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Capture of particles of dust by convective flow
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Interaction of particles of dust with vortex convective flows is under theoretical consideration. It is
assumed that the volume fraction of solid phase is small, variations of density due to nonuniform
distribution of particles and those caused by temperature nonisothermality of medium are
comparable. Equations for the description of thermal buoyancy convection of a dusty medium are
developed in the framework of the generalized Boussinesq approximation taking into account finite
velocity of particle sedimentation. The capture of a cloud of dust particles by a vortex convective
flow is considered, general criterion for the formation of such a cloud is obtained. The peculiarities
of a steady state in the form of a dust cloud and backward influence of the solid phase on the carrier
flow are studied in detail for a vertical layer heated from the sidewalls. It is shown that in the case,
when this backward influence is essential, a hysteresis behavior is possible. The stability analysis of
the steady state is performed. It turns out that there is a narrow range of governing parameters, in
which such a steady state is stable. ©2005 American Institute of Physics.
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I. INTRODUCTION

Disperse systems, such as the clouds of small par
suspended in liquid or gas are widespread in natural env
ment as well as in various fields of human activity. Due
admixture, such systems demonstrate intriguing physica
fects, which cannot occur in homogeneous media. Un
standing of the mechanisms governing the behavior of
ticles in fluid flows is of crucial importance both for t
fundamental studies and the practical applications.

Advection of particles in fluid flows is currently inves
gated in several disciplines. In chemistryssee, for example
Refs. 1 and 2d, this problem is essential in lowering fu
consumption during combustion of liquid fuels. In biolo
recent developments have put forth a number of fascin
problems concerning the transport of microorganism
aqueous medium.3–5 A typical example is algae, transport
by ocean flows. These algae contribute essentially to th
sorption of CO2 in oceans, which is closely related to
problem of climate change. In rapidly developing micro
idics, advection of particles has been the focus of clos
tention due to a need of finding effective mechanism
particle mixing.6 In fluid mechanics light-scattering partic
of dust are widely used for visualization of flows. Beside
is also important to know how the particles influence
flow. Investigation of a spread of fine-dispersed impuritie
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the atmosphere and oceans is tightly related to the pro
of environmental protection. These numerous applica
have motivated the unflagging interest in the fundame
problems of particle advection in fluids.

The behavior of a small single particle in isother
fluid flows has been the subject of a great deal of studyssee
for example, the monograph7 and the reviews8,9d. In particu-
lar, the equation of motion for a small single particle i
nonuniform unsteady flow was discussed by Maxey
Riley.10 However, the fact that this equation takes into
count the integral Basset force essentially complicates it
lution. Therefore in most cases the problem has been s
in terms of asymptotic theoretical models. Stommel11 studied
sedimentation of particles in a cellular fluid flow in terms
weak inertia approximation. To our knowledge this was
first paper that developed a simple description of captu
small solid particles by a fluid flow. It was shown that, w
the ascending flow is rather intensive, some particles ar
volved in a vortex motion and remain suspended. Rece
capture of particles has been observed in a cellular co
tive flow.12 Qualitatively similar behavior is shown by gran
lar media in the ascending air flow under gravity: at a ce
velocity of air flow the granular matter is liquidized.13 The
problem of sedimentation of small heavy particles has
generalized for the case of a random flowssee Ref. 14, an
references thereind. However, a backward effect of the p
ticles on a fluid flow was not considered. A number of th
retical and experimental studies are devoted to the prol:

of particle accumulation in fluid flows—the effect, which is

© 2005 American Institute of Physics2-1
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essential due to a difference in the inertial properties o
phases when gravity is insignificant.15–18The situation, whe
both gravity and inertia contribute to the particle dynam
has been studied in Refs. 19–21. The authors of Refs. 2
have investigated the influence of the Basset history forc
the particle motion.

Another problem that has been intensively studied
many years is the stability of laminar isothermal flows
rying small solid particles. First papers28–30 were devoted t
the stability of the particulate Poiseuille flow. This probl
has been generalized in the series of papers.31,32The stability
of the Couette flow was considered in Ref. 33. A gen
result of these investigations is that stability of a dusty fl
qualitatively depends on the size of particles: relatively s
particles destabilize the flow, whereas the particles of a la
size make the flow more stable. The relaxation time of s
particles is short, therefore such particles move actually
the velocity of the fluid. The presence of particles result
renormalization of the media density. A larger efficient d
sity is equivalent to a higher fluid velocity, which leads
destabilization. On the contrary, the relaxation time of la
particles is long. Such particles are too inert to respon
rapid velocity variations of the carrying fluid and hen
large particles damp the fluid velocity perturbations.

The collective behavior of particles in laminar noni
thermal flows is much less studied. Moreover, the proble
interaction of the particles with convective flows is not co
pletely understood yet. The exceptions are the works
cerning the influence of settling particles on the stability
convective flows.34–36

It is known that particles of dust are widely used
visualization of flows in the experiments on thermal bu
ancy convection. It is conventionally assumed that, if
mass concentration of particles is small, their backward
fluence on the convective flow is negligible. However, th
not always true. The point is that the buoyancy convec
flow itself is caused by small variations of density relate
nonisothermality of a medium. If density variations due
nonuniformity of the particle distribution are of the sa
order of magnitude as those due to nonisothermality,
should no longer ignore the influence of particles on the fl
For small particle concentration this effect is intuitively
lieved to be pronounced if the density of particles and
density of the carrier fluid differ enough. A typical exam
is solid particles suspended in a gaseous medium. How
we argue below that the effect is essential in a more ge
case, when the densities of phases are different, but o
same ordersfor example, in liquids laden with small so
particlesd. Under gravity such particles tend to settle on
bottom of a container. Two mechanisms hinder particles
settling down: the Brownian motion of particles leading
their diffusion in a carrier fluid and the entrapment of p
ticles by vortex fluid flows. The first mechanism opera
also in a quiescent medium and leads to the Boltzmann
tribution of particles over a height. However, for parti
sizes commonly used for flow visualization, an effective
fusion coefficient is so small that in the equilibrium state
particles are practically absent in most part of the volu

The second mechanism, which operates only if the maxima
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velocity of ascending flows exceeds the sedimentation v
ity, is much more efficient. Investigation of the capture ef
and a backward influence of the particles on a flow is im
tant not only for visualization problems but also for m
fundamental aspects of environmental problems.

