ sin2

(
βmπ

2

)
. (60)

Relation (60) implies that the modes are best separated pro-
vided λ⊥

M−m has a maximal value, which is achieved at
βm = 1. By definition, βm ≤ 1, and the modes are better sepa-
rated for larger values of βm. If we consider the mode closest
to the zigzag (m = 1), then we see that βm becomes larger
for smaller M and smaller for larger M. In other words, the

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

FIG. 8. Particle trajectories showing nonequilibrium expansion patterns for
chains with different number of colloids: N = 12 (a), N = 19 (b), and N
= 26 (c) obtained for b = 0.8bc and α = 30. Panels (a1), (b1), and (c1)
demonstrate zigzag patterns without defects, while panels (a2), (b2), and (c2)
show patterns with simple imperfections.

neighboring modes close to the zigzag mode are better sepa-
rated from each other for shorter chains (N small) and worse
separated for longer chains (N large).

For a system at a finite temperature, the probability to
detect a mode different from the zigzag mode grows with the
chain length, which results in defects, as confirmed by our BD
simulations, Fig. 8. For instance, the mode k = M − 1 clos-
est to the zigzag has a slightly larger period than the zigzag
mode. Being considered within the same length, this implies
the appearance of defects. The simplest defect corresponds to
the situation when a pair of neighboring particles “shoots out”
in the same direction, breaking the perfect zigzag symmetry,
see panels (a2), (b2), and (c2) of Fig. 8. Another defect is
composed of three neighboring particles, with the outer parti-
cles moving in the opposite directions and nearly resting par-
ticle between them, as in panel (c2) of Fig. 8, cf. Fig. 1(b) of
Ref. 4.

VI. CONCLUSIONS

We study the behavior of repulsively interacting param-
agnetic colloidal particles which are initially optically trapped
in a linear array and form a nonequilibrium expanding pattern
when the traps are abruptly turned off. This dynamical pat-
tern exhibits a zigzag symmetry even when the strength of the
magnetic interactions, characterized by the dimensionless pa-
rameter b, is weaker than the critical value b = bc required
to break the linear symmetry of the equilibrium state im-
posed by the optical traps. Theory and computer simulations
quantitatively replicate these phenomena both in and out of
equilibrium.
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An analysis of equilibrium states shows that the line state
is always stable for b < bc. For harmonic traps, the transition
to the zigzag state occurs at b = bc and this equilibrium state
is stable for b > bc. For anharmonic traps, specified by a di-
mensionless softness parameter α, there exists a critical value
αc that separates two qualitatively different scenarios. For rel-
atively soft traps, α < αc, the transition to the zigzag state
is still possible. However, in contrast to the case of harmonic
traps (α = 0), the zigzag state remains stable only in a finite
range of fields, bc < b < b∗∗. For b > b∗∗ the zigzag config-
uration becomes unstable and the zigzag pattern starts to dy-
namically expand. For stiffer traps, α > αc, the transition to
the equilibrium zigzag state is impossible. The line state loses
its stability and exhibits an expanding pattern upon reaching
the value b = bc. The thermal fluctuations are shown to ef-
fectively decrease the critical values bc (and b∗∗), at which
the line (and zigzag) state becomes unstable. The correspond-
ing corrections are additive and ∝ kBT /V0, the small ratio of
thermal energy (kBT) to the depth (V0) of the trap potential.

The normal mode analysis of the line configuration per-
formed for both zero and nonzero temperatures evidences
hardening and softening of the spring constants with the field
in the longitudinal and transverse directions, respectively.
This analysis further reveals that as b approaches its critical
value bc, the mode that first becomes unstable is the mode
with the zigzag symmetry, which explains the symmetry of
nonequilibrium patterns. We demonstrated that at zero tem-
perature, the particle is unable to explore the anharmonic
nature of the trap potential and the spring constants corre-
spond to the purely harmonic trap. The anharmonic correc-
tions, again governed by the small parameter kBT /V0, are
negative, leading to effective spring constants smaller than
those for the harmonic trap and meaning that the anharmonic
trap potential is softer than its purely harmonic counterpart.
The theoretically predicted phonon dispersion relations are
in good quantitative agreement with the experimental data.
From this comparison we could also draw an estimate for the
softness parameter specifying our system, α > αc. In agree-
ment with the experiment, this value means that the equilib-
rium zigzag state is impossible for our system. We have also
found that hydrodynamic interactions have only a small effect
on the results of the normal modes analysis.

