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Stick-slip dynamics of an oscillated sessile drop
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We consider theoretically the dynamics of an oscillated sessile drop of incompressible liquid and
focus on the contact line hysteresis. We address the situation of the small-amplitude and
high-frequency oscillations imposed normally to the substrate surface. We deal with the drop whose
equilibrium surface is hemispherical and the equilibrium contact angle equals /2. We apply the
dynamic boundary condition that involves an ambiguous dependence of the contact angle on the
contact line velocity: The contact line starts to slide only when the deviation of the contact angle
exceeds a certain critical value. As a result, the stick-slip dynamics can be observed. The frequency
response of surface oscillations on the substrate and at the pole of the drop are analyzed. It is shown
that novel features such as the emergence of antiresonant frequency bands and nontrivial
competition of different resonances are caused by contact line hysteresis. © 2009 American Institute

of Physics. [DOI: 10.1063/1.3174446]

I. INTRODUCTION

Rapid development of microtechnologies over the past
few decades has attracted great interest in the theoretical as-
pects of contact line dynamics. The ability to predict the
motion of a contact line and hence to control wetting pro-
cesses becomes of paramount importance for practical
applications.l_3 Despite noticeable progress in theoretical un-
derstanding of the physics of a steadily moving contact line,
the unsteady motion of the contact line remains significantly
less explored and involves a number of important open ques-
tions. Of special interest is the role of contact angle hyster-
esis, which for unsteady motion may become a crucial fea-
ture in obtaining the proper picture of the contact line
motion. In the present study, we address this issue in the
context of an oscillated sessile drop.

The dynamics of a drop on an oscillated substrate has
been considered for many years; see the recent surveys in
Refs. 4 and 5. Recent experimental studies have shown that
the contact line hysteresis can lead to such nontrivial effects
as stick-slip dynamics of the contact line,® climbing motion
over an inclined substrate,” and motion over gradient&9 and
thermal gradient10 surfaces. These experimental observations
raise a reasonable question about the role of the contact angle
hysteresis, which is easy to pose but rather difficult to an-
swer. In most theoretical studies, the contact angle hysteresis
has been either completely neglected“’“f13 or treated in an
oversimplified way, where the drop is similar to an oscillator
with solid friction.'®"*™'" Although these solid-friction mod-
els reflect the qualitative picture of the stick-slip process,
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they do not provide satisfactory understanding of the
phenomenon.

To obtain deeper insight into the physics of stick-slip
motion, the boundary condition suggested by Hocking18 can
be applied. This condition captures principal features of the
contact line motion and involves an ambiguous dependence
of the contact angle on the contact line velocity,

AY' =%), V> %
~ =10 1Y = %, (1)
AY +9), ¥ <-%.

Here, functions ¢’ and ' describe the deviations of the free
surface and the contact angle from those in equilibrium, re-
spectively, and 7, is the critical value defining the contact
angle hysteresis (see, e.g., Fig. 1). The factor A, which has
the dimension of velocity, characterizes interaction between
the substrate and the liquid and is referred to as the wetting
or the Hocking coefficient.

The particular case of y(’):O, in which the contact line
velocity d¢'/dt' =y, describes no contact angle hysteresis.19
Different practically important situations can be addressed
by changing A. In terms of a corresponding dimensionless
parameter, for instance, \, as in relation (6), these situations
range from the completely pinned contact line, A —0 (the
contact angle can change) to the opposite case of the fixed
contact angle, A — o (the contact line is freely sliding).

In the present study, we consider the dynamics of a
hemispherical drop on a transversally oscillated solid sub-
strate. We apply condition (1) without compromise and focus
on the role of the contact line hysteresis, which has been
recently measured in a similar setup.6 Basing our analysis on
this approach, not only are we able to quantitatively describe
the stick-slip process but also to reveal a new interesting
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FIG. 1. (Color online) Problem geometry. A hemispherical drop on the
transversally oscillated substrate.

feature in the contact angle evolution. This finding is very
much reminiscent of the experimental observations, which
cannot be explained in terms of the previously suggested
theoretical models. The paper is outlined as follows. We start
with the problem statement in Sec. II. Section III provides
the description of the method we use to treat the problem.
The obtained results are discussed in Sec. IV and summa-
rized in Sec. V.