The mechanism of particle capture discussed abo
related to nonuniformity of the particle distribution over
volume. Even if the initial distribution of particles is u
form, this nonuniformity arises by itself due to the part
sedimentation in the regions, where the flow is either
scending or has small vertical velocities. If the vertical
mension of the container is large, the particle distributio
the most part of the container is nearly uniform for a l
time. However, even in this case the particles can influ
the flow, because their velocity differs from the velocity
the fluid due to sedimentation. Thus, the particles can t
fer the perturbations of temperature and vorticity and a
stability of a convective flow.34,35

In the present paper, we study the capture of dust
ticles by convective flows. Particularly, a backward effec
particles on the fluid flow is investigated in details. In Sec
an appropriate theoretical model is developed as a gen
zation of the Boussinesq approximation to a convective
in a dusty medium. In Sec. III, the obtained equations
used to make a general interpretation of the problem a
prove that the entrapped particles form a cloud of dust.
tion IV is devoted to the consideration of a dusty medium
an infinite vertical layer. The existence of a steady state
lution with particle distribution in the form a dust cloud
proved, and the stability of this state is investigated.

II. THEORETICAL MODEL OF THERMAL BUOYANCY
CONVECTION IN A DUSTY MEDIUM

A. Governing equations and basic assumptions

Consider the behavior of small solid particles, suspe
in a nonisothermal fluidsliquid or gasd under gravity. On on
hand, all particles are assumed to be monodisperse sphe
a radiusrp, which is large enough to neglect particle dif
sion. On the other hand, this size is supposed to be
smaller than the characteristic length scaleL of the flow. On
a scale much greater thanrp the particles are regarded a
continuous medium with the volume fractionw=4/3prp

3n
sthe volume fraction of the fluid phasem=1−wd, wheren is
the number of particles per unit volume of the medi
Since the actual volume concentrationn is proportional tow
and differs from the latter by a constant factor, in the foll
ing for the sake of simplicityw will be called concentration

We suppose that the volume concentration of particl
small, so we can neglect interparticle interactions and i
actions between the particles and walls of a container.
also assumed that the carrier phase is incompressible a
solid particles can neither deform nor combine into agg
erates. Moreover, the density of a solid phase is consid
to be constant. The latter assumption implies that we ne
thermal expansion of the solid phase, which is perfectly v
in the dilute limit. After averaging over space the equat
for mass, momentum, and energy balance of both the p

7,8,37
lare written as follows:
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]smrd
]t

+ divsmrud = 0, s1ad

]w

]t
+ divswupd = 0, s1bd

mr
Du

Dt
= − = p + = · sm«d − mr Gaez − wF, s2ad

d
dup

dt
= − d Gaez + F, s2bd

mr
DT

Dt
=

1

Pr
divsm = Td +

3

Pr

L2

rp
2 wsTp − Td, s3ad

dB
dTp

dt
= −

3

Pr

L2

rp
2 sTp − Td, s3bd

whereu andup, T andTp are the velocities and the tempe
tures of phases,p andr are the pressure and the density
fluid, respectivelyshereafter, the subscriptp stands for th
particle phased, ez is the unit vector of the axisz, directed
against gravity; the shear rate tensor«i j ==iuj += jui. The di-
mensionless variables have been introduced using the
lowing units: the reference density of fluidr0 for the densi
ties of phases, the reference temperature differenceu for the
temperatures,L for the coordinates,L2/n for the time,n /L
for the velocities,r0n2/L2 for the pressure, whereh is the
viscosity of fluid andn=h /r0.

Equationss1d–s3d involve the following dimensionles
parameters: the Galilei number Ga=gL3/n2, the Prandt
number Pr=hc/k, the ratio of densities of phasesd=rp/r0,
the ratio of the specific heats of phases at constant pre
B=cp/c, and the ratio of characteristic particle size to
flow length scalerp/L, wherek is the thermal conductivit
of fluid. We make a note of the distinction between the
Lagrangian derivativesD /Dt=] /]t+u ·= and d/dt=] /]t
+up·=, which are used to denote the time derivative ass
ated with the motion of the fluid element and the elemen
a solid phase, respectively.

In the interphase interaction term,F has the meaning o
the force exerted by an unsteady nonuniform fluid on
solid particle. This force can be written as10,37

F = rSDu

Dt
+ GaezD −

9

2

L2

rp
2 W

−
9

2

L

rp

Î r

p
E

0

t dWstd
dt

dt

Ît − t
−

1

2
r

dW

dt
, s4d

where the relative velocity of phasesW =up−u is intro-
duced. The first two terms ins4d, correspond to contribution
to the force exerted on the particle by undisturbed fluid
due to gravity and pressure gradient. In the approximatio
undisturbed flow these terms coincide with the Archeme
force. Generally, the particle during its motion, disturbs
flow, the effect being taken into account by the next th
terms in s4d: the Stokes viscous drag, the Basset his

force, caused by unsteadiness of a viscous boundary laye
l-

re

-

f

around a particle, and the added mass force, allowing fo
inertia of the surrounding fluid.

We do not consider the effects that can be initiated
rotation of particles. Particularly, the Magnus force is
taken into account ins4d. This assumption holds only in t
case when the particle response time 2rp

2d / s9nd is much les
than the characteristic hydrodynamic time scaleL2/n. There-
fore the Stokes number, corresponding to a ratio of t
time scales, is assumed to be small:

St =
2

9

rp
2

L2d ! 1.

However, we assume the parameterd to be finite and do no
restrict our theory to the limiting case of dusty mediasd
@1d, cf. Refs. 16 and 17. Further, we do not explicitly t
into account Einstein’s correction term to the viscosity
fluid due to solid admixture, which is inessential in the di
limit.

The equation of state used here is typical for the
buoyancy convection. We consider weak convection, w
the variations of density due to nonisothermality of a fl
are small. Assuming that the fluid density is a function
only temperaturer=rsTd, we expand it into a Taylor seri
near its reference valuer0 at the temperature valueT0 and
restrict ourselves to a linear approximation

r = 1 −buT, bu ! 1,

where temperatureT is measured from the valueT0 andb is
the thermal expansion coefficient.

B. Single-fluid approximation

Let us consider a fluid laden with small solid partic
and prove that the initial two-phase theoretical models1d–s4d
can be simplified. We assume that the mass concentrat
particlesdw is comparable with the relative variations of
fluid density due to nonisothermality. Bearing in mind t
the particle concentrationw, the nonisothermalitybu, and
the relative size of particlesrp/L are small we retain only th
leading terms in the momentum equationss2d. As a result we
conclude that in the basic state the pressure distributi
hydrostatic, and obtain a relation between the velocitie
phases:

=p + Gaez = 0, s5d

up = u − Sez, S=
2

9

rp
2

L2sd − 1dGa, s6d

whereS is the dimensionless sedimentation velocity. Eq
tion s6d indicates that in the accepted approximation the
ticle velocity equals the velocity of the fluid plus the cons
sedimentation velocity.

