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Abstract
In this paper we discuss the problems of particle advection, manipulation and mixing at small
scales. We start by considering reaction–advection–diffusion systems with the focus on mixing.
We show how mixing advection affects the processes of reaction–diffusion and discuss
mixing-induced instabilities. Further, we consider the problem of particle manipulation and
discuss collective effects in systems comprising solid and compressible particles. We
particularly discuss mechanisms of particle entrapment, the role of compressibility in the
dynamics of bubbly liquids and nonequilibrium colloidal explosion. Finally, we address two
issues related to the problem of wetting. First, we study the role of contact line motion for a
sessile droplet (or a bubble) on an oscillating substrate. Second, we discuss an instability of a
thin film leading to the formation of a fractal structure of droplets.

(Some figures in this article are in colour only in the electronic version)

1. Introduction: general aspects

The problems of particle advection, manipulation and mixing
at small scales belong to the field of nano- and microfluidics,
which is closely related to the concept of a lab-on-a-
chip (LOC) [1]. Many of the techniques developed in
the past 50 years promise cheaper and faster fabrication
of LOC systems [2]. Nowadays applications [3] require
understanding the dynamics of not only pure fluids but
complex fluids such as colloidal suspensions, polymer
solutions, microemulsions and reacting fluids. It is
expected [4] that investigations of these complex systems
will have a great impact in the biotechnological industry,
pharmacology, medical diagnostics, environmental monitoring
and basic research. Because of their structural complexity,
complex fluids involve considerably different length scales and
their description becomes a highly nontrivial task. Particular
aspects of macro- and microworlds meet each other and
become no longer separable at the intermediate scales [5, 6].
Understanding the mesoscopic dynamics of complex fluids
including hydrodynamic and nonhydrodynamic interactions,
effects of thermal noise, confinement and finite size, and

especially their interplay, presents a major challenge for both
theory and experiment [7, 8].

A typical and appealing example of a complex fluid is
a fluid laden with colloidal particles, figure 1(a). Colloidal
suspensions are interesting systems for many reasons. First,
colloids are relatively slowly moving, which allows for precise
and reliable experimental control and analyses [9]. Second,
colloidal suspensions are universal model systems: their
mutual intercolloidal interactions can be easily tuned, for
example, by adding polymer coils or other colloidal particles.
Third, there are at least two well-separated length scales in
such systems: the size of the suspended particles and the size
of the much smaller solvent molecules. The latter circumstance
presents a major challenge from the theoretical point of view.

On the one hand, one could treat such a system from the
perspective of continuum theory, assuming that it is applicable
at small scales. In fluid dynamics, the problem of a single
particle moving through a viscous fluid was solved by Stokes
in his classical tour de force [10]. Here, the particle is
considered to be macroscopic and the fluid is treated as a
continuum. External forces exerted on particles lead to their
motion. During the motion, each particle disturbs the fluid
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Figure 1. Different features of colloidal suspension at mesoscales. Colloids are plotted in dark blue, solvent (light blue) is represented as
smaller particles or a coarse-grained continuum. (a) Colloidal suspension, discrete picture. (b) A moving colloidal particle disturbs the solvent
and mediates long-range hydrodynamic interactions between the particles. (c) Brownian motion and the finite size of colloids in a driven
solvent close to the wall. The colloid center can approach the wall up to a certain distance only (horizontal dashed line).

flow (see figure 1(b)) so that the velocity disturbance decays as
1/r , where r is the distance measured from the particle. This
indicates that moving particles are hydrodynamically coupled
to each other via the solvent. Thus, even when the particles
are not directly interacting, the viscous solvent mediates their
indirect hydrodynamic interactions. One should keep in mind
the long-range nature of hydrodynamic interactions, which
generally causes a certain difficulty for the theoretical analysis
of systems comprising many particles.

On the other hand, the colloidal particles are sufficiently
small and experience the fluctuating thermal forces from
the fluid, which gives rise to Brownian diffusion [11, 12],
figure 1(c). Often, these inevitable effects of thermal
noise are not properly taken into account in the continuum
hydrodynamics. On the smallest microscopic level, which
accounts for all the individual atomic interactions, such as,
for example, in molecular dynamics (MD), the thermal noise
effects are naturally included. Although the microscopic
approaches are the most fundamental and ultimately the most
precise, they have restrictions from the practical viewpoint.
Being appropriate for pure fluid systems, the MD methods
often become impracticable for complex fluids, which involve
considerably different length scales, implying that systems of
much larger size have to be simulated. Here, microscopic
methods are still out of reach due to available computational
power limiting the system size to about a few tens of
nanometers.

Compared to the macroscopic scales, physics at smaller,
intermediate scales can become significantly different. The
role of boundaries (or more generally effects of confinement)
becomes non-negligible or even predominant. The volume
and surface mechanisms governing the dynamics scale as L3

and L2, respectively, where L is a characteristic length scale.
Hence, the relative importance of surface effects increases
as 1/L, while the scale L is decreased. Another point is
that the relative size of the particles becomes larger under
confinement. The particles may have to be considered as
having finite size, an important point that is often neglected in
conventional approaches treating the particles as mathematical
points. The finite size of particles can be of crucial importance
in understanding the particle dynamics near confining walls,
e.g. depletion effects [13]. In such a situation, the center of a
finite size particle cannot approach the wall beyond a certain
distance, which is typically equal to the radius of the particle

(see figure 1(c)), whereas this zone is not forbidden for the
solvent.

There are a number of other potentially important factors.
For instance, particles in suspension interact with each other
and with boundaries in many ways. Apart from the effects of
hydrodynamic interactions, they can interact directly. This can
be short-range repulsion, preventing each of two hard spheres
from penetrating into each other or into the solid wall. Another
generic case is the long-range interactions, e.g. attractive van
der Waals forces or dipole–dipole interactions [14]. In the
first case this can lead to attraction and therefore aggregation
effects, while the second example depends on orientation of
induced or true electric (or magnetic) dipoles and can lead to
the formation of chains. Another typical situation is the case
of dense suspensions, where the particle motion is effectively
screened by other particles that are almost touching.

Rapid development of microtechnologies [4, 5] over the
past few decades has attracted great interest in the theoretical
aspects of wetting [15, 16]. This problem, where the surface
forces prevail over the volume ones, involves understanding
the dynamics of thin films (figure 2(a)) and is directly related
to sessile droplet interaction with the substrate, see figure 2(b).
A powerful approach to the thin film dynamics is based
on the lubrication approximation [17]. Many studies have
shown [17, 18] that the thin film can become unstable and
rupture, leading to the formation of sessile droplets and
complex cascades of droplets [19]. Note that, because the
correct description of interaction with boundaries is a crucial
prerequisite for obtaining the proper picture of the bulk
dynamics in confined systems, a systematic understanding of
the interaction of a single droplet with the substrate is able to
shed light on the dynamics of systems illustrated in figures 1(c)
and 2(c).

The presence of a solid surface faces another challenging
problem underlying the physics of wetting, the contact line
dynamics, which is currently far from being fully understood.
Despite noticeable progress in the theoretical understanding
of the physics of a steadily moving contact line [15, 20], the
unsteady motion of the contact line remains significantly less
explored, especially for fast oscillatory processes. Of special
importance is the role of contact angle hysteresis. Based on
Dussan’s experiments [21], a boundary condition that captures
principal features of the contact line motion has been suggested
by Hocking: with [22] and without [23] hysteresis. Different
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Figure 2. Systems under consideration. (a) Thin film spreading over a solid surface. (b) A drop sitting on the surface. Such drops can appear
as a result of thin film rupture. (c) Disperse medium comprising the drops (bubbles), a part of which sit on the wall and the others are
suspended in the bulk.

practically important situations are addressed by changing
a wetting parameter and range from the completely pinned
contact line (the contact angle changes) to the opposite case
of the fixed contact angle (the contact line moves). For sessile
oscillating drops and bubbles most theoretical studies apply
oversimplified models, when hysteretic phenomena [24, 25]
or the contact line motion [26] are neglected. As a result,
principal questions referring to the dynamics of the contact
line remain unsolved. For instance, recent experiments [27]
have detected stick–slip motion, which cannot be satisfactory
described by the oversimplified models [28].