Il. PROBLEM STATEMENT

Consider a sessile drop of incompressible liquid of den-
sity p and kinematic viscosity v, see Fig. 1. We are interested
in the situation of an ambient gas medium, where its density
is much smaller than that of the drop and therefore can be
neglected. We assume that the solid substrate is subject to
transverse oscillations with an amplitude a and a frequency
. We admit that the drop is small enough so that its shape
can be hardly distorted by gravity and hence the free surface
is presented by a segment of a sphere of radius R. We make
the assumption that the equilibrium contact angle equals
/2, which implies that the equilibrium shape of the drop is
hemispherical.

The amplitude of external driving is considered small in
the sense that e=a/R<<1 and the frequency of the substrate
oscillations is high enough: wR?>> v. At such frequencies,
viscous boundary layers, which arise near the rigid plate and
near the free surface, become very thin. In other words, the
frequency restriction allows us to neglect viscous dissipation
in the liquid, which ensures that the approximation of invis-
cid liquid is justiﬁed.20 On the other hand, the frequency w is
assumed comparable with the eigenfrequencies ()] of shape
oscillations for a spherical drop of radius R. For our study,
only even eigenfrequencies are of interest, whose spectrum is
defined by the relation Qé=\/2"(2"— 1)(2n+2)a/(pR?),
where o is the surface tension.

Because of the problem symmetry, we apply the spheri-
cal reference frame with the coordinates r’, 9, and « and the
origin at the center of the drop and restrict our analysis by
the axisymmetric problem. As a result, we focus on the drop-
let dynamics independent of the azimuthal angle, a. In the
accepted approximations, the liquid motion is irrotational,
which makes it convenient to introduce the velocity potential
¢'. Thus, the dynamics of the liquid is described by the
Bernoulli equation and the incompressibility condition. Let
r'=R+{'(9,t") be the instantaneous locus of the distorted
free surface, see Fig. 1. To make the comparison with the
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nonhysteresis model study simpler, we introduce the rescaled
time r=t'\o/pR>, length r=r'R™!, velocity potential ¢
=¢'\pR/ oa?, deviation of the pressure field p=p’R*(ao)™!
from its equilibrium value, and surface deviation /={"a"", as
in Ref. 4. Thus, the dimensionless boundary value problem is
determined by (intermediate steps can be found in Ref. 4)

de

p=- E - 0% cos Qr, V2p=0, (2)
T de
d=—: —=0, 3
2 99 ®)
do IL 2
=1: —=—, p+(Vy+2){=0, 4
r o= P (V+2)¢ (4)
ANy=7%), ¥> .
Loe=T %o Y= (5)
r= N = . —_—=- s — B
> Py Y Yo

AMyY+%), ¥<-n.
Here, the differential operator

v 1 9 ( ) ﬁag)
= —| sin 90—
" sinoao\"" Von

and y=—(3¢/ 99) | g=np is the dimensionless deviation of the
contact angle from its equilibrium value, which for the sake
of brevity will be called the contact angle.

Boundary condition (3) ensures impermeability of the
substrate for the liquid. The kinematic and the dynamic con-
ditions at the free surface are presented by Eq. (4). In con-
trast to the previous work,* we impose a more general Hock-
ing condition at the line of contact of the three phases, as
given by Eq. (5). Thus, the boundary value problem [Egs.
(2)—(5)] is similar to the one in the previous study, except for
this hysteretic condition.

The problem involves three dimensionless parameters

2p3 ’
R [pR R
QZ=&’ A=A p:’ 70:&, (6)

(o a

which have the meanings of the dimensionless external fre-
quency squared, the wetting (or Hocking) parameter, and the
critical value of the contact angle, respectively.