Taking into accounts6d, we obtain in the next order th

rmomentum equation of the fluid



es-
n we
ma

l be
her
, we

-

is
ime
n th

fo

fluid
ns

rma

is

s
sen
par-
men
can

mal
.

sed
It is
rib-
icles
the

ed o
the
oul

ation
stay

wn
to

n-
be-

a-
er-
s of
n: fi-
cles
ider

gy

t
n

the
at the
n

hich
id
ows

nent
sent
all,
, in

of

til
s not
tely

063302-4 Lyubimov, Straube, and Lyubimova Phys. Fluids 17, 063302 ~2005!
]u

]t
+ u · = u = − = p8 + ¹2u + fbuT − sd − 1dwgGaez,

s7d

wherep8 is the convective addition to the hydrostatic pr
sure. Following the idea of the Boussinesq approximatio
can state that at large values of the Galilei number and s
density inhomogeneities the density of the medium wil
constant everywhere except for the buoyancy force, w
these small density variations are multiplied by Ga. So
introduce the thermal Grashof number Gr=bu Ga and its
concentration analog Gc=sd−1dw0 Ga, wherew0 is the char
acteristic value of the particle concentration.

From the energy balance equations3bd we obtain in the
leading orderTp=T. We restrict our consideration to th
approximation. This implies that for small particles the t
to equilibrate the phase temperatures is much less tha
viscous hydrodynamic time scale. The energy equation
the fluid phase is then obtained from Eqs.s3d.

Taking into account the mass balance equations for
and particless1d we arrive at a complete set of equatio
describing thermal buoyancy convection in a nonisothe
fluid laden with particles,

]u

]t
+ u · = u = − = p + ¹2u + sGr T − Gcwdez, s8d

]T

]t
+ u · = T =

1

Pr
¹2T, s9d

]w

]t
+ up · = w = 0, s10d

div u = 0, up = u − Sez, s11d

where the prime forp is omitted and the concentration
normalized byw0.

The set of equationss8d–s11d is reminiscent of equation
for thermosolutal convection. However, there are two es
tial differences: first, we have neglected the diffusion of
ticles; second, we have taken into account the finite sedi
tation velocity. The developed model is quite general and
be applied to dusty media, aerosols, liquids laden with s
solid particles, and biological species in aqueous media

III. CAPTURE OF DUST PARTICLES: GENERAL
CONSIDERATION

Consider the behavior of a dusty medium in a clo
cavity of an arbitrary shape heated from the sidewalls.
assumed that at the initial time the dust is uniformly dist
uted all over the volume and at a later time no new part
enter the cavity but the existing particles may settle to
bottom. We also assume that the particles that have settl
the bottom are not carried back into the flow, but stick to
bottom. The question arises as to whether all particles sh
eventually settle on the bottom or there may occur a situ
when some particles will be entrapped by the flow and

in a suspended state for infinitely long time.
ll

e

e
r

l

-

-

l

n

d

Obviously, in the absence of heatingsGr=0d and any
initial perturbations, all particles will eventually sink do
on the bottom for a time of order 1/S, which corresponds
the following solution of Eqs.s8d–s11d:

u = 0,

T = 0,

w = H0, z. Zstd,

1, z, Zstd,
J

whereZstd=const−St. So, initial distribution of particles e
sures sedimentation without distortion of the interface
tween a pure fluid and suspension.

In order to simplify further argumentation, we will me
surez from the lowest point of the cavity. It can be und
stood through insight that inducing of initial perturbation
concentration and velocity does not change the situatio
nally all perturbations will be damped and all the parti
will settle on the bottom. To demonstrate this let us cons
the evolution of the total energy of the systemE:

E =E
V

Su2

2
+ GcwzDdV. s12d

Using s8d–s11d we obtain for the rate of the ener
change

dE

dt
= −E

V

s= 3 ud2 dV +R
F

wzez ·n dF, s13d

whereF is the surface bounding the volumeV andn is the
external vector normal toF. To obtain Eq.s13d the no-slip
conditions for fluid velocity are assumed:uuuF=0. Since a
all time momentst.0 the valuew differs from zero only o
such areas of the boundary surface whereez·n,0 si.e., at
the bottom of a cavityd, the right-hand side ofs13d is always
nonpositive. Moreover it can be equal to zero only in
case of a quiescent fluid in the absence of the particles
walls. This proves that the energyE can only decrease. O
the other hand, as can be seen froms12d, Eù0, i.e., it is
bounded from below. Hence, the final state is that at w
the right-hand side ofs13d turns to zero, i.e., when the flu
becomes completely free of the particles and all fluid fl
cease.

The situation radically changes if there is a perma
external source that makes the fluid move. In the pre
work, the source of this kind is side heating of the w
generating a vortex convective flow in a cavity. Naturally
this case, the areas near the walls will finally be free
particles. Indeed, as it follows from Eq.s10d,

d

dt
E

V

w dV = −E
V

up · = w dV = SR
F

wez ·n dF ø 0.

s14d

The total amount of the dust in the cavity decreases unw
turns to zero everywhere near the boundaries. It doe
mean, however, that the bulk of the fluid will be comple

free of particles. If in some part of the cavity the velocity of
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the ascending fluidua exceeds the sedimentation velocityS,
we can expect the capture of the particles. The conditio

ua . S s15d

is the necessary condition for capture but it is not a suffic
one. Indeed, we can easily imagine the flow pattern with
streamlines of particles shown in Fig. 1sad; despite the exis
tence of regions with ascending motion of particles,
streamlines end at the lower boundary.

On the other hand, we can specify a sufficient cond
for capture, which is probably not necessary. Let us ass
that there is a line, at which the horizontal component o
fluid velocity vanishes. If on this line there is a point wh
ua=S then such a point is a singular point for the vector fi
up. Furthermore, owing tos11d we have

div up = 0,

and therefore the vector fieldup is free of sources or sinks.
this case only two types of structurally stable fixed points
possible: center or saddle. In the case of the center p
there are closed orbits, i.e., some particles are entrappe
vortex and stay inside for infinitely long time. The existe
of the saddle point together with the boundary conditions
up necessary implies the existence of the closed sepa
loop and the center point, as it is schematically present
Fig. 1sbd. The separatrix loop forms the boundary of
captured cloud of particles.

FIG. 1. Streamlines of the particle flow in the absencesad and in the casesbd
of particle capture.
t

e

t,
a

x
n

To demonstrate how the formation of a cloud of d
occurs, we have numerically integrated Eqs.s8d–s11d for a
partial case of the square cavity, heated from the right
The quiescent state with uniform distribution of particles
chosen as the initial one. The values of governing param
correspond to the single-vortex flow, satisfying the cond
s15d. This complementary example is in agreement with
results of general consideration. During evolutionssee Fig
2d, a part of particles is gradually leaving the flow, wher
other particles stay suspended. As a result of this tran
process, the system evolves to the steady state with a
bution of particles in the form of a cloud.

The theory above describes the case of no particle
tia. In general, the trajectory of a captured particle is
longer a closed orbit. Due to inertia the center fixed p
fsee Fig. 1sbdg transforms to a focus, which is unstable
heavy particles.9 In the vicinity of the focus, captured pa
ticles of dust are repelled by this fixed point and move a
spirals. Nonetheless, for small particles this effect is w
The addition to the velocity of particle due to purely iner
drift up

in is given16,17 by the term StDu /Dt. Since the inten
sity of thermal convection is governed by the ther
Grashof number, we can estimateup

in,St Gr. For fine par
ticles of dust withrp,10−4 cm suspended in air on labo
tory length scalesL,1 cm at moderate intensity of therm
convection we obtain the inertial time scaletin,103 s sSt
,10−5,Gr,103d.

Recall that we have also neglected the diffusion of
particles, which means that our consideration concern
time scales less than the diffusion time scaletd. However
this restriction is practically of no significance. Indeed,
cording to the Einstein formula, the diffusion coefficien
the spherical particlesD=kT/ s6phrpd shereT is the absolut
temperature andk is the Boltzmann constantd. As before, fo
the fine particles of dust in air at room temperature we ob
D,10−7 cm2/s, which for the laboratory length scales c
responds to the diffusion time scaletd,107 s srp

,10−4 cm,L,1 cmd.
Thus, despite the fact that existence of a state w

cloud of dust is in general not everlasting due to the par

FIG. 2. Evolution of particle concentrationw to the
steady state at Gr=10 000,S=5, Gc=0. The times fo
the states ofw are sad t=0.02, sbd t=0.04, scd t=0.07,
sdd t=0.09,sed t=0.14,sfd t=0.40. The regions of pu
liquid and particle suspension are shown in white
gray, respectively.
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inertia and the particle diffusion, it exists long enough to
important.

IV. CLOUD OF DUST IN A VERTICAL LAYER

A. Basic steady state

A rather complete understanding of the mechanism
sponsible for the formation of a cloud of dust and its ba
ward influence on the flow hydrodynamics can be obta
from a model problem. Let a dusty medium fill the infin
vertical layer −1,x,1, the boundaries of which are kept
constant, but different temperatures:T=−1 at x=−1 andT
=1 atx=1. We assume that the initial distribution of partic
is uniform and look for a steady state solution, in which
velocity has only vertical componentu0 and all fields excep
for the pressure are independent of the vertical coordinaz.
Then, the set of Eqs.s8d–s11d takes the form

u09 + Gr T0 − Gcw0 = c, s16d

T 09 = 0, s17d

where the prime stands for differentiation with respect tx,
the subscript “0” is used to indicate the steady state solu
and c=]p/]z=const. Equationss16d and s17d should be
supplemented with the boundary conditions for the fluid
locity and the temperature,

x = ± 1: u0 = 0, T0 = ± 1. s18d

In the case of the infinite layer we should also specify i
gral conditions. We prescribe no-flux for fluid and partic
which mean that the flow is closed at infinity and no n
particles enter the system:

E
−1

1

u0 dx= 0, E
−1

1

w0 up0 dx= 0, s19d

whereup0=u0−S.
According tos17d ands18d, the temperature distributio

does not depend on the fluid and particle motions and ca
obtained directly

T0 = x. s20d

Let us analyze velocity profiles of the fluid and so
phases. We start the discussion with the simplest cas
=0, when the particles do not influence the fluid motion
this case, the velocity profile of the fluid is exactly the sa
as in the well-known problem on a convective flow of p
fluid in a vertical layer heated from the sidewalls:38

u0 =
Gr

6
xs1 − x2d. s21d

The particles occupy the region of the layer betweex1

and x2. Within this intervalw0=1, whereas in the near-w
regionsw0=0.

The pointx2 is the point at which the velocity of partic
sedimentation coincides with the velocity of the ascen

fluid flow
-

,

e

c

x = x2: u0 = S. s22d

According tos21d, it is determined by the largest root of t
cubic equation

Gr x2s1 − x2
2d = 6S. s23d

The point x1 is determined by the zero-flux conditi
s19d for particles. It is convenient to rewrite the equation
x1 in terms of semiwidth of the cloudd=sx2−x1d /2 shereaf-
ter, just widthd. Thus, we obtain ford,

d = x2 −Î1 − x2
2

2
. s24d

As evident from Eq.s23d and the second condition
s19d, the parameterS is not independent; the width of t
cloud is determined by the ratio Gr0=Gr/S, moreover, th
cloud exists only if Gr0.9Î3. With the growth of Gr0 the
width of the cloud monotonically increases and tends to
Gr0→` ssee Fig. 3d.

At nonzero values of Gc the particles exercise an in
ence on the fluid flow, and the dependence of the chara
istics of the cloud on the parameters becomes more com
In this case the basic state is governed by Gr0 and a renor
malized concentration parameter Gc0=Gc/S. In the presenc
of a particle cloud the flow region splits into three zoness1d
−1,x,x1, s2d x1,x,x2, and s3d x2,x,1. In each o
these zones the velocity profile is described by third-de
polynomials, which can be written down in the followi
form, respectively:

u0
s1d = u0 + cs1 − x2d + c1s1 + xd,

u0
s2d = u0 + 1

2Gc0 x2 + cs1 − x2d + c21x + c22, s25d

u0
s3d = u0 + cs1 − x2d + c3s1 − xd,

where u0 is given by s21d normalized byS; the unknown
coefficients of the polynomialsc1, c21, c22, c3, the paramete
c, and the coordinates of the pointsx1 andx2 are defined b
the boundary conditionss18d and s19d, the conditions22d,
and the continuity conditions for the velocity and tangen
stress at the cloud borders. The system of the obtained

FIG. 3. The width of a dust cloudd vs Gr0 at Gc=0.
braic equations is partly simplified: the constantsc, c1, c21,
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c22, c3 can be excluded by expressing them in terms of
width of the dust cloudd and the coordinate of its cen
xc=sx2+x1d /2;

c = d Gc0f3s1 − xc
2d − d2g,

c1 = − d Gc0s1 − xcd, c3 = − d Gc0s1 + xcd,

c21 = − Gc0 xcs1 − dd, c22 = 1
2Gc0sxc

2 + d2 − 2dd.

The remaining unknownsd andxc are defined by the coup
of nonlinear algebraic equations, which are so
numerically,

12 = 3d Gc0sxc + d − 1df1sxc,dd

− 2Gr0sxc + ddfsxc + dd2 + 1g, s26d

12 = 3d Gc0f2sxc,dd − 2Gr0 xcsxc
2 + d2 − 1d, s27d

f1sxc,dd = 3xc
3 + 3sd + 1dxc

2 + sd2 + 1dxc

+ d3 + d2 − 3d + 1,

f2sxc,dd = s3xc
2 + d2 + 2d − 3ds3xc

2 + d2 − 2d + 1d.

As in the case discussed above, we assume thatw0=0 in
zones 1 and 3 andw0=1 in zone 2.

The cloud is absent if the velocity of fluid is lower th
the velocity of sedimentation all over the volume. As in
case of Gc0=0, this means that the cloud can exist only
Gr0.9Î3.

Let us discuss the dependence of the width of the
ticle cloud on the concentration parameter Gc0. At a rela-
tively low Gr0 the width of the cloudd monotonically de
creases with the growth of Gc0 ssee Fig. 4, line 1d. This is
related to the fact that the major part of the cloud is loc
in the ascending flow, hence, the larger Gc0, the higher ef
fective density of the medium in this place. The higher d
sity leads to a decrease of the buoyancy force and ther
to lowering of the flow velocity. The latter, in its turn, resu
in a decrease of the width of the dust cloud, in which

FIG. 4. The width of the cloudd vs Gc0 at Gr0=150 sline 1d, Gr0=500
sline 2d.
particles can remain in the suspended state.
-

e

At higher values of Gr0 the dependence ofd on Gc0
becomes more complex. Generally, in this case the grow
Gc0 also results in the decrease of the cloud width, but
in some range of Gc0 the dependencedsGc0d is no longe
unique ssee Fig. 4, line 2d. At low Gc0 the growth of Gc0
only slightly influences the width of the cloud, but start
from some threshold value of Gc0, the drag force of the wid
cloud becomes so strong that the flow is unable to ke
further. As a result, the width of a cloud decreases by a ju
If now, starting from a large value of Gc0, we decrease
first, the cloud width varies insignificantly, but then at so
critical value of concentration parameter the width of a c
makes a jump to nearly the highest possible value for a g
Gr0. Thus, the decrease of the cloud width with the chang
particle concentration demonstrates a well pronou
hysteresis.

In Fig. 5 the profiles of the fluid velocity at Gr0=500 and
Gc0=600 are plotted for the uppersline 1d and lowersline 2d
branches of possible steady states. It is seen that, fo
upper branch the velocity profile only slightly differs fro
the usual cubic profiles21d, but for the lower branch the flo
in the domain occupied by the cloud is strongly suppres
the total intensity of the flow is also low.

In Fig. 6 we plot a diagram defining a range of hyster

FIG. 5. Velocity profiles for the uppersline 1d and lowersline 2d branches o
solutions at Gr0=500, Gc0=600.
FIG. 6. Hysteresis range on the parameter planesGc0, Gr0d.
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existence on the planesGc0,Gr0d. The solid lines divide th
plane into two parts: larger and smaller ones. Any poin
the larger part corresponds to only one solutionsone root o
a cloud widthd at fixed Gc0, Gr0d, whereas in the small
one, the hysteresis zone, there are three solutionsssee Fig. 4d.
The solid lines, at which there exist two solutions, co
spond to folds; the point where these lines intersect is a
with one solution. Inside the hysteresis zone, one of the
solutions, namely, corresponding to the middle branch
hysteresis curvedsGc0d in Fig. 4, is structurally unstable.

B. Linear stability analysis

1. Formulation of stability problem

Let us investigate the stability of the basic steady s
We restrict our consideration to a fixed value of the Pra
number Pr=1, which corresponds to a typical case of
ticles, suspended in gaseous medium.

In order to formulate the stability problem, the gove
ing equationss8d–s11d should be supplemented by necess
conditions at the rigid boundaries of the layer and contin
conditions at the borders of the dust cloud. At the rigid w
of the layer we impose the no-slip condition for fluid vel
ity, and the condition of constant temperature,

x = ± 1: u = 0, T = ± 1. s28d

The borders of the dust cloud, which are the surface
discontinuity for particle concentration, must satisfy the c
ditions of stress balance, the continuity of velocity, temp
ture, and energy flux. These conditions are the direct co
quence of conservation laws for momentum, energy,
mass. Assuming that the borders of a dust cloud are de
able, the conditions at the interfaces are

x = x1,2+ z1,2: − fpg + f«nng = 0, f«ntg = 0,

fug = 0, fTg = 0, F ]T

]n
G = 0, s29d

wherez1=z1sy,z,td, z2=z2sy,z,td are the deviations of co
centration surfaces from the flat undisturbed shapes,
square brackets are used to denote the jump of a fun
ffg= f2− f1,3. Here the subscripts 1, 2, 3 correspond to th
zones of the flow:s1d −1,x,x1+z1, s2d x1+z1,x,x2

+z2, s3d x2+z2,x,1. The unit normaln and tangentialt1,
t2 vectors to the surface are given by the relationships

n =
ex − = z1,2

Î1 + s=z1,2d2
, t1 =

ez + exez · = z1,2

Î1 + sez · = z1,2d2
,

t2 = n 3 t1.

Here we introduce the ortsex=s1,0,0d, ey=s0,1,0d of the
axesx andy, respectively. Both borders of the dust cloud
impervious to the particles, the velocity of any point of s
border coincides with the Lagrangian velocity of a particl
this point. Hence, for surface deviations the following ki
matic conditions are specified:

]z1,2 + up · = z1,2= up ·ex. s30d

]t
p
e

.

-

f

-

-

d
n

Let the basic steady state be disturbed by introdu
small perturbations of the velocityv, pressureq, temperatur
q, and concentrationf. Then we substitute the disturb
fieldsu0+v, p0+q, T0+q, w0+f into Eqs.s8d–s11d. Neglect-
ing the squared and higher order terms with respect to
turbations, we obtain the equations for perturbations:

]v

]t
+ u0 · = v + v · = u0 = − = q + ¹2v + Gr qez

− Gcfez, s31d

]q

]t
+ u0 · = q + v · = T0 =

1

Pr
¹2q, div v = 0, s32d

]f

]t
+ su0 − Sezd · = f = 0, s33d

whereu0=f0,0,u0sxdg.
The boundary conditionss28d take the form for pertu

bations,

x = ± 1: v = 0, q = 0. s34d

Let us also assume the smallness ofz1 andz2. Then, the
equationss31d–s33d, the boundary conditionss34d, and the
conditions at deformable interfacess29d reduced to those fo
undisturbed interfaces admit a transformation, which
analogous to the Squire transformation39 and discussed b
low. Such a transformation allows us to reduce the full th
dimensional problem to a problem in two dimensions.
denote thex andz components of the velocityv by u andw,
respectively, and analyze the stability of the basic st
state with respect to the two-dimensional perturbations i
form of transversal rolls. Thus, the solution can be writte
normal modes

1
usx,z,td
wsx,z,td
qsx,z,td
qsx,z,td
fsx,z,td
z1,2sz,td

2 =1
ûsxd
ŵsxd
q̂sxd

q̂sxd

f̂sxd

ẑ1,2

2elt−ikz, s35d

where l=lr + ili is the complex growth rate andk is the
wave number, characterizing periodicity of perturbat
along thez axis.

Let us substitute the ansatzs35d into Eqs.s31d–s33d. It
follows from s33d that

hl − iksu0 − Sdjf̂ = 0,

which must be satisfied at every point of a layer occupie
particles. Sinceu0 is a function of x we assume th
hl− iksu0−SdjÞ0, f̂=0. As a result, in each of the thr
zones the problem is defined by the same set of amp
equations:

ˆ ˆ ˆ ˆ 2ˆ
lu − iku0u = − q8 + u9 − k u, s36d
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lŵ − iku0û + u08û = ikq̂ + ŵ9 − k2ŵ + Gr q̂, s37d

û8 − ikŵ = 0, s38d

lq̂ − iku0q̂ + û =
1

Pr
sq̂9 − k2q̂d. s39d

After linearization, the boundary conditionss34d and the
conditionss29d at the pure liquid-suspension interface, i.e
the borders of a dust cloud, written for the amplitudes
perturbations, take the form

x = ± 1: û = 0, ŵ = 0, q̂ = 0, s40d

x = x1,2: fq̂g = 0, fûg = 0, fŵg = 0,

fŵ8g = − Gc ẑ1,2, fq̂g = 0, fq̂8g = 0, s41d

where ẑ1 and ẑ2 are obtained from Eq.s30d together with
s41d and are determined by the relations

x = x1: hl − iksu0 − Sdjẑ1 = û; x = x2: lẑ2 = û. s42d

The conditionss40d–s42d are defined taking into account t
following properties of the undisturbed velocity profiles25d:
fu0g=0, fu08g=0, fu09g=Gc, andu0sx2d=S.

The boundary value problems36d–s42d is a spectral am
plitude problem. The conditions of nontrivial solution defi
perturbation growth rate as a function of the parameter
Pr, Gc, S, and k. The solution withlr =0 determines th
neutral behavior and separates the regions of unstable m
with lr .0 from those of stable modes withlr ,0.

In the particular case of Gc=0, the particles have
influence on the fluid motion, and the boundary value p
lem s36d–s42d reduces to the stability analysis38 of a flow
with the odd velocity profiles21d. For Pr=1, the instabilit
appears above the critical value Grmin=496.3, which is
reached atkmin=1.404, and corresponds to the monoto
si.e., to the solution with zero imaginary part of the grow
rateli =0d “hydrodynamic” perturbations.

In the case of GcÞ0, the problem admits analytical s
lution in the limit of short wavelength behavior for a sm
but finite width of the dust cloud. In the general case,
boundary value problems36d–s42d was treated numerical
by the standard shooting and differential sweep meth
which gave very close agreement of the results.

2. Thin dust cloud, short wavelength limit

In the case of a thin cloud, the parameterd is small, and
the problem can be simplified. The nonlinear algebraic e
tions s26d ands27d, defining the width of the cloudd and the
coordinate of its centerxc, can be solved explicitly with th
accuracyOsd2d:

xc =
1
Î3

, d =
1

3Î3Gc
sGr − 9Î3Sd. s43d

In the limit of vanishing cloud width, whend→0, we obtain
the lower threshold for the existence of a dust cloud
=9Î3S, which is in agreement with the value obtained ab

for an arbitrary value ofd. It is clearly seen froms25d that in
,

es

,

-

this case the velocity profile coincides withs21d. A thin cloud
is located in the vicinity of the point at which the fluid v
locity is maximal.

The short wavelength limit means that the wave num
is largek→`. Let us investigate the case of small, but fi
values ofd. Formally, this case corresponds to the limit
transition, whend→0, k→`, but their productkd is finite.

This particular case can be examined in the conte
the auxiliary problem, in which the layers of pure fluid
semi-infinite and the dust cloud is in between these la
and has the finite width 2d. It is convenient to treat the pro
lem using the multiscales technique.40 Let us introduce th
“fast” coordinatej=sx−xcd /«, where«=1/k is the small pa
rameter. In terms of the fast coordinate the dust cloud o
pies the finite region −D,j,D with the center at the poi
j=0. HereD=kd is the semiwidth of the cloud, measured
the units of the fast coordinate. The layers of pure fluid
cupy the areas −̀,j,−D andD,j,`, respectively.

The boundary value problems36d–s42d is rewritten in
terms of the fast coordinatej. As a result we obtain th
equations:

«2lû − i«u0û = − «q̂8 + û9 − û, s44d

«2lŵ − i«u0ŵ + «2u08û = i«q̂ + ŵ9 − ŵ + «2 Gr q̂, s45d

û8 − iŵ = 0, s46d

«2lq̂ − i«u0q̂ + «2û =
1

Pr
sq̂9 − q̂d, s47d

which are the same for all the three zones:s1d −`,j,−D,
s2d −D,j,D, s3d D,j,`. We require that the function

û, ŵ, q̂, q̂ must be bounded atj= ±`. The conditions at th
borders of the cloud are as follows:

j = ± D: fq̂g = 0, fûg = 0, fŵg = 0,

fŵ8g = − « Gc ẑ1,2, fq̂g = 0, fq̂8g = 0,

s48d

j = − D: h«l − isu0 − Sdjẑ1 = «û, s49d

j = D: lẑ2 = û, s50d

where ẑ1 and ẑ2 refer to the pointsj=−D and j=D,
respectively.

For each zone the solution is sought as a power ser
«. Taking into accounts43d, we rewrite the velocity profil
s25d with the accuracyOs«3d:

u0
s1d = S− «2HGr

Î3

sj + Dd2

2
+ DSGr

Î3
− GcDsj + DdJ ,

u0
s2d = S− «2SGr

Î3
− GcDS j2 − D2

2
D ,

u0
s3d = S− «2HGr sj − Dd2

− DSGr
− GcDsj − DdJ .
Î3 2 Î3
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The boundary value problems44d–s50d is the inner on
with respect to the initial problems36d–s42d, which in its
turn should be referred to as an outer one. Generally
solutions of the inner problem are matched to the outer
However, this should not necessary be done in the pr
case since the solution of the inner problems44d–s50d proves
to be vanishing atj= ±`.

The solution of the boundary value problems44d–s50d is
quite cumbersome and is not adduced here. Actually, th
pressions for complex growth rates are of primary interes
the zero order we obtain the trivial solutionls0d=0 and in
higher orders we find the nonzero corrections tols0d, corre-
sponding swith accuracy up to the small terms of high
orderd to two different types of deformation of the dust clo

bordersẑ1= ± ẑ2:

ls1d = ± ikd Gce−2kd, lr
s2d = 7 kdGcSs1 + 2kdde−2kd.

s51d

One solution corresponds to deformation of the cl

borders in the “phase,” whenẑ1= ẑ2. This solution is stabl
since the real part of the growth rate is negative. In the o
solution, allowing for deformation of the cloud borders in

“antiphase,” whenẑ1=−ẑ2, the real part of the growth rate
positive, and hence this solution is unstable. In both solu
the imaginary part of the growth rate is nonzero sugge
that the behavior of the system is oscillatory.

Note that the obtained result is true for any nontri
values of the parameters Gc andS. Thus, we conclude th
the dust cloud of a small, but finite width is unstable w
respect to short wavelength perturbations.

3. Dust cloud of an arbitrary width

Let us proceed to the discussion of general nume
results, obtained for a cloud of arbitrary widthd, and con
sider the caseS=1.

The neutral curves for a fixed value of the concentra
parameter Gc=100 are presented in Fig. 7. The insta
regions are above curve 1sbetween curve 1 and the linek

FIG. 7. Neutral curvesslines 1 and 2d, plotted for Gc=100,S=1. Regions o
unstable behavior are above line 1 and under line 2. Line Gr=9Î3S sline 3d
corresponds to a cloud of the vanishing width.
=0d and under curve 2sbetween curves 2 and 3d. Curve 3 is
e
.
t

-

r

l

a straight line at which Gr=9Î3S. This line defines the are
of existence of a dust cloud and corresponds to a dust
of zero width. The cloud exists in the domain that is ab
this line. As can be seen, there is a narrow range of valu
Gr, where the system is stable. The resultss51d, valid for a
thin cloud in the short wavelength limit, are in agreem
with those obtained from the numerical solution to the g
eral boundary value problems36d–s42d. However, it is obvi
ous from Fig. 7 that the short wavelength instability is
“the most dangerous”: although in some range of gover
parameters the flow is stable with respect to short waves
yet for all possible values of the cloud widthd there exis
unstable two-dimensional perturbations in the form of tr
versal rolls with finite values ofk. It is interesting to note th
the steady state in the case of a thin cloud is unstable
respect to perturbations with any wave numberk larger than
some critical value.

The global minimum of curve 1 and the global ma
mum of curve 2 overkù0 in Fig. 7 are characterized by t
critical values of the Grashof number: Grmin, Grmax, which
are reached at the values of the wave numberkmin, kmax,
respectively. Let us discuss the dependence of these c
parameters on the concentration parameter Gc. Figu
gives the stability diagram on the planesGc, Grd. The stabil
ity region is under line 1 and above line 2. Note that cu
1 and 2 refer to the upper and the lower branches o
dependencedsGcd, respectivelyssee Fig. 4d. This become
important for distinguishing between stability regions for
upper and lower branches in the hysteresis zonesFig. 6d,
bounded by lines 4 and 5: the stability region of the up
branch is defined by curve 1, for the lower branch it is
fined by curve 2. As before, line 3 is a line determining

region of a cloud of vanishing width, at which Gr=9Î3S.
It should be noticed that the section of the straight

Gc=0, at 9Î3,Gr,496.3 also refers to a stability region
piece of this line, corresponding to the values 0øGr,9Î3 is
stable as well, however, the basic steady state in this c
completely free of particles, i.e., a dust cloud is absent.

The variation ofkmin, kmax with the concentration param

FIG. 8. Stability curves for the uppersline 1d and the lowersline 2d branche
of the dependencedsGcd on a planesGc, Grd at S=1. The stability region
are under line 1 and above line 2. Line 3 is the line Gr=9Î3S; lines 4 and 5
represent bounds of the hysteresis zonessee Fig. 6d.
eter Gc is shown in Fig. 9. The imaginary parts of growth
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rates corresponding to these solutions are nonzero, w
means that this “concentration” mode is oscillatory. The
drodynamic perturbations are not the most dangerous fo
particular value of sedimentation parameterS, their stability
bound lies much higher than lines 1 and 2. Of special no
the dependencekminsGcd at relatively small values of th
concentration parameter Gc. It is seen that, for not very
values of Gc, the wave numberkmin is rather small, i.e., th
system demonstrates a nearly long wavelength behavio

With the increase of the sedimentation parameterS the
region of hysteresis wedge shifts to the region of larger
ues of Gr and Gc. Figure 10 presents the stability diag
for the caseS=5. The stability curves 1 and 2 do not unde
any qualitative changes. However, in contrast to the caS
=1, the concentration mode is in competition with the hy
dynamic mode: there appears the range of values of G
which the hydrodynamic perturbationssline 6d become th
most dangerous for the upper branch of the depend
dsGcd. With increase ofS this range grows, reducing the to
stability region. In the hysteresis zone line 6 sticks to lin
the upper branch becomes unstable here. In comparison
the case Gc=0, the hydrodynamic mode is no longer m
tonic. Indeed, the monotonic character of hydrodynamic

FIG. 9. Critical wave numberskmin, kmax as functions of Gc atS=1.

FIG. 10. Stability curves for the upperslines 1 and 6d and the lowersline 2d
branches ofdsGcd on a planesGc, Grd. The stability regions are under lin
1 and 6 and above line 2. Line 3 is the line Gr=9Î3S; lines 4 and 5 represe

bounds of the hysteresis zone.
h

r

t

e

th
-
-

turbations is specified38 by the symmetry of the velocity pr
file u0. In our case, as it follows froms25d, the symmetry o
u0 is broken at any value GcÞ0.

4. Arbitrary three-dimensional perturbations

It was mentioned before that after linearization E
s31d–s33d, boundary conditionss34d, and the conditions
the borders of the dust clouds29d admit a transformation
which is analogous to the Squire transformation.39 Under
such a transformation the Prandtl number Pr does
change, whereas the parameters Gr, Gc, andS transform ac
cording to the following rule:

Gr =
kz

k
Gr8, Gc =

kz

k
Gc8, S=

kz

k
S8, s52d

where Gr, Gc,S are the parameters of the two-dimensio
problem and Gr8, Gc8, S8 are the corresponding parame
of the full three-dimensional problem;ky andkz are the wav
numbers along the axesy and z, respectively;k2=ky

2+kz
2.

Note that at any given valuekz/k the parameters of the tw
dimensional problem Gr, Gc,S are always less than those
the three-dimensional problem. However, this fact does
imply that two-dimensional perturbations are the m
dangerous.

Let us introduce the parameter, describing deviatio
arbitrary three-dimensional perturbations from the t
dimensional perturbations in the form of transverse
s35d, namely, the angle between the wave vectok
=s0,ky,kzd, which generally lies in the planey-z, and thez
axis. If we denote the cosine of this angle bya, then it
follows from s52d

Gr8 =
Gr

a
, Gc8 =

Gc

a
, S8 =

S

a
.

The greatest distinction of arbitrary three-dimensional pe
bations from transversal rollss35d corresponds to the limi
ing case of longitudinal rolls, whena=0 skz=0, kÞ0d. The
perturbations of this kind are often called the “helical” p
turbations, since the trajectory of a fluid element in su
flow looks like a helix. The motion of a fluid particle can
considered as a sum of two different forms of motion: fi
the particle moves circle-wise inside the longitudinal r
second, it is carried along the roll with the velocityu0+u.

Thus, at givena the diagram of stability with respect
arbitrary three-dimensional perturbations can be obta
from that of the two-dimensional perturbationss35d by res-
caling Gr and Gc by a factor of 1/a. It is important to not
that the parameterS is also transformed.

The linear stability analysis, performed with respec
two-dimensional perturbationss35d for S from 1 up to 5
allows us to investigate the influence of three-dimensi
perturbations witha in the range from 0.2 up to 1 forS=5. It
turns out that in this range the most dangerous are the
turbations in the form of transversal rolls.

Further, it can be explicitly shown that the limiting ca
of the longitudinal rollsshelical perturbationsd, when a=0
skz=0, kÞ0d, does not cause instability. Indeed, as it follo

from Eqs.s31d–s34d and linearized form of conditionss29d
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and s30d, this particular case is described by the follow
boundary value problemsthe equations are the same for e
of the three zonesd:

lû = − q̂8 + û9 − ky
2û, s53d

lv̂ = ikyq̂ + v̂9 − ky
2v̂, s54d

û8 − ikyv̂ = 0, s55d

lŵ + u08û = ŵ9 − ky
2ŵ + Gr q̂, s56d

lq̂ + û =
1

Pr
sq̂9 − ky

2q̂d, s57d

x = ± 1: û = 0, v̂ = 0, ŵ = 0, q̂ = 0, s58d

x = x1,2: fq̂g = 0, fûg = 0, fv̂g = 0, fq̂g = 0,

fq̂8g = 0, fŵg = 0, fŵ8g = − Gc ẑ1,2,

lẑ1,2= û. s59d

The problem for the fieldsû and v̂ splits off and can b
treated independently. Excluding the pressureq̂ from Eqs.
s53d–s55d and taking into account the continuity ofû andv̂ at
the pointsx1 andx2, we obtain the following boundary valu
problem:

lsv̂9 − ky
2v̂d = v̂IV − 2ky

2v̂9 + ky
4v̂, s60d

x = ± 1: v̂ = 0, v̂8 = 0. s61d

Let us multiply Eq.s60d by the complex conjugatev̂* and
integrate by parts across the layer. Taking into accounts61d,
after elementary calculations we obtain

l = −
kuv̂9u2 + 2ky

2uv̂8u2 + ky
4uv̂u2l

kuv̂8u2 + ky
2uv̂u2l

, 0,

where k. . .l=e−1
1 . . .dx. Since the problems60d and s61d de-

scribes perturbations in a quiescent viscous uniform flu
cannot give birth to instability: the growth rate is proved
be real and negatively defined; the perturbations mono
cally decrease with time, and, therefore, one should loo
a mode withv̂=0. Hence, with account of incompressibil
relation s55d, the boundary conditionss58d for û and conti-
nuity of this field at the pointsx1 andx2 we obtainû=0.

Since û=0, Eq. s57d corresponds to diffusion ofq̂ in
motionless fluid, and therefore, from analogous cons
ation we conclude that perturbations decrease. Hence

mode withq̂=0 is to be found. As it follows from the co

dition s59d for ẑ1 and ẑ2, the solution withlÞ0 is possible

only if ẑ1=0 and ẑ2=0. Consequently,ŵ and its derivative
are continuous at the pointsx1, x2, and the problem forŵ

coincides with the problem forq̂ with the rescaled tim
t Pr−1. Thus, for any values of governing parameters the
sic state is proved to be stable with respect to perturba

in the form of longitudinal rolls.
-
r

-
e

-
s

V. CONCLUSIONS

The interaction of the vortex buoyancy convective fl
laden with particles of dust has been investigated in the
when the volume concentration of the solid phase is s
Under these conditions the particles are partially ca
away by the flow, but due to sedimentation their velo
differs from the velocity of a fluid. At sufficiently intensiv
thermal convection some portion of the particles can be
tured by the flow, which eventually results in formation o
cloud of dust.

If mass concentration of the particles is rather small
particles do not influence the flow and the study of the
mation of a dust cloud is reduced to a kinematic prob
The size of the dust cloud captured by the convective vo
monotonically increases with the growth of the ther
Grashof number from some threshold value Gr*. At the val-
ues Gr,Gr*, the formation of a steady cloud is impossib
sooner or later all the particles settle on the bottom
cavity. This critical value of the Grashof number is de
mined by the cavity shape and the thermal boundary c
tions and is also proportional to the sedimentation param
S. The calculations for the case of an infinite vertical la
heated from the sidewalls give Gr* =9Î3S.

With the increase of mass concentration of the part
their influence on the flow becomes significant. This hap
when relative variations of mass concentration are co
rable with the Boussinesq nonisothermality parameterbu.
Generally, the growth of mass concentration results in
decrease of flow intensity. Energy of the flow is partly c
sumed on the particle motion against the gravity and on
motion of particles together with the descending flow. T
energy is not returned to the flow completely because o
dissipative loss. The calculations show that the interactio
the particles with the convective flow can lead to the hy
esis phenomena. Different flow patterns can arise at the
values of the governing parameters: the modes, in wh
comparatively small dust cloud strongly suppresses th
cending flow and the modes developing at comparat
large cloud when the density inhomogeneities are low
the suppression effect is insignificant.

The linear stability of the basic steady state in the f
of a dust cloud in an infinite layer, heated from sidewalls,
been investigated. It is shown that in a relatively nar
range of the values of governing parameters this sta
stable. Based on the results of the stability analysis, we
infer that in the typical case of a closed cavity the ste
state with a relatively large dust cloud is most likely to h
a larger range of stability. In the case of an infinite layer s
a steady state is broken by long wavelength perturbat
Obviously, such perturbations cannot arise in a closed
tainer of a finite size.

The performed investigation demonstrates that the
scribed effects of two-way interaction of fluid and partic
can exist in natural environment or be realized experim
tally. The values of the sedimentation parameterSof order 1
used in the linear stability analysis, correspond, for exam
to the case of rather fine particles of dust withrp,10−4 cm,

suspended under gravity in a gaseous medium filling a
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laboratory-scale container L,1 cm srp/L,10−4,d
,103,Ga,105d. The developed theory is quite general
can be applied to describe similar effects not only in d
media, but also in aerosols, liquids laden with small s
particles, and biological species in aqueous media.
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