We have developed a description explaining the forma-
tion and evolution of nonequilibrium zigzag patterns. The
basic physics is captured by a simple model for an infinite
chain of particles in the absence of thermal fluctuations. In
the nearest-neighbor approximation, we obtain an analytic so-
lution for the trajectories of particles in the chain. We show
that accounting for the magnetic interactions with further
neighbors does not significantly change the results. Further
we demonstrate that in contrast to the idealized case of zero
temperature, where the process of expansion formally never
stops, we obtain an estimate for a characteristic distance at
which thermal fluctuations start to dominate and lead to dif-
fusive behavior. This distance is found to be a few lattice peri-
ods, in agreement with the experiment. The analysis of chains
of finite length shows that the trajectories of particles at the
ends of the chain start to bend. In the beginning of expansion,
the hydrodynamic interactions are shown to effectively slow

down the velocity of expansion, which eventually results in a
more pronounced bending of the trajectories. Finally, consid-
ering chains of finite length in the presence of thermal fluc-
tuations and taking into account the analytical results of the
normal mode analysis we explain the existence of defects in
zigzag patterns and illustrate why the defects become more
probable in longer chains.
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APPENDIX A: CORRECTION TO DISPERSION
RELATION CAUSED BY HYDRODYNAMIC
INTERACTIONS

Generally, the motion of driven particles is coupled
through the solvent, which can be taken into account within
the concept of HI. In the presently considered case of over-
damped motion, the dynamics of a given particle, say, parti-
cle l, depends on the motion of other particles and satisfies the
equation

v(l) = ṙ(l) =
∑

l′
Hll′ · f(l′), (A1)

where Hll′ is the mobility tensor and f(l′) is the force exerted
on particle l′. In the Oseen approximation, valid at interpar-
ticle distances large compared to the particle size and imply-
ing no confinement, the dimensionless mobility tensor can be
written as

Hll′ = δll′ I + (1 − δll′ )
3

4

a

d

1

rll′
(I + r̂ll′ ⊗ r̂ll′ ) , (A2)

with r̂ll′ = rll′/rll′ .
Note that in the presence of a confining surface, as in our

experiment, the mobility tensor given by Eq. (A2) has to be re-
placed by the Blake tensor,32 which accounts for the confine-
ment. Such an approach can be applied at the level of both the
Oseen33 or a more accurate Rotne-Prager approximation.34

For the discussion of further improvements such as, e.g.,
many-body and lubrication effects, see Refs. 35–37. How-
ever, in the BD simulations for spring constants, where the
mobility tensor was taken into account in the simplest form
that neglects the existence of the boundary, as in Eq. (A2),
we have found very similar results with and without HI, see
Fig. 3. Given the small overall effect of HI, we can argue that
explicitly including surface effects is not important for deter-
mining the spring constants and therefore restrict ourselves to
the Oseen approximation.

Now, to obtain the correction to the dispersion relation
due to HI, Eq. (31) for particle displacements from the laser
traps, which eventually determines spring constants, has to be
modified according to representation (A1). For l = l′ the mo-
bility tensor (A2) has the simplest structure, Hll′ = I, as in the
absence of HI. For l �= l′, we use small particle displacements
uμ(l) in comparison with the period of array d. As a result, we
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obtain approximate expressions

Hll′ ≈
(

H
||
ll′ 0

0 H⊥
ll′

)
, (A3)

H
||
ll′ = 2H⊥

ll′ ≈ 3

2

a

d

1

|l − l′| (l �= l′), (A4)

within the same accuracy as the Oseen approximation.
According to representation (A1), Eq. (31) has to be re-

placed by u̇(l) = ∑
l′ Hll′Lu(l) with the operator L given by

Eq. (32). Splitting the sum over l′ into the term with l′ = l and
two subsums with l′ = l ± n (n = 1, 2, . . . ), we arrive at the
generalized equation for perturbations that accounts for HI,

u̇μ(l) = LHI
μ Lμuμ(l), (A5)

LHI
μ = 1 + 3

4

a

d
cμ

∞∑
n=1

E−n + En

n
, (A6)

where the coefficients c|| ≡ c1 = 2 and c⊥ ≡ c2 = 1. Applying
the same ansatz for uμ as earlier, see Eq. (33), and taking into
account that

∑∞
n=1 n−1 exp(±inq) = − ln[1 − exp(±iq)], we

arrive at the generalized expressions for the spring constants,

λ
||
HI = λ||

[
1 − 3

a

d
ln

(
2 sin

q

2

)]
≡ k

||
HI, (A7)

λ⊥
HI = λ⊥

[
1 − 3

2

a

d
ln

(
2 sin

q

2

)]
≡ k⊥

HI, (A8)

with λ|| and λ⊥ defined by general relation (34) or its NN-
approximation, see Eqs. (35) and (36). In the case of no HI,
when the ratio a/d is formally set to zero, the generalized ex-
pressions reduce to those obtained earlier, λ||,⊥

HI = λ||,⊥. In the
partial case of no repulsive interactions, when b = 0 and λ||

= λ⊥ = 1, expressions (A7) and (A8) are in agreement with
those obtained by Polin et al.6

Based on the structure of the generalized spring constants
we can draw the following conclusions: (i) The hydrodynamic
correction is small, being of order O(a/d), which reflects the
accuracy the Oseen approximation. (ii) For the zigzag mode,
q = π , we find λ

||
HI = λ||[1 − (3a/d) ln 2] and

λ⊥
HI = λ⊥

(
1 − 3

2

a

d
ln 2

)
, (A9)

which show destabilizing role of hydrodynamic interactions
close to the critical point that determines the transition to the
equilibrium zigzag state. (iii) The hydrodynamic correction is
multiplicative and hence the critical point itself is not affected
by HI. The latter point is not unexpected because HI refer to
dynamics, while the transition to the equilibrium zigzag state
is a purely equilibrium feature.

APPENDIX B: PARTICLE IN A WEAKLY
ANHARMONIC POTENTIAL

To qualitatively demonstrate the role of the anharmonic
nature of the trapping potential, we address a simplified prob-
lem. Consider the one-dimensional motion of a single parti-
cle subject to thermal fluctuations and trapped by a potential

of form (2) in the absence of magnetic field (b = 0), which
presents a partial case of the problem described by Eqs. (38)–
(40). Denoting by x the displacement from the laser trap, the
Langevin equation is reduced to

ẋ = fd + fs, fd = −∂VT

∂x
, (B1)

〈fs(t)〉 = 0, 〈fs(t), fs(t
′)〉 = 2σ δ(t − t ′), (B2)

with the trap potential VT = α−1[1 − exp(−αx2/2)], in
which the parameter α is a measure of anharmonicity of the
trapping potential, see Eq. (3). Further we consider the case
of the weakly anharmonic trap, α 
 1. Using the smallness
of α, we expand to find

VT (x) = 1

2
x2 + 1

8
αx4 + O(α2), (B3)

where the first term corresponds to the limit of a purely har-
monic trap, α = 0, and the second one accounts for the anhar-
monicity. This representation can be interpreted as a nonlin-
ear restoring force fd(x) with a coordinate-dependent stiffness
K(x),

fd = −K(x)x, K(x) = 1 − 1

2
αx2. (B4)

To obtain the effective spring constant, the local stiffness
K(x) has to be weighted with the probability of finding the
particle at the coordinate x and integrated all over the domain,
−∞ < x < ∞. The general stationary solution for the proba-
bility density function P0(x) for problem (B1), (B2) is known
to be38

P0(x) = C−1 exp

(
−VT

σ

)
, C =

∫ ∞

−∞
exp

(
−VT

σ

)
dx.

For a weakly anharmonic potential (B3), we obtain a consis-
tent approximation,

P0(x) ≈ C−1 exp

(
− x2

2σ

) (
1 + 1

8

α

σ
x2

)
,

C ≈
√

2πσ

(
1 + 3

8
ασ

)
.

Using this result, we evaluate the effective spring con-
stant k = 〈K(x)〉 = 1 − ασ/2 + O(α2σ 2), where 〈. . . 〉
= ∫ ∞

−∞ . . . P0(x)dx. Interestingly, this rigorous result coin-
cides with the expression following from averaging Eq. (B4)
for K(x), if we heuristically put 〈x2〉 = σ based on the purely
Gaussian probability density function, which is our P0(x)
taken for the harmonic potential, α = 0.

Finally, by using the definitions of α and σ , we formulate
the result for the effective spring constant in the dimensional
form to yield

k = k0

(
1 − 1

2

kBT

V0

)
+ O

(
k2
BT 2

V 2
0

)
. (B5)

We see that in the case of vanishingly small thermal fluc-
tuations, kBT = 0, the particle is unable to explore the anhar-
monic nature of the trap potential, and the spring constant cor-
responds to the purely harmonic trap, k = k0. The anharmonic



134908-14 Straube et al. J. Chem. Phys. 139, 134908 (2013)

correction is governed by the small parameter ασ = kBT /V0,
whose structure implies that the deviation from k0 becomes
visible in the case of thermal noise provided the trap poten-
tial has a finite depth. The sign of the correction tells us that
the effective spring constant is smaller than k0, which simply
reflects the fact that the trap potential is softer than its purely
harmonic counterpart.
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