In this paper, we discuss three closely related issues. In
section 2, we consider chemical and biochemical systems in
terms of reaction–advection–diffusion systems and focus on
the role of mixing. We demonstrate that mixing flows can have
a significant impact on the dynamics of these systems and lead
to a number of novel instabilities. In section 3 we deal with
the problem of particle manipulation. We consider different
effects of collective behavior and discuss how such effects can
be described in a consistent and efficient way. In particular, we
discuss the mechanism of particle entrapment and then focus
on the dynamics of bubbles as soft particles. We show that
the compressibility of bubbles can lead to a number of peculiar
effects. Finally, in section 4, we survey two issues related to
the problem of wetting. First, we consider the dynamics of fast
oscillatory motion, which is studied in the context of a sessile
droplet (or a bubble) on an oscillating substrate. Second, we
discuss an instability of a thin film and show how a complex
hierarchical structure of droplets develops as a result of thin
film rupture.

2. Dynamics of chemical and biochemical systems
and mixing

When the chemical species suspended in a fluid solvent have
a typical size comparable with that of the solvent, there is
no significant separation of length scales and the systems
can be efficiently described by means of the continuum
theory. Reaction–diffusion systems are a well-established class
of continuum models describing pattern formation far from
equilibrium [29]. Often, pattern-forming fields are additionally
transported by fluid flows. Various examples range from
macroscopic plankton patterns in oceanic flow [30, 31] to
chemical reactions in microchannels [32]. By incorporating the
flow in the model one arrives at reaction–advection–diffusion
systems. The spatiotemporal evolution of concentrations
C j ( j = 1, . . . , N) can be described by the following

equations [33, 34]:

∂C j

∂ t
+ v ·∇C j = D j∇2C j + Fj (C1, . . . , CN ). (1)

Here, v(r, t) is the velocity field, which is assumed to be
solenoidal (∇ · v = 0), D j are the molecular diffusivities of
the corresponding chemical species and functions Fj describe
reaction kinetics.

A great variety of chemical and biochemical processes in
closed and open flow geometries can be described in terms of
the model (1). We note, however, that this model implies that
the velocity field is not affected by the chemical species so
that v(r, t) is independent of C j . Although this assumption
greatly simplifies the analysis and is often reasonable for small
volume concentrations, it is not always true, especially for
systems in external fields. In section 3 we provide a number
of examples where such a feedback of particles onto the flow
can be important even when the volume concentration of an
admixture is small. Apart from the assumption of being
divergence-free, the velocity field v(r, t) in equation (1) can be
rather arbitrary. Further, we are interested in understanding the
role of mixing and therefore focus on mixing flows [35–37].

A typical experimental implementation of a two-
dimensional mixing flow v(r, t) is a closed flow periodic in
space and time [38]. Qualitative features of mixing can be
captured by a model two-dimensional flow that is 2π -periodic
in space. As suggested by Antonsen et al [39] (see also a
closely related study [40]), the velocity field can be represented
as follows:

v = exUx f (t) sin[y + θx(t)] + eyUy[1 − f (t)] sin[x + θy(t)].
(2)

The function f (t) describes switching between two shear
flows in x and y directions with the amplitudes Ux and Uy .
Depending on functions f (t), θx(t), θy(t), the flow can be
time periodic or irregular. A weakly turbulent irregular flow is
modeled by choosing f (t), θx(t), θy(t) to be random functions
of time. For a time periodic flow, one sets θx , θy to be constant
and

f (t) =
{

1, 0 < t < T/2,

0, T/2 < t < T
(3)

with T being the time period. In this case, particle trajectories
demonstrate typical Hamiltonian dynamics with both regular
and chaotic orbits. Thus, the phase space is mixed, comprising
the stability islands and chaotic regions. An advantage of
the time periodic flow (2) and (3) is that the trajectories of
particles can be obtained explicitly. The transformation of
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(a) (b) (c)

Figure 3. Phase portraits of the mapping (4) and (5) for a periodic driving, T = 1, θx = θy = 0. The parameters Ux = Uy = 1.5 (a),
Ux = Uy = 3.0 (b) and Ux = Uy = 5.0 (c).

particle coordinates during one period T is given by an area-
preserving mapping:

x(t + T ) = x(t) + 1
2 Ux T sin[y(t) + θx ], (4)

y(t + T ) = y(t) + 1
2 UyT sin[x(t + T ) + θy]. (5)

The phase space dynamics of mapping (4) and (5) restricted
to the domain of periodicity x, y ∈ [0, 2π] is demonstrated in
figure 3. We see that the phase space consists of regular islands
and domains of chaotic behavior. With the growth in advection
rate (Ux , Uy), the domains of the quasiperiodic dynamics are
gradually superseded by the chaotic regions. Generally, the
angles θx and θy can take on different values in each time
period. For instance, for θx and θy constant in each period but
varying randomly from period to period, all the trajectories are
chaotic.

As has been shown experimentally in a nonreactive set-
up (Fj = 0), a dye subject to chaotic advection in a fluid can
form persistent patterns [38]. The described model of mixing
flow (4) and (5) has been recently applied to explain these long-
living patterns [41]. Further, we overview a few examples
involving closed and open reactive flows and showing novel
instabilities in reaction–advection–diffusion systems where
mixing plays an important role.

2.1. Temporal chaos versus spatial mixing

We first focus on a reaction–advection–diffusion system (1)
with a time-dependent reaction [42]. The system is considered
in a closed domain with the no-flux boundary conditions
∇C j |S = 0 at the boundary S. Note that, for a spatially
homogeneous distribution of concentrations, the advection and
diffusion terms vanish. Model (1) is reduced to a nonlinear
system

dC j

dt
= Fj (C1, . . . , CN ), (6)

which admits temporally regular or chaotic solutions C0
j (t).

The question arises as to whether the spatially homogeneous
state C0

j (t) can become unstable and the transition to a
spatially inhomogeneous state can take place. To answer this

question, we introduce a small perturbation field ϕ j(r, t) of the
concentration, substitute the perturbed field C0

j (t) + ϕ j(r, t)
into equation (1) and linearize it near the solution C0

j (t). By
measuring the time in the scale of the characteristic advection
time, we arrive at dimensionless equations for perturbations:

∂ϕ j

∂ t
+ v ·∇ϕ j = d j∇2ϕ j + Da Jjkϕk, (7)

where J jk(t) = (∂ Fj/∂Ck) is the Jacobian matrix of
equation (6) taken on the solution (C0

1 (t), . . . , C0
N (t)). The

dimensionless diffusion constants d j , which are equivalent to
Péclet numbers Pe j ∼ d−1

j and are generally distinct for
different species, set the relative intensity of diffusion relative
to advection at the characteristic length scale. The Damköhler
number Da is the dimensionless reaction rate.

Generally, the solutions of (7) grow or decay exponentially
in time ||ϕ|| ∼ eλt , where λ belongs to the spectrum
of Lyapunov exponents (LE). Note that the LEs of the
solution of (6) belong to this spectrum, describing growth or
decay of homogeneous perturbations. The stability of the
spatially homogeneous solution C0

j (t) towards inhomogeneous
perturbations is described by the largest LE corresponding to
a spatially varying Lyapunov vector ϕ(r, t)—the transverse
LE λ⊥ (in the sense that it is transverse to a manifold
of spatially homogeneous solutions of (7)). Generally, for
different diffusion constants and a given time-dependent flow
v(r, t), the transverse LE can be determined only numerically.
However, we show that an analytic solution obtained for a
simple situation works well for other possible set-ups.