As the frequencies w and )] have been assumed com-
parable, the parameter () is finite. The similar argument re-
fers to the parameter 7y,. We focus on the case of a well
polished substrate, which implies that the threshold value 7,
is small. Being the ratio of two small parameters, y; and e,
the parameter 7, is treated as finite. This observation indi-
cates that the contact line hysteresis is expected to be non-
negligible even for small-amplitude oscillations.

We emphasize that condition (5) admits a number of
particular cases. In the limiting case of a perfectly polished
surface, y,— 0, the boundary condition (5) is reduced to its
simplified modification.” Particularly, the contact angle re-
mains fixed as N\ — %, whereas the opposite case, A\ — 0, de-
scribes the pinned contact line. We note that as in the latter
case, the same dynamics refers to the limit of large values

of Yo-
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Finally, we stress the nontriviality of our consideration.
Although the amplitude of oscillations is considered small,
€<<1, which allows us to linearize the governing equations
and simplify the boundary conditions, the overall problem is
nonlinear. The nonlinearity is ensured by posing the Hock-
ing condition (5) and comes into play through the parameter
Yo~a~'. For this reason, the solution proves amplitude
dependent.

lll. METHOD OF SOLUTION

To tackle the stated problem, we take into account that
the velocity potential, ¢, satisfies Laplace’s equation (2) and
therefore can be presented as a superposition of harmonic
functions, where we retain only the terms regular at the ori-
gin. The pressure field, p, and the surface deviation, {, can be
readily found from the Bernoulli equation and the kinematic
condition, see the first relations in Egs. (2) and (4), respec-
tively. As a result, the solutions can be presented in the form

(=2 C,(0P,,(6), 7)
n=1

oo

¢=@ot)+ 2

n=1

Cul)P(O)r"

2n ’ ®

oG0P, (0)F
p =po(l) _ E n(t) 22n( )l’
n=1 n

- 0%z cos O, 9)
with #=cos U. Here, as follows from impermeability condi-
tion (3), only the terms involving the even Legendre polyno-
mials, P,,(6), are nonvanishing. We note that the term with
n=0 in relation (7) is set to zero to ensure that the drop
volume is conserved. The zeroth harmonics ¢(¢) and py(z)
=—(dgy/ dr) are spatially independent functions, which de-
scribe spatially uniform pulsations of the velocity potential
and the pressure, respectively. The function p is determined
by the requirement of conservation of the drop volume, the
term ¢, is unimportant for the further analysis.

To distinguish between the time intervals of the contact
line in motion from those in standstill, we then stick to the
following notation. Let r=¢; be the time moment when the
contact line stops to slide and 7=t#; be the switching time
when it proceeds with the sliding again. We next obtain the
solutions describing the dynamics at these time intervals
separately and then show how to match these solutions.

A. Pinned contact line

We now consider the time intervals characterized by
small values of the contact angle, |4 < y,. As follows from
the Hocking condition (5), the contact line remains fixed
during this phase of evolution and we can use the solution
obtained before.* The only point we have to care about is
that in our situation the contact line is fixed not necessarily at
r=1 but at a slightly different position characterized by ¢
={;#0, which is easy to take into account. As a result, the
solution for ¢ is presented as a superposition of the eigen-
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modes Om), a particular solution caused by the presence of

the external force, §p, and the term ocgf, which corrects the
contact line position, respectively,

(0.0 = 2 D, (0)en=0) + £,(6,0) + {1 -26).
m=1

(10)

The form of the last term is chosen so that the overall ex-
pression for { ensures the constant volume of the drop. The
similar ansatz for the velocity potential reads

o(r,6,t) = ¢o(1) + >, Dmcp(()m)(r, P @,(r,6,1).

m=1
(11)

Here, D,, are the complex amplitudes of the eigenoscillations
determined as described in Sec. III C and w,, are the eigen-
frequencies for the drop with the pinned contact line. These
eigenfrequencies are defined as the roots of the transcenden-
tal equation4

f(@,0)=0 (12)

with the function

“ a,QP, (0
=3 "‘92—25) (13)
n=1 n_x
where
_ (4n+ l)Pzn(O)
=T 2n-D2n+2) (14)
Q2=2n(2n-1)2n +2). (15)

By numerically solving Eq. (12), we obtain the eigenfre-
quencies w,,. The eigenfrequencies of a few lowest eigen-
modes can also be found in Table I, Ref. 4. The values of ),
have the meanings of the dimensionless eigenfrequencies of
even eigenmodes for the spherical drop oscillations.

The eigenfunctions for the problem with the fixed con-
tact line are known to be’

ggn)(a) = 22 nAmnPZn(a) = Bmf(“’m? 6)’

(16a)
n=1
@ (r,0) = i, 2 AP, (07", (16b)
n=0
with the coefficients
2n—-1)2n+2
Amn: a"( = 2 )( 2n ) ms n= Ov (17)
Qn -y,
= a,02P,,(0
e (18)

2 232 °
n=1 (‘Q’n_ wm)

Here, we introduce the normalization condition and point out
the orthogonality of the eigenfunctions
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1
f 01,026 (0)d0= iw, 5, (19)
0

with 6=1 for m=k and 6=0 otherwise.
For the problem of forced oscillations the solutions can
be expressed as

,(6,0) =Re[5,(9)e'™], (20a)
@, (r.0,1) =Re[$,(r, 0)e™], (20b)
with the complex amplitudes
. S E,P,(0)
— QZ Il (ol A 0 |, 21
& g(zn—l)(zmz)”( ) (212)
¢, =02 E, Py (0)r™", (21b)
n=0
where
1
g(0)=F0—§[1—01n(1+0)], (22)
1+Q2n-1)2n+2)F
E =0 ”Qz );;” L — (23)
Fe 1 i 2na,P,,(0) (24)
Q0D Q-2

We point out that sum (13) in relations (12), (16a), and
(24) converges very slowly. From the computational point of
view, its evaluation can be significantly improved if a more
suitable form is used. By taking into account the expansion

0=, a,P,,(6), (25)
n=0

sum (13) is presented in an alternative way,

1 - anP2n(0)
J0) = 0— — + x>, 57—,
f(x,0) > xn:l 022

(26)
which compared to the original representation [Eq. (13)] pro-
vides much faster convergence. Note that the similar proce-
dure can be applied to the sum in relation (18).

B. Moving contact line

We next deal with the time intervals of supercritical val-
ues of the contact angle, |y|> y,, when the contact line is no
longer fixed. We could build the solution in the form of a
series as we did in Sec. IIl A. This way is, however, not
worth implementing because the corresponding eigenvalue
problem is not Hermitian and hence unlike Eq. (19) no or-
thogonality condition exists. As a result, this approach be-
comes computationally inefficient and provides no advan-
tages anymore. What we do instead is we address Eq. (2) for
the pressure, taken at r=1, which allows us to figure out how
the contact line evolves. By using the dynamic boundary
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condition, Eq. (4), we exclude the pressure and apply ansatz
(7). As a result, we obtain the inhomogeneous Legendre
equation

%9{(1 - Gz)j—g] +20=—po(t) + Q%0 cos Ot

+ E Cn(t)PZn(a) )

27
=, (27)
The solution of this equation is given by
o a,Py(6)
0.0) = - Q02 oy
£ cos 2;; (2n—-1)2n+2)
C,(t)P,,(0 1
_ n() 2n( ) + (0__>’ (28)
o1 2n(2n—1)(2n+2) 2

where the term o7y is the general solution of the homoge-
neous equation and the first two terms present a partial solu-
tion of the inhomogeneous equation. We note that the inte-
gration “constant,” y=+(¢), satisfies the definition of the
contact angle

1

=y. 29
2600 ,.," 7 (29)

For this reason, the time-dependent function (z) is referred
to as the contact angle.

By making comparison of expressions (7) and (28) and
using relations (15) and (25), we derive a set of ordinary
differential equations for the expansion coefficients C,,

C,+Q2C, = 0’a,y-2n0%a, cos O, (30)

which are coupled to each other through y(r). As the function
v(t) is unknown, an additional relation is required to close
the system. The problem statement is completed by rewriting
the Hocking condition (5), which yields

SO+, ¥> %
= 3
i {S(t) =% ¥Y<~=%: Gy

with the auxiliary function

S() = iE C(0P(0). (32)
n=1

Thus, when the contact angle is supercritical, |4> v,
we numerically solve the system of ordinary inhomogeneous
differential equation (30) together with algebraic coupling
relation (31).

C. Matching the solutions

To obtain the full problem solution, we have to match
the solutions obtained in Secs. IIl A and III B with each
other. The regime of oscillations with the motionless contact
line, which is characterized by subcritical values of the con-
tact angle, |y < 7y, is described by expressions (10) and (11)
with the unknown complex-valued coefficients D,,. At super-
critical values of the contact angle, |y|> 7, the contact line
keeps moving. At this time interval, we treat Egs. (30)—(32)
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numerically, in terms of functions C,(¢) and C,(z). Next we

provide relations between the coefficients D,, and C,, C,l
valid at r=t, and t=¢,, at which the regimes are switched. At
these moments, the contact angle reaches its critical value,
Y=y, and the two solutions coincide.

Consider first the moment r=¢;,, when the switchover
from the regime with the moving contact line to the one with
the pinned contact line occurs. As the values C,(#,) and

C,(t,) have been obtained at the previous stage of motion,
we have to determine the coefficients D,,. We multiply Egs.
(10) and (11) by (pom)(l 0) and by g(’”)(a) respectively, then
take into consideration 1ntegral condition (19), and obtain the
real, D( and imaginary, p" parts of D,,,

m?

oo

A,7 B,,
D= —mm o = (C —2nE, cos Q) — -gf—,
n=1 wm

o

1 A
—> (C +2nQE, sin Q1).

Wy = 14”

D=~

Here, the values w,, are determined as the roots of Eq. (12)
and the coefficients A,,,, B,,, and E, are given by relations
(17), (18), and (23), respectively.

This transformation identifies solutions (10) and (11)
uniquely and allows us to determine the moment of the back-
ward switchover, t=¢, when the contact line starts to move
again. To find out this moment, we numerically solve the
algebraic equation with respect to 74,

t) = % =0. (33)

To evaluate y we use Eq. (29) with the solution for ¢, Eq.
(10), where the sum in expression (16a) should be taken in
form (26). As a result, we obtain

m

Y1) = Q2F cos Ot =2+ >, B,d(2). (34)

m=1

Here, we have introduced a complex-valued function of time
d,(=D,, exp[zw (t to)] with the real and imaginary parts
denoted as d " and d , respectively. Thus, having obtained
the value ¢, we are ready to proceed to the next situation.

We now turn to the consideration of the moment =1,
when the motionless contact line starts to move. Before we
treat Egs. (30)—(32), we need to evaluate initial values C,(t,)
and C,(r,). We equate solutions (10) and (11) to those in
relations (7) and (8), which are taken at r=1 and ¢=t¢,. All the
terms are presented as series in the Legendre polynomials.
This can be done with the aid of expressions (16), (20), and
(21). The coefficients on the left and right hand sides must be
equal, which yields

C,=2n[ 2 dV(1))A,, + E, cos Q1] - 24,

m=1

- 2”[2 wmdiriz)(tl)Amn + QEn sin Qtl]'

m=1
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Thus, we start from these initial values and solve Egs.
(30)—(32) until the condition |y| <1, is fulfilled. Suppose
that y crosses the critical value vy, between the time steps k
and (k+1). We need to find the moment 7=¢, with the accu-
racy consistent with the integration scheme and evaluate the

values C,(ty) and C,(t,). To estimate 7, we implement an
elegant method suggested by Hénon.”' The idea is to intro-
duce a characteristic that changes its sign while vy is crossing
the value 7,. A suitable quantity satisfying this requirement
can be the function S(), see relation (32), which turns to zero
at (o) =, Thus, 1, as well as the values C,(1,) and C,(z,)
are obtained by making one additional corrective integration
step S(1,) from the values C,(t;) and C,(z,), which are avail-
able at time step k.

To have this idea implemented, we proceed from Eq.
(30) to the system of differential equations with the new
independent variable S and the time t=¢#(S) as an additional
variable

dc,
ds

C
=2 35
H (35a)

dc, Ol (a,y- C,) - 2n0%q, cos Ot

= , 35b
ds H (35b)
dr 1
—=—. (35¢)
ds H
Here, we have introduced the Hénon function
ds 1
H=—= C,P,,(0 36
d )\n21 n 2n( ) ( )

where C, can be expressed from Eq. (30).

Finally, we integrate Eq. (35) along with relation (31)
until S changes its sign. We note that while making the regu-
lar integration steps one sets H=1. The corrective integration
with the step S(¢;) is made with H in form (36), which after
the correction corresponds to S=0 or, equivalently, to =1,

and hence provides the required C,(¢,) and C,(1,).

Thus, we have started with the consideration of the mo-
ment ¢=1,, provided the way of proceeding to the moment
t=t,; and then to the next moment 7=t;. To this end, we have
obtained the solution over half a period and the described
matching procedure can be successively repeated to obtain
the solution over longer times.

In numerical calculations, an infinite number of eigen-
modes in Egs. (10) and (11) is truncated to retain M terms.
The presented results are calculated for M=10. The control
computations with the number of the eigenmodes up to M
=20 have indicated no change in the results. However, a
further increase in M has led to the emergence of unphysical
oscillations. The number N of Legendre harmonics retained
in Egs. (7)-(9) and Egs. (16) and (21) has been chosen to be
100 in most calculations. In order to check the accuracy of
calculations we have performed a number of tests with N
=150 and N=200, which have given very close results.
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FIG. 2. (Color online) Characteristics of the steady-state oscillations at \
=1, y,=1, and Q=3. (a) Evolutions of the contact angle, y(r), deviations of
the free surface at the pole, {,(r), and at the contact line, {,(7). The horizon-
tal dashed lines are for y= * 1,. The filled areas display the time intervals of
the subcritical contact angles, |y <,. (b) The Fourier power spectrum
evaluated for (7).

IV. RESULTS AND DISCUSSION

We start our discussion by recalling the fact'® that de-
spite the neglected viscosity, dissipation is implied by the
Hocking condition. Exceptions are the particular cases of the
pinned contact line (\—0) and the contact line freely mov-
ing (\—) over the perfectly polished (y,—0) substrate.
As the system under consideration is generally dissipative,
any initial state approaches the terminal oscillatory state after
a certain transient. In other words, any phase trajectory lands
at a limit cycle. Since in the case when y,—0 and A\=0(1)
the decay rate is comparable with the frequency of
oscillation,4 the transient time is estimated to be a few peri-
ods of oscillations. For these reasons, we are mostly inter-
ested in the properties of the steady-state oscillations.

To get a basic idea about the dynamics, we look at the
steady-state oscillations of the contact angle, see Fig. 2(a).
Looking at the evolution of 7y one might think of simple
linear oscillations. However, despite a relatively simple form
of the observed signal, the oscillations are nonlinear, which
is well seen from the Fourier spectrum of (1), Fig. 2(b). We
note that although the driving frequency dominates, a few
higher harmonics are nonvanishing. Another feature one can
readily notice is the absence of the even harmonics, which
reflects the fact that the response is presented by an antisym-
metric function: All the characteristics in Fig. 2(a) change
their signs as the time is shifted by half a period.

This antisymmetry of the steady-state oscillations can be
seen directly from our mathematical model. Indeed, in the
terminal state the system is invariant with respect to the
transformation

T

t—>t+§: (—-C o——o, (37)
which is easily understood if one takes into account two
circumstances. First, the governing equations and boundary
conditions, Egs. