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APPENDIX: THEORETICAL MODEL

1. Motion of a single particle

The motion of a single paramagnetic colloidal parti-
cle above the FGF is well explained by the interaction
of the induced magnetic dipole with the non-uniform
magnetic field of the FGF. A spherical particle of vol-
ume V = (4/3)πa3 and of magnetic susceptibility χ be-
comes polarized in the external magnetic field H, acquir-
ing a magnetic moment m = V χH. The total magnetic
field above the FGF H is given by the superposition
Hext + Hsub of the external modulation Hext and the
stray field of the garnet film Hsub.
The first contribution has the form

Hext = (Hx cos(2πft), 0,−Hz sin(2πft)). (1)

For not very strong external fields, when the amplitude
of modulation (H0) is weak compared to the saturation
magnetization (Ms), H0 � Ms, and for the particle el-
evation z (i.e. the vertical distance from the center of
particle to the FGF) comparable with the wavelength λ
of the FGF, z ' λ, the stray field can be accurately ap-
proximated as [1, 2]
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4Ms
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The energy of interaction with the field of the substrate
U = −µ0m · H = −µ0V χ(Hext + Hsub)2 taken at a
fixed elevation is evaluated to yield the magnetic energy
landscape

U(x, t) = −U0

[√
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(
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)
+
√
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Here, U0 = 8µ0χVMsH0π
−1 exp(−2πz/λ) is the ampli-

tude of the potential and we have assumed that the mag-
netic permeability of the solvent is practically the same
of that of the free space. The potential as in Eq. 2 corre-
sponds to a running harmonic wave of an oscillating am-
plitude. The temporal oscillations are stronger as |β| → 1

FIG. 1. Particle sitting close to a minimum of the traveling
energy landscape. The energy potential corresponds to Eq. 3,
which is shown at different fractions of period, T = 1/f : t = 0
(a), t = 0.25T (b), t = 0.5T (c), and t = 0.75T (d). Moving
together with the potential with the speed v0 = λf , after one
time period the particle displaces by one wavelength λ of the
landscape.

and weaker as |β| → 0. In the case of circular polariza-
tion, β = 0, the energy landscape displays no temporal
oscillations and corresponds to a sinusoidal wave of a
constant amplitude U0 which translates with a constant
speed v0 = λf :

U (β=0)(x, t) = −U0 cos

(
2π(x− v0t)

λ

)
. (3)

At small frequencies, the motion of an individual par-
ticle is synchronised with the potential. As a result,
the particle is pinned close to an energy minimum and
moves together with it with the speed v0, as shown in
Fig. 1, which illustrates the mechanism of motion. As in
Refs. [1, 3], the energy potential is shifted by the mean
value and re-scaled by its maximum value. We note that
at higher frequencies, the particle can lose the synchro-
nization because the minima are moving too fast (recall
that v0 ∝ f), its average velocity becomes smaller than
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that of the potential.

2. Chain assembly

Here, we describe how a DC field along the stripes, in
the y direction, in addition to the field rotating in the
plane (x, z) can lead to the assembly of chains aligned
along the stripes. Let us consider N particles numbered
from 0 to N−1. Generally, each pair of magnetic dipoles,
ml and ml′ (l, l′ = 0, . . . , N − 1 with l′ 6= l) interacts
via dipolar magnetic interactions according to the dipole-
dipole potential

Udd(rll′) =
µ0

4πr3ll′
[(ml ·ml′)− 3(r̂ll′ ·ml)(r̂ll′ ·ml′)] ,

where rll′ = rl − rl′ is the vector between the particles
l and l′ with the positions rl and rl′ , rll′ = |rll′ | is the
distance between the particles and r̂ll′ = rll′/rll′ is the
unit vector in the direction of rll′ .
Apart from the same elevation z, particles forming a
chain aligned along a stripe have also the same x co-
ordinates and therefore rll′ = (0, yl − yl′ , 0) possesses
the y component only. Accounting for the facts that
the dipoles are induced and that the field above the
FGF is independent of y, we conclude that the mag-
netic dipoles are identical for all particles in the chain,
ml = ml′ = m = χVH and the dipolar interaction po-
tential becomes:

Udd(rll′) =
µ0χ

2V 2

4πr3ll′

[
H2 − 3H2

y

]
=
µ0χ

2V 2H2

4πr3ll′

[
1− 3 cos2 θ

]
, (4)

where θ is the angle between the field H and the line con-
necting the two particles, which is parallel to the y axis.
As can be seen from Eq. 4, the vertically oriented dipoles,
when θ = π/2, Hy = 0, repel (Udd > 0), while the head-
to-tail orientation of the dipoles, when θ = 0 and only
Hy is non-vanishing, is attractive (Udd < 0). The border
case Udd = 0 gives the neutral situation when the dipole
neither repel nor attract. Setting Eq. 4 to zero, we solve
the equation 1−3 cos2 θ = 0 to obtain the “magic” angle,
θmag ≈ 54.7 ◦ that the orientations with θ > θmag and
θ < θmag lead to repulsive and attractive interactions,
respectively.
The similar condition can be formulated directly in terms
of the components of the magnetic field. Assuming that
the dipolar interaction is mainly caused by the external
modulation, as particularly confirmed by Ref. [2], we ap-
proximate H ≈ Hext with Hext as in Eq. 1. Further,
restricting our analysis by the case of circular modula-
tion, when β = 0 and, equivalently, Hx = Hz = H0, in
the presence of the additional DC field we obtain

H ≈ (H0 cos(2πft), Hy,−H0 sin(2πft)). (5)

Setting again Eq. 4 to zero and solving the equation H2−
3H2

y = 0 with the above expression for the field, Eq. 5,
we obtain the minimal value for the DC field necessary
to induce attractive interactions:

H(c)
y =

1√
2
H0 ≈ 0.7H0 . (6)

Thus, for the fields Hy < H
(c)
y the particles are re-

pelling and the formation of chain is impossible, while

for Hy > H
(c)
y the particles attract each other and can

be assembled in a chain, as shown in the main text.

3. Chain expansion

As long as the Hy component of the field is removed,
the particles assembled in a chain, become repulsively
interacting. Being no longer stable, the chain starts to
expand. As follows from Eq. 4 for Hy = 0 (θ = π/2), the
dipole-dipole interaction potential of particles l and l′ is
strictly repulsive,

Udd(rll′) =
µ0χ

2V 2

4π

H2
0
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=

4

9

πµ0χ
2a6H2

0

|yl − yl′ |3
. (7)

Here, we have taken into account that the particles in
the chain have the same x and z coordinates and that
H2 = H2

0 as follows from Eq. 5 at Hy = 0.
Considering a chain of N particles and adapting the ap-
proach by Helseth et al. [4], we assume that all par-
ticles in the chain remain equidistantly spaced at all
times, separated by a lattice distance d = d(t), we put
rl(t) = (x, y0 + ld, z) with l = 0, . . . , N − 1. Neglecting
thermal fluctuations, the overdamped motion of particle
l in the expanding chain can be described by the equa-
tion of motion ζẏl = −

∑
l′ 6=l ∂ylUdd(rll′), where ζ is the

viscous friction coefficient. Being interested in the end-
to-end distance, δ(t) = yN−1(t)−y0(t) = (N −1)d(t), we
obtain a differential equation for δ(t),

δ̇(t) =
α

δ4(t)
, α =

8πµ0χ
2H2

0a
6(N − 1)4

3ζ

N−1∑
l=1

1

l4

Assuming that the particles touch each other at the be-
ginning of the expansion, t = 0, δ(0) = 2a(N − 1), we
integrate the above differential equation to obtain the
end-to-end distance as a function of time

δ(t) = 2a(N − 1) (1 +At)
1/5

(8)

with the coefficient

A =
5α

32a5(N − 1)5
=

5µ0χ
2H2

0

72ηF (z)(N − 1)

N−1∑
l=1

1

l4
. (9)

Here, by writing the friction coefficient between the par-
ticle and solvent as ζ = 6πηaF (z), we take account of
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the wall via the function F (z). If without hydrodynamic
coupling to the wall F (z) = 1, the presence of the wall
effectively modifies the friction, leading to a Faxén cor-
rection in the form

F−1(z) ≈ 1− 9

16

(a
z

)
+

1

8

(a
z

)3
, (10)

as has recently been confirmed experimentally [5].

SUPPORTING MOVIES

MovieS1: motion of a magnetic chain subjected to a pre-

cessing field with the frequency f = 3 Hz and amplitudes

H0 = 1000 A/m and Hy = 1500 A/m. The transported

colloidal cargos are non-magnetic silica particles with the di-

ameter of 3 µm, cf. Figs. 1(c) and 1(d) of the main text.

MovieS2: motion of a magnetic chain subjected to a pre-

cessing field with the frequency f = 5 Hz and amplitudes

H0 = 1000 A/m and Hy = 2100 A/m. Expansion of the

chain is induced by switching off Hy after t = 5.3 s. The

transported colloidal cargos are silica particles with the di-

ameter of 3 µm, cf. Figs. 2(a) and 2(d) of the main text.

MovieS3: motion of a magnetic chain subjected to a pre-

cessing field with the frequency f = 5 Hz and amplitudes

H0 = 1000 A/m and Hy = 1500 A/m. The relatively high

speed of the chain (12.4 m/s) allows to transport 4 µm silica

spheres while smaller particles (of 1 µm size) are not trapped

due to their strong thermal fluctuations.

MovieS4: a pair of chains entrapping three silica particles

(of 5 µm size) after several back and forth movements. The

external magnetic field has the amplitudes H0 = 1000 A/m

and Hy = 1700 A/m and frequency f = 5 Hz (Fig. 3 of the

main text).

MovieS5: the compression of an ensemble of silica parti-

cles (of 3 µm size) by a magnetic barrier composed by two

chains driven by a precessing magnetic field with the fre-

quency f = 1.5 Hz and amplitudes H0 = 1000 A/m and

Hy = 2100 A/m (Fig. 4 of the main text).
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