In the simplest case of a time-independent velocity field
v = v(r) and equal diffusion constants d j = d , an analytic
expression for the transverse LE, λ⊥, can be obtained. In this
case, the time and space dependences in equation (7) can be
separated by putting ϕ j(r, t) = X (r)� j(t). As a result [42],
we find � j ∼ exp(λ⊥t) with

λ⊥ = Da · λ − γ (Pe), (8)

where λ is the largest LE of the attractor in equation (6) and
γ is the smallest nonvanishing eigenvalue of an advection–
diffusion eigenvalue problem, which is not required to
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Figure 4. (a) Example showing the behavior of ||u|| with time
evaluated for different d and a time periodic v(r, t) as in equation (2).
The slope of the curves provides γ . (b) Numerical evaluation of λ⊥
from equation (7) (markers) and from approximations like in
equation (8) (lines). The chaotic reaction is modeled via the Lorenz
model (N = 3), the flow field (2) is chosen to be irregular, as
described in the main text, Ux = Uy = 20, 〈Tint〉 = 0.5. Squares
correspond to di = 0.1, circles: d1 = 0.1, d2 = 0.2, d3 = 0.5.

be solved explicitly. Instead, we follow another way of
determining γ , which is applicable for an arbitrary time-
dependent flow. The value γ can be interpreted as the
asymptotic decay rate of the contrast of a passive scalar u(r, t)
in the advection–diffusion problem, see also figure 4(a):

∂u

∂ t
+ v · ∇u = d∇2u (9)

and evaluated in the sense of the LE:

γ = − lim
t→∞

ln ||u(r, t)||
t

. (10)

As follows from equation (8), the stability condition of
the spatially homogeneous state corresponds to λ⊥ < 0. If the
oscillations of the concentrations are regular, then the largest
LE is nonpositive, λ � 0, and this regime is always stable
against spatially inhomogeneous perturbations. A nontrivial
transition occurs for chaotic reactions, if λ > 0. Here the
stability condition leads to the critical value

Dacr = γ (Pe)

λ
. (11)

A similar condition for a trivial case of a reaction–diffusion
system has been obtained in [43] and for an abstract mapping
model of mixing in [44].

Following these ideas, we have evaluated γ for a time-
dependent flow (2), see figure 4(a). The value of γ depends
crucially on the nature of the flow and hence the Péclet number,
which is consistent with a previous study [41]. Note that

result (8) can be generalized for the case of different diffusion
constants, including weakly turbulent irregular flows [42].
To model weakly turbulent flows, we applied flow (2)
with f (t) being a (0, 1)-telegraph process with independent
exponentially distributed time intervals Tint and independent
uniformly distributed phases θx , θy ∈ (0, 2π). An example
of the transverse LE is shown in figure 4(b). Remarkably,
λ⊥ is nearly a linear function of Da, similar to that in
equation (8). This observation strongly suggests that the
transition to spatially inhomogeneous structures in a mixed
flow with chaotic in time reaction is determined by the
transverse LE, which can be effectively represented by a sum
of competing contributions. One is destabilizing and is caused
by temporal chaos in the reaction, while another is stabilizing
and comes from spatial mixing. It is noteworthy that these
two tendencies remain essentially ‘separable’ for all set-ups
considered. The stability threshold is in agreement with the
numerical simulations of the full nonlinear model.

2.2. Advection-induced instability

A variety of situations in biological and chemical contexts can
be described by the dynamics of a pair of interacting species—
an activator and an inhibitor. A popular chemical model is the
Brusselator [45] or its modifications. For spatially distributed
fields, apart from reaction the dynamics involves diffusion
(molecular diffusion for chemical systems or irregular mobility
in biological applications) and advection, as described by
equation (1) with N = 2 species: j = 1, say, an activator,
and j = 2, an inhibitor. As was mentioned in section 2.1,
equation (1) admits a spatially homogeneous state and, in
particular, a (constant) steady state, C0

j .
As has been shown recently, a simple shear flow is able

to destabilize such a spatially homogeneous state [46]. A
reasonable question to ask is whether a similar destabilization
effect can be found for mixing flows. One might intuitively
expect that, as mixing smears spatial nonuniformities, it
results in stabilization of a spatially homogeneous state, as
happens, for instance, for chaotic reactions [42], section 2.1.
Here, we address this question for a general two-dimensional
reaction–diffusion system capable of Turing instability [47]
and demonstrate that instability can be induced by an advection
of one component of the reaction [48].

As earlier, normalizing time by the advection time and
denoting by ϕ1(r, t) and ϕ2(r, t) the small deviations from the
steady state concentrations C0

1 and C0
2 , we arrive at a linear

reaction–advection–diffusion system for perturbations:

∂ϕ1

∂ t
+ v · ∇ϕ1 = d1∇2ϕ1 + aϕ1 + bϕ2, (12)

∂ϕ2

∂ t
+ v ·∇ϕ2 = d2∇2ϕ2 + cϕ1 + dϕ2. (13)

Here, the mixing flow field v(r, t) is given via equation (2),
d1 and d2 are diffusivities of the activator and inhibitor,
respectively, and a, b, c, d are parameters of the kinetics. In
the absence of advection the problem reduces to the classical
reaction–diffusion model (see, e.g., [49]), where two principal
instabilities are a spatially homogeneous Hopf bifurcation and
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a Turing instability. Our main interest is in the case where
Turing instability is dominant, which is ensured by setting
d1 < d2.

Although the flow v(r, t) is periodic in space, the fields
ϕ j(r, t) do not have to be periodic. A general perturbation
should be taken in the Bloch form:

ϕ j (x, y, t) = eiκx x+iκy y� j (x, y, t), (14)

where � j are now 2π -periodic functions in x and y and
additional parameters κx , κy stand for quasimomenta. Since
the exponential factor in equation (14) has a period of 1 with
respect to κx and κy , we consider a symmetric interval of
independent values κx, κy ∈ [−0.5, 0.5]. Then, because of
periodicity of � j , the solutions can be represented as Fourier
series:

� j (x, y, t) =
∑
l,m

φ
( j)
lm (t) ei(lx+my) . (15)

Afterwards, the method of transverse LE can be applied
to perform the linear stability analysis. Using the advantage
of the flow model, where we choose T = 1, θx = θy = 0,
Ux = Uy = U , we can apply a discrete-in-time model.
Within each time interval T the scalar fields ϕ j evolve in three
stages, corresponding to advection, diffusion and reaction.
These subprocesses act as successive operators L̂A, L̂D and
L̂R, whose product provides a reaction–advection–diffusion
propagator over one time interval: in the Fourier space we
have φ

( j)
lm (t + T ) = L̂R L̂D L̂A φ

( j)
lm (t). The advection L̂A and

diffusion L̂D operators are given via

L̂Aφ
( j)
lm →

∑
p,q

Jq−m[(p + κx)U T/2]

× Jp−l[(m + κy)U T/2] φ( j)
pq ,

L̂ Dφ
( j)
lm → e−[(l+κx )2+(m+κy)

2]d j T φ
( j)
lm .

The reaction operator couples the species, φ
( j)
lm →∑

k(L̂R) jk φ
(k)

lm , L̂R = R̂/(�− − �+), where R̂ is given by
elements

R̂ =
(

�−E+ − �+ E− b(E− − E+)
�−�+(E+−E−)

b �−E− − �+ E+

)
.

Here, E± = exp(λ±T ), �± = λ± − a and

λ± = a + d

2
±

√
(a − d)2 + 4bc

2
,

which are assumed to be real, in accordance with our choice
of the absence of the Hopf bifurcation. This discrete
time approach enormously simplifies the calculations, while
yielding a quantitatively correct picture of the process.

To some extent, the influence of advection in an
advection–diffusion system can be understood from the idea of
effective diffusion: mixing effectively increases the diffusion
constant. Therefore one can expect that the dynamics of
a reaction–advection–diffusion system is similar to that of
a reaction–diffusion system with larger diffusion constants.
More importantly, in the system under consideration there are
two coupled species and the Turing instability is caused by a
difference in diffusivities of the species. Although advection

Figure 5. Largest LE as a function of advection rate, U . The
parameters are a = 5.35, c = −6.35 and κx = κy = 0.5.

can effectively change the diffusion constants of the species, it
is not clear how this difference will be affected by advection.
However, the situation becomes much more transparent if only
one species is advected. Then, an advection, contributing to
its effective diffusion, may increase or decrease the difference
of diffusion constants, thus enhancing or suppressing the
instability.

Below we focus on a situation when only one species,
namely that of higher diffusivity, is advected. We set the
parameters b = 8, d = −9, d1 = 0.0025 and d2 = 0.0075. So,
we assume that the mobility of the ‘activator’ ϕ1 is relatively
low, and it is not advected at all. Following the described
mapping approach, we apply the usual method for estimation
of the largest LE of mappings, see, e.g., [41]. We choose the
parameters of the reaction in such a way that the homogeneous
solution is stable in the absence of advection, and then switch
on mixing of the inhibitor, ϕ2(r, t). The dependence of the
largest LE on the advection rate is presented in figure 5. We
detect the growth of the largest LE, which becomes positive at
Ucr ≈ 0.18. So, this example shows clearly that mixing can
play a destabilizing role.

Remarkably, the quasimomenta in the Bloch ansatz (14)
are essential in the stability analysis. Below we present
three examples where mostly unstable modes correspond to
different values of quasimomenta. In figure 6 we show the
corresponding patterns close to the stability threshold. In
the first case, κx = κy = ±0.5, which indicates that the
unstable patterns have a ‘chessboard’ structure with respect to
the periodicity of the original flow. The pattern in figure 6(b)
corresponds to κx = κy = 0, with the periodicity of the
pattern the same as the periodicity of the imposed flow. The
last pattern, figure 6(c), shows the case of κx = 0, κy = ±0.4,
where the periodicities of the patterns in the x and y directions
are not the same and are not identical to the periodicity of the
flow. We note that these are linear modes, which are expected
to describe the overall picture close to the stability threshold.
Away from the threshold the full nonlinear model should be
applied.

Thus, this example shows that a mixing advection of one
of the species may destabilize the spatially homogeneous state,
leading to a pattern-forming instability. Physically, this can be
explained as crossing a threshold of Turing instability due to
an effective increase of one of the diffusion constants.
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(a) (b) (c)

Figure 6. Patterns close to the threshold for different parameters. (a) a = 5.35, c = −6.35, U = 0.18, κx = ±0.5, κy = ±0.5; (b) a = 3.7,
c = −4.7, U = 0.77, κx = 0, κy = 0 and (c) a = 3.1, c = −4.1, U = 3.5, κx = 0, κy = ±0.4 (and similarly for κx = ±0.4, κy = 0).

2.3. Mixing-induced global modes in open active flow

In sections 2.1 and 2.2 we discussed the role of mixing in
reaction–advection–diffusion systems in the context of closed
flows. In many natural and laboratory flows active chemical
and biological processes occur in an open rather than in
a closed geometry. Examples include chemical reactions
in micromixers and plankton growth in oceans, see, for
example, [34] and references therein. Here, ‘activity’ means
that a chemical or biological species grows in time and the
main issue is whether the throughflow is stronger or weaker
than the activity. One has to compare the velocity of the
throughflow with the velocity of the activity spreading due
to diffusion [50]. If the throughflow is stronger, the activity
is ‘blown away’ like a candle flame in a strong wind, in the
opposite case a sustained activity can be observed [51, 52].
This simple picture is valid, however, only for homogeneous
media. Often additional vortices are superimposed on a
constant throughflow, due to, for example, mixing enforced
by revolving fan blades in laboratory experiments or wakes
behind islands in ocean currents. Here we discuss under which
conditions such an additional kinematic mixing in a strong
open flow can lead to a transition to a sustained activity and
characterize this transition quantitatively.

We focus on a reaction–advection–diffusion system,
equation (1), with a single species, N = 1, only. The
dimensionless concentration of an active scalar field C(r, t)
evolves according to

∂C

∂ t
+ (V + W(r, t)) · ∇C = d0∇2C + aC(1 − C p), (16)

where V = (V , 0, 0) is a constant throughflow in the x
direction and d0 is a molecular diffusion of the scalar field.
Activity is assumed to be of the simplest form: a linear
growth with rate a with a saturation at C = 1. The
nonlinearity index p is typically an integer (1 or 2) for
chemical reactions, while for biological populations a wide
range of values of p has been recently reported [53]. Mixing
is described by a spatially localized incompressible velocity
field W(r, t), where its intensity is denoted as W . Note
that in the absence of fluid flow equation (16) is reduced to
the famous Kolmogorov–Petrovsky–Piskunov–Fisher (KPPF)
model of an active medium with diffusion (see, e.g., [54] for

mean laminar flow

localized mixing region

 

(b)

(a)

Figure 7. (a) Sketch of a micropipette with an open active flow
comprising a mean laminar throughflow V and a localized mixing
flow W. (b) Example of the global mode in a model open flow with a
vortex in a micropipette. The lower and higher values of the active
scalar C correspond to lighter (light blue) and darker (red) domains,
respectively.

original references, analysis and applications of KPPF), while
for a = 0 equation (16) describes a linear evolution of a passive
scalar in a flow. Model (16) can be used for the description of
biological activity. Here C plays the role of concentration of
a growing bacterial population [55] subject to both turbulence
and uniform drift because of the ability to swim in a particular
direction. This model is also suitable for active flows in
a microchannel, see figure 7(a); for a possible laboratory
implementation see recent experiments with an autocatalytic
reaction in a Hele-Shaw cell with a throughflow [32].

In the absence of flow, the diffusion causes the active
state to spread, forming eventually a front with velocity Vf =
2
√

ad0 [50]. Thus, for vanishing mixing W = 0, the
activity is blown away provided V > Vf. For this parameter
range the instability in equation (16) is convective and, in
the absence of external sources, no activity is observed in the
medium. A nontrivial state is, however, possible if a localized
mixing W(r, t) is introduced into the flow [56, 57]. Beyond
some critical intensity Wcr, the mixing turns the convective
instability locally into the absolute one, which results in a
nontrivial self-sustained distribution of C , which is referred to
as the global mode, see figure 7(b).

The birth of the mixing-induced self-sustained structure
can be understood if the concept of effective diffusion (see,
e.g., [58]) is used to describe the mixing term in equation (16).
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(a)

(b)

(c)

Figure 8. Entrapment of a passive scalar field in an open flow with a
vortex. The initial state corresponds to the uniform distribution of the
field. Panels (a), (b) and (c) show distributions of the scalar field at
the beginning of evolution and at later times, respectively. The
diffusivity is chosen to be relatively small such that the characteristic
diffusion time is much larger than the advection time. A long-living
structure in the form of a cloud (c) evolves from the initial state. The
color code is as in figure 7.

In this approach, an effective diffusivity d(r) = d0 + dmix(r),
which accounts for the coarse-grained mixing dynamics.
Clearly, a hump of diffusivity d(r) leads to an increase of
the local front velocity Vf, and one expects that, when the
front propagation prevails over the throughflow, a stationary
global mode can appear, producing a mixing-induced sustained
structure. On the other hand, the role of a mixing vortex can
be easily understood in a different way. In the case of a passive
advection–diffusion process, a = 0, equation (16) is reduced
to equation (9) with the flow field:

v = V + W. (17)

For a relatively small molecular diffusivity, passive
particles are trapped by the vortex. In the limit of vanishing
diffusivity, all the particles outside the vortex are blown away,
i.e., in such domains their concentration C = 0, whereas the
particles inside the vortex are trapped in a ‘cloud’ and can never
escape, [59], see figure 8 and also section 3.1. Of course, for a
nonvanishing d the concentration of particles in the cloud will
gradually decrease. However, the particles under consideration
represent the chemical or biological species, meaning that their
concentration grows in time. For the particles trapped in the
cloud, this temporal growth can compensate for the loss caused
by diffusion. As a result, a self-sustained pattern is born, see
figure 7(b).

Thus, this qualitative picture shows that, beyond the
criticality, W > Wcr, the mixing region acts as an effective
source of the field; for an alternative and more rigorous
discussion, see [56]. As can be shown, behind the source,
an exponentially growing ‘tail’ extends downstream and then
saturates to the value C = 1, forming a ‘plateau’, see
figure 7(b). The intensity of the effective source εeff is shown
to obey a universal scaling law [56, 57]: εeff ∼ (W − Wcr)

β .
The critical index β depends only on the nonlinearity index p

and on the dimensionless velocity v = V/Vf:

β =

⎧⎪⎨
⎪⎩

p−1 if v >
2+p

2
√

1+p
,

v − √
v2 − 1

2
√

v2 − 1
if 1 < v <

2+p
2
√

1+p
.

(18)

The exponent β is determined solely by the nonlinearity index
p if the throughflow velocity is much larger than the front
velocity (v large). Here the field in the plateau domain is
effectively uncoupled from the source and the saturation of
the instability is due to the local nonlinearity at the source.
For a small throughflow velocity (v close to one) the plateau
state interacts with the source via the tail. Due to this
coupling, the field at the source is saturated more efficiently
than due to nonlinearity; here the exponent β is determined
solely by the form of the tail, which depends on the velocities
ratio v. Notably, although obtained from a one-dimensional
consideration within the framework of the effective diffusivity
approximation, the prediction (18) is in good quantitative
agreement with numerical calculations of the full model (16),
including one- and two-dimensional geometries and time-
dependent flows.

3. Small-scale particle advection and particle
manipulation

Motivated by numerous applications in medicine, biotechnol-
ogy and pharmaceutical research, single and collective particle
manipulation is an important problem of micro- and nanoflu-
idics [4, 5]. The particles can be colloids, liquid droplets, small
bubbles, macromolecules, cells or microorganisms, which
can be manipulated directly, via dielectrophoretic [60], mag-
netic [61–63] or acoustic [64] forces and optical tweezers [65],
or indirectly, via colloidal microdevices such as pumps and
valves [66, 67]. Currently, no universally preferable tech-
nique exists, as all the means have their own advantages and
restrictions. For soft objects and compressible media, time-
alternating fields become promising. The fact that soft objects
can change their shape and/or volume (cells [68], bubbles [69])
can provide an additional ‘degree of freedom’, which can be
used to exert time-averaged forces on the particles and there-
fore manipulate soft objects. For bubbly liquids [70, 71], com-
pressibility is often the major factor determining the dynamics
of the medium.

An efficient description of a large number of particles in
a fluid environment can be achieved via continuum theory,
by looking at the spatiotemporal dynamics of concentration
fields, as in section 2. Compared to biochemical processes,
here we are interested in ‘passive’ processes, which involve
no biological or chemical transformations (or reactions) of
concentration fields. On the other hand, manipulation implies
the existence of external forces exerted on the particles. Under
the action of external forces particle move and, as mentioned
in section 1, disturb the solvent and, hence, change the fluid
velocity field. This effect is referred to as particle feedback.
It is conventionally assumed that particle feedback can be
neglected provided that the volume concentration of particles
is small. We emphasize that, if the intensity of the external
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field is high enough, it is often no longer appropriate to
neglect particle feedback effects, which is true even for small
volume concentrations. Below we provide a few examples
demonstrating the importance of such effects.

3.1. Particle entrapment at small scales and particle feedback

The conventional mechanism of particle entrapment has been
known for a long time [72]. Consider particles carried by a
laminar vortex flow W and let a uniform external force, say,
gravity, be exerted on the particles. If the inertia of particles
is insignificant, the dimensionless velocity of particles can be
presented as [73]

v = Sex + W. (19)

Here, the first term is the sedimentation velocity characterized
by a dimensionless parameter S ∝ g with g = gex the gravity
acceleration and ex the unit vector along the gravity. Note
that this term is equivalent to the constant throughflow V as
in section 2.3 and velocity representation (19) for v becomes
the same as in equation (17).

Consider now a suspension of particles with an initially
uniform distribution, C(r, t = 0) = C0, and let it evolve
in the flow field (19) [59]. To be precise, C(r, t) has the
meaning of the volume fraction of particles. However, for
the sake of simplicity we will call it concentration, as they
differ by a constant factor only. For a negligible diffusion,
the evolution of particle concentration corresponds to a purely
advective transport:

∂C

∂ t
+ v ·∇C = 0. (20)

In the case of no background vortex, W = 0, the particle
velocity field v = Sex . Particle trajectories, which correspond
to the streamlines of the flow field (19), are straight vertical
lines. All the particles sediment along these lines and no
entrapment is possible. If W = 0 but the vortical motion
is relatively weak compared with sedimentation, particle
trajectories start to bend but particles are still not trapped, see
figure 9(a). If the intensity of vortex flow is increased, particle
entrapment becomes possible, as there appear closed orbits
separated from non-closed trajectories by a separatrix loop,
figure 9(b). The separatrix loop forms the boundary of the
cloud of trapped particles. Inside the loop, the particles move
along the closed orbits and therefore cannot escape, whereas
all other particles eventually leave the system. This situation
is similar to the case presented in figure 8, where a long-living
cloud of trapped particles is formed.

The role of particle feedback has been recently
demonstrated in a similar system, where a vortex flow is
created in a convective cell by imposing a temperature gradient
across the side walls [59]. The particle feedback results in
a significant suppression of the vortex flow, which leads to
a cloud of smaller size. The reason is that the buoyancy
convective flow is caused by small variations of density related
to nonisothermality of the medium. If density variations due
to nonuniformity of the particle distribution are comparable
with those due to nonisothermality, particle feedback cannot be
ignored. Technically, to account for feedback effects, one has

(a) (b)

Figure 9. Sketch of streamlines of the particle flow, v, in the absence
(a) and in the case (b) of particle entrapment. The cloud of trapped
particles is shaded darkly.

to consistently solve an equation for the velocity field, which
becomes dependent on the concentration of particles, C(r, t).
In our example, a feedback term appears in the equation for
v and leads to effectively smaller buoyancy. More generally,
the feedback term is proportional to the volume fraction C and
an external force F. Even if C is very small, the product CF
is finite provided the force is large enough. As a result, this
term is non-negligible in comparison with other forces. In the
example of sedimenting particles, even for volume fractions of
1% the feedback term is of the same order as the buoyancy term
responsible for convective flow. We stress that, as particles
are widely used for visualization of flows, one has to keep in
mind possible feedback effects, as otherwise this may lead to a
wrong interpretation of measurements.

The described mechanism of particle entrapment neglects
diffusion of particles, which is reasonable at macroscopic
scales. For instance, for a fine spherical particle of size a �
0.1 μm suspended in water at room temperature we obtain
the diffusion coefficient D ∼ 10−8 cm2 s−1. The diffusion
timescale τd = L2/D sets the typical time of existence of a
cloud of trapped particles, which means that no proper particle
entrapment can be achieved at times t > τd. For laboratory
length scales, L ∼ 1 cm, this is not a problem, as this time is
very long, τd ∼ 108 s. However, at microscales, L ∼ 1 μm,
the particles can be trapped for at most a few seconds, τd ∼ 1 s.
Thus, the conventional mechanism of entrapment can become
inefficient at microscopic scales. We next describe how the
particle feedback can be used to achieve particle entrapment at
small scales.

Consider a suspension of small polarizable particles in a
long closed microchannel. The particles are driven by the
externally imposed dielectrophoretic (DEP) force [60]. The
transverse component of the DEP force influences migration
of the particles across the channel, which leads either to
attraction (positive-DEP) or repulsion (negative-DEP) by the
electrodes. The longitudinal component controls the particle
transport along the channel. Because of the particle feedback,
the particles cause the initially quiescent fluid to move, which
eventually leads to a steady fluid flow with a profile with
vanishing mean flux [74], shown in figure 10(a). In a real
set-up only a part of the channel is covered by the electrodes.
Away from the electrodes there is no source of motion, which
results in a flow pattern in the form of large-scaled vortices, as
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(a)

(b)

Figure 10. (a) Distribution of particles in a microchannel under
traveling-wave (negative) DEP. The higher and lower values of the
particle concentration correspond to lighter and darker domains,
respectively. The traveling wave is imposed at the horizontal
boundaries (electrode arrays are sketched with dashed lines), which
leads to fluid motion with a nontrivial velocity profile via particle
feedback. (b) Flow pattern in a typical DEP set-up. Lighter and
darker colored vortices correspond to clockwise and
counterclockwise rotation, respectively.

in figure 10(b). As the particles are involved in vortical motion,
this mechanism is, in many ways, reminiscent of conventional
particle entrapment.

However, there are two principal differences. First
and most important, the conventional entrapment implies the
existence of a vortex flow irrespective of whether there are
any particles or not [72]. The fluid flow in the considered
system can be induced by the particles only. In contrast to
previous studies, particle entrapment arises as a generic particle
feedback effect, which also provides a tool to generate a flow.
Second, in contrast to the usual mechanism of entrapment in
macroscopic vortex flows, which becomes unstable against
diffusion at small scales, this particle-induced mechanism
involves diffusion of particles as a necessary ingredient. The
revealed effect resembles DEP experiments [75], where the
similar formation of a pair of vortices in a microchannel
accompanied by particle entrapment has been observed.

3.2. Bubbles as soft particles: collective dynamics and the
role of particle feedback

The dynamics of single and multiple inclusions suspended in a
liquid environment has been attracting much attention for many
years [76]. Of special interest is a bubbly medium with bubbles
as soft, deformable objects. Because of their compressibility,
bubbles are able to exhibit an additional degree of freedom if
compared with solid, nondeformable inclusions. One of the
simplest examples of the system where this factor becomes
of crucial importance is a bubbly liquid under high frequency
oscillations.

The key feature in the dynamics of a single bubble is the
existence of the breathing mode of eigenoscillations, which
corresponds to volume oscillations (or radial pulsations) of
the bubble. This type of dynamics is typical of compressible
objects only: the bubble changes its volume without changing

its shape [77]. Interaction of this mode with the translational
motion, which takes place for any particle irrespective of the
compressibility of the particle, is well known to cause an
averaged force [78], leading to the effects of accumulation.

A well-known observation is the appearance of an
averaged force on a single bubble suspended in the liquid under
the action of an acoustic field [78–80]. The time-averaged
force Fb exerted on the bubble of equilibrium radius R in the
standing wave of pressure p = p0(z) cos ωt is proportional to
∇ p2

0. For instance, in the particular case of p0(z) = P0 cos kz
this force is given by

Fb = − πk RP2
0

ρω2
(
�2 − 1

) sin(2kz)ez, (21)

where ρ is the density of the liquid, ω is the frequency
of external driving, k = ω/c0 is the wavenumber with c0

being the speed of sound in the liquid free of bubbles and
ez is the unit vector along the z axis. The dimensionless
parameter � represents the ratio of the eigenfrequency of
volume oscillations [77, 81] to the external frequency ω.

As follows from expression (21), the bubble moves to the
antinodes of the pressure wave at low frequency ω (� > 1)
and to the nodes at high frequency ω (� < 1). This generic
behavior is known as the primary Bjerknes effect and the
averaged force as in equation (21) is referred to as the Bjerknes
force.

The simplest way to obtain the averaged description of
a bubbly liquid is to treat the bubbles in a superimposed
acoustic field independent of each other, where each
bubble in the field experiences the Bjerknes force, like in
equation (21). Such a description, however, may lack
in possible collective or feedback effects, as we already
demonstrated for nondeformable particles in section 3.1. The
averaged dynamics of bubbles coupled to the liquid ambient
including the dynamics in confined geometries has received no
proper theoretical attention. A step in this direction has been
recently made in [69], where an averaged model of a dilute
bubbly liquid including feedback effects is developed. The
oscillations are assumed small amplitude and high frequency
in the sense that

ah � R2, ωR2 � ν, (22)

where a is the amplitude of oscillations, ν is the kinematic
viscosity of liquid and h (R � h) is the typical length scale,
see also figure 11. On the other hand, the frequency ω is
chosen so small that no acoustic waves are possible in the
medium without bubbles, ωh � c0. Note that the last point
is in contrast with the system as described by equation (21).
Here, the liquid remains incompressible and, without bubbles,
moves as a solid body. All nontrivial effects come from the
presence of bubbles, which ensure that the altogether medium
is compressible.

The system is characterized by two considerably different
timescales: the ‘fast’ oscillation time 1/ω and the ‘slow’
dissipative timescale h2/ν. This hierarchy of timescales makes
it possible to treat the fast oscillatory and slow (averaged)
motions separately. One performs the averaging over the fast
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Figure 11. Sketch of a confined bubbly liquid subject to oscillations
transverse to the walls.

timescale, obtains an expression for the averaged ‘vibration’
force and finally arrives at a closed self-consistent model
describing averaged motion of a monodisperse bubbly liquid
without [69] or with [71] the diffusivity of bubbles.

The developed theoretical models are applied to describe
the dynamics of a confined bubbly liquid filling the space
between two solid walls, figure 11. The initial state
corresponds to motionless liquid and bubbles, with a uniform
distribution of bubbles. Depending on the frequency ω,
the bubbles can migrate towards the walls or accumulate in
thin sheets parallel to the boundaries, which can be located
exactly at the central plane or shifted away from the center
towards the boundaries. This accumulation can lead to the
formation of bubbly screens [82], when diffusion of bubbles
is not important, or can lead to steady states for diffusive
bubbles [71]. It has been shown that a bubbly liquid behaves
similar to the primary Bjerknes effect: at relatively low
frequencies ω (� > 1) the bubbles leave the nodes and
accumulate in the antinodes of the pressure wave, while
at high frequencies ω (� < 1) the bubbles migrate to
the nodes. We stress that, in contrast to the case of a
single bubble, the ensemble of bubbles significantly affects
the vibration field and hence the characteristics of the liquid
phase. Due to this feedback effect, the bubbles do not
simply follow the externally superimposed nonuniform field,

as in the conventional Bjerkness effect, but also create this
nonuniformity.

3.3. Zigzag transition and explosions in colloidal chains

As mentioned in section 1, colloidal systems are relatively
simple systems that allow for reliable experimental analysis
and provide a possibility of comparison with theory and
computer simulations [9]. Here, external forces can be widely
used to drive nonequilibrium behavior. Recent examples
include nonlinear instabilities in sedimenting suspensions [83],
dynamic lane formation in oppositely charged particles
under electric fields [84], driven dislocation nucleation [85]
and stochastic resonance [86]. Further, we describe the
ability to tune intercolloidal magnetic interactions through
the application of an external magnetic field [87] while
simultaneously trapping colloids in a line by using optical
tweezers.

Experimentally, superparamagnetic colloidal particles are
individually trapped by optical tweezers [88]. Application of
external magnetic fields induces a dipolar repulsion between
the colloids. Subsequently, removing the optical traps results
in a colloidal explosion leading to zigzag pattern formation, see
figure 12. Notably, we observe explosions with a zigzag pattern
that persists even when magnetic interactions are much weaker
than those that break the linear symmetry in equilibrium.

Theory and Brownian dynamics simulations can quantita-
tively describe the experimentally observed phenomenon both
in and out of equilibrium [88]. As can be shown theoretically,
there exists the transition from an equilibrium nonzigzag to a
zigzag state, which is possible for certain traps only and oc-
curs at a critical parameter that characterizes the ratio of op-
tical and magnetic forces. A comparison of normal modes
obtained experimentally and numerically, allows us to ascribe
the explosion feature to the softening of the transverse normal
mode band upon approaching the zigzag transition and show
the dominance of the zigzag mode below the threshold point.
An analysis of the mode spectrum can quantify the nonhar-
monic nature of the optical traps. More generally, the intro-
duced methodology, where colloids are propelled in a well-
controlled manner upon switching off an optical field, may be
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Figure 12. (a) Microscopy images showing an exploding one-dimensional array of 19 magnetic particles upon removing the optical traps.
(b) The experimental and simulated particle trajectories of the exploding chain. The color code indicates the time in seconds.
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applied to other geometries, with potential applications in mi-
crofluidics.

4. Wetting and contact line dynamics

Whereas oscillations of drops suspended in a fluid away from
the boundaries have been studied for over a century [77, 78],
oscillations of drops and bubbles in contact with solid
surfaces have only received attention for the last few decades.
Understanding fundamental aspects of drops and bubbles
interacting with the solid surface is closely related to the
problem of wetting. This knowledge is of practical importance
because many technological processes deal with spreading
of a liquid (a paint, a lubricant or a dye) over solid
surfaces [15]. From the theoretical point of view, the
presence of a solid surface often meets another problem, the
contact line dynamics, which is currently far from being fully
understood. Many theoretical efforts have been successfully
put forth to attack slow (steady) motion of the contact
line [15, 20], which is often very well described in the
lubrication approximation [17]. However, neither rigorous
theory nor satisfactory understanding exist for unsteady
motion, especially for fast oscillatory processes.

As discussed in section 3.2, a compressible bubble
suspended in an oscillating liquid medium exhibits nontrivial
dynamics. A challenging question concerns the situation when
the bubble comes close and sits on the boundary. Below
we discuss what happens to a drop or a bubble in contact
with the oscillating wall. Because the correct description of
the interaction with boundaries is a crucial prerequisite for
obtaining the proper picture of the bulk dynamics in confined
systems, this problem is closely related to the systems as in
section 3.2.

Another closely related problem underlying the physics of
wetting concerns thin film instabilities. Here, the lubrication
approximation provides an amplitude equation of Cahn–
Hilliard type. A number of numerical studies [89–91] have
shown film rupture leading to the formation of a cascade of
‘drops’ and ‘fractal-like fingering’ [19] comprising the gaps or
‘dry spots’ [89, 90] between the drops. These findings have
been supported by direct simulations of the Navier–Stokes
equations [92, 93]. We discuss how this long-standing problem
is solved in section 4.2.

4.1. Sessile bubbles and droplets on an oscillating substrate

A number of important conclusions can be drawn from
simplified geometries where analytical solutions can be
obtained. Such examples refer, for instance, to a hemispherical
liquid droplet (or a bubble) sitting on an oscillating substrate.
Here one has to distinguish between the situations of
incompressible and compressible objects.

To describe the contact line motion, a boundary condition
that captures principal features of the contact line motion has
been suggested by Hocking [22], see also figure 13:

∂ζ

∂ t
=

⎧⎪⎨
⎪⎩

�(γ − γc), γ > γc,

0, |γ | � γc,

�(γ + γc), γ < −γc,

(23)

Figure 13. Typical problem geometry. A sessile hemispherical drop
upon a transversally oscillating substrate.

where ζ(ϑ, t) is the deflection of the interface, γ = θ − θ0

is the deviation of the contact angle θ from its equilibrium
value θ0 and γc is a threshold value. The factor �, which
has the dimension of velocity, characterizes the interaction
between the substrate and the liquid and is referred to as the
wetting or the Hocking coefficient. Condition (23) is able to
correctly reproduce the contact angle hysteresis. It implies that
the contact line starts to move only when the deviation of the
contact angle exceeds a certain critical value.

In the important particular case γc = 0, in which the
contact line velocity ∂ζ/∂ t ∝ γ , condition (23) describes
no contact angle hysteresis [23] and for θ0 = π/2 can be
approximated as

∂ζ

∂ t
= �n · ∇ζ, (24)

where n is the external normal to the solid surface.
Different practically important situations can be addressed

by changing � or, in terms of the dimensionless wetting
(or Hocking) parameter, λ = �

√
ρR/σ . Here, R is the

equilibrium radius of the droplet, ρ is the density of liquid and
σ is the surface tension. Thus, different regimes range from
the completely pinned contact line, λ → 0 (the contact angle
can change), to the opposite case of the fixed contact angle,
λ → ∞ (the contact line slides).

Based on the described approach we have first studied
the dynamics of a sessile hemispherical bubble [25]. The
contact line motion is taken into account by applying the
Hocking boundary condition without hysteresis (24). On the
other hand, the bubble is considered as a compressible object.
One of the main messages is that it has been proven that
the linear shape and volume oscillations demonstrate a clear
interaction—contrary to the necessarily nonlinear coupling for
a spherical bubble, see, for example, a survey by Feng and
Leal [94]. However, the compressibility of the bubble leads
to two peculiar effects. The spectrum of eigenfrequencies ω is
determined by the equation [25]

iω

(
ω2

∞∑
n=1

αn P2n(0)

�2
n − ω2

− 1

2
− 1

�2
0 − ω2

)
= λ, (25)

�2
0 = �0−2, �2

n = (2n−1)(2n+1)(2n+2) (n > 0)

(26)
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Figure 14. Rearrangement of two lowest modes, 0 and 1, under
small variation of pressure �0. The real part of eigenfrequencies ωr

versus wetting parameter, λ.

and is dependent on an additional parameter, dimensionless
pressure in the bubble �0. Here, Pn are Legendre polynomials,
coefficients αn = −(4n + 1)P2n(0)/[(2n − 1)(2n + 2)]; �0

and �n (n > 0) are, respectively, the dimensionless frequency
of the breathing mode and frequencies of the shape oscillations
(for even modes) of a spherical bubble of the same radius. The
frequencies are measured in units of

√
σ/(ρR3).

Generally, equation (25) admits no analytical solution
and has to be solved numerically. An analysis of the
spectrum shows a nontrivial interaction of the volume and
shape oscillations leading to a newly found rearrangement
of branches in the spectrum, see figure 14. As a particular
consequence of the rearrangement, the eigenfrequencies of the
compressible bubble can not only monotonically decrease with
λ, as in the case of the drop or incompressible bubble, but also
monotonically grow.

The second feature caused by compressibility is a ‘double
resonance’ taking place at a frequency of substrate oscillations
� ≈ �0 ≈ �k . Note that it is always possible for a
compressible bubble to make the frequencies �0 and �k close,
as the frequency of the breathing mode �0 can be tuned
via the parameter �0, see equation (26). The existence of
this resonance follows directly from the problem of natural
oscillations, where the specific case �0 = �k predicts no
damping of oscillations. As can be shown [25], there always
exists an eigenfrequency ω0k of the hemispherical bubble

ω0k = γ0�k

γ0 + γk
+ γk�0

γ0 + γk
, (27)

which is between �0 and �k . Here, γ0 = 1/2 and γk =
−�2

kαk P2k(0)/2 (k > 0). The damping of natural oscillations
�δ2 with δ = (�2

0 − �2
k)/�2

k . As a result, the forced
oscillations at � ≈ �0 ≈ �k turn out to be resonant; the
amplitude of resonant oscillations is

Ares = �k

λ

(
γ0 + γk

γ0

)2

δ−2, (28)

which is achieved at � = ω0k .

A similar study concerns the dynamics of an oscillated
sessile droplet of incompressible liquid (figure 13) with
the focus on the contact angle hysteresis [95]. To take
into consideration the contact angle hysteresis, the boundary
condition in the form (23) is applied. Because the contact
line is able to move only when the deviation of the contact
angle exceeds a certain critical value the stick–slip dynamics is
observed: the system switches periodically between the states
with the sliding and the fixed contact line. We detect two major
effects caused by the contact angle hysteresis.

It is known that, in the nonhysteretic limit [24], γ0 =
0, no contact line motion exists at a certain number of
discrete frequencies � = �ar, which are independent of
the wetting parameter. For this reason, the values �ar are
referred to as antiresonant frequencies. We have shown that
the contact angle hysteresis, when γ0 = 0, transforms this
discrete number of frequencies into antiresonant frequency
bands of finite width [95]. With the growth of γ0,
the parameter domains of the stick–slip dynamics become
narrower, whereas the one with the completely fixed contact
line grows. Another effect caused by contact angle hysteresis
is that the time dependence of contact angle, γ (t), displays a
nontrivial behavior. Compared with the case of no hysteresis,
the dependence γ (t) shows a more complicated behavior
reminiscent of recent experimental observations [27]. This
feature can be consistently explained by competing resonances.

4.2. Formation of a cascade of sessile droplets

To address the problem of fractal fingering, we first
relate liquid droplets with zero contact angle to dissipative
compactons [96]. A usual compacton is a well-known
compact (i.e. with finite support) traveling-wave solution,
which emerges in conservative systems with nonlinear
dispersion [97, 98]. We show that its stationary analog
with compact support naturally appears in dissipative systems
with nonlinear dissipation and, therefore, can be referred
to as a stationary ‘dissipative compacton’ (DC). Second,
we demonstrate that a DC presents a primitive element
mediating the formation of hierarchical fractal structure
and characterize the fractal properties of this structure
quantitatively. Remarkably, in conservative systems a
hierarchy of compactons also evolves from initial data, but
they all move away; contrary to this, DCs do not move, thus
arranging a fractal.

Consider a one-dimensional Cahn–Hilliard equation
describing dissipative evolution of a conserved field h(x, t):

∂h

∂ t
+ (h2hx + h3hxxx )x = 0. (29)

Note that equation (29) describes the dynamics of a thin film
over a substrate heated from below in the limit of small h,
where h plays the role of local thickness. This equation admits
a stationary compact solution h = H (x) in the form of a DC
or a ‘touchdown steady state’ [99], nonvanishing for |x | � l
only:

x = ±√
πH erf

(√
1

2
ln

H
H

)
, H = max

x
H (x), (30)
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Figure 15. The profile of the base DC, H̃(x), according to
equation (30) (a). Evolution of the field h(x, t) illustrating
hierarchical formation of droplets, d = 10. (b) Snapshots of h.
Panels (c) and (d) are zoomed-in fragments of panel (b). Lines
represent numerical results for equation (29), while circles show the
profiles of corresponding DCs as in equation (30).

where erf(z) = √
2/π

∫ z
0 e−t2

dt . Solution (30) represents a
self-affine one-parameter family of DCs parametrized by H
and expressed in terms of the base DC H̃(x) having H = 1,
figure 15(a):

H (x) = HH̃(x/
√
H), l = √

πH. (31)

For a thin film, the DC describes the stationary profile of
a drop with the height H and zero contact angle. The property
of self-affinity is a necessary prerequisite for the emergence of
the fractal structure of droplets described by equation (29). The
results of stability analysis and direct numerical simulation of
equation (29) show that the solution in the form of a DC is
stable against perturbations of zero volume. For perturbations
of nonzero volume, the DC turns out to be unstable. Here we
detect a breakup of the DC with the emergence of a complex
structure.

We now demonstrate numerically the formation of a
fractal, hierarchical structure of DCs. Equation (29) is solved
numerically in the computation domain x ∈ [0, d] with
periodic boundary conditions. A distorted uniform profile
h(x, t = 0) = 1 + 0.1 cos(2πx/d) is chosen as an initial
condition. An example of computations is presented in
figures 15(b) and (c). There we also compare the numerically
obtained profile h(x) having local maxima h(n)

m , n = 1, 2, . . .

with the DC profiles with H = h(n)
m , denoted as DC(n). We see

that the initial profile develops into a hierarchical structure of
DCs of different amplitudes.

The observed structure along with the property of self-
affinity suggest that the formation of higher-order DCs never

stops and the dry spots between DCs form a fractal reminiscent
of the Cantor set. Thus, a DC plays a role of an ‘intrinsic
mode’, inherent in the fractalization. Moreover, this fractal
can be characterized quantitatively. It can be shown that the
variation of Ln , the distance between the neighboring DCs of
nth and (n − 1)th orders, versus the base 2ln of DC(n) obeys a
power law:

Ln ≈ α (2ln)
β , α ≈ 0.2, β ≈ 1.25. (32)

Because β > 1 in equation (32), with the increase in n the
ratio Ln/ ln diminishes, implying that the smaller daughter DCs
tend to occupy the whole space between their bigger parent
DCs. The fraction of dry spots tends to zero and, therefore, the
fractal dimension of this set equals zero. Furthermore, for large
n we can neglect the distance between DC(n) and DC(n+1) and
put Ln ≈ 2ln+1. As a result, equation (32) entails a remarkable
superexponential scaling of ln with n: log(ln) ∝ βn log(l0).

Thus, as a result of rupture, the thin film evolves into a
hierarchical structure of droplets. The fact that all the droplets
can be represented by the DCs of different amplitudes is a
key point in understanding the fractalization process. The
precise knowledge of the DC properties, as an intrinsic mode
of the structure, allows us to draw several crucial conclusions
providing the solution to the long-standing problem of
fractal-like fingering [19]. The fractal is characterized by
superexponentially decreasing amplitudes and lengths. The
complementary set built of dry spots between the DCs has zero
dimension. It is noteworthy that, in contrast to widespread
random fractals, the revealed fractal is a regular one. In this
way it is similar to a recent example of an exact, soliton-based
fractal in nonlinear optics [100], but with a compact basic
mode.

We also emphasize that the DC is, in many ways, similar to
the conservative compacton (like dissipative solitons that share
many properties with conservative solitons). In both cases,
an initial profile splits into a hierarchy of self-similar objects:
traveling compactons [97, 98] or stationary DCs [96]. In the
latter case the DCs arrange themselves forming a fractal. We
expect this property not only for the class of Cahn–Hilliard
equations (29) considered, but for general models possessing
self-affine DCs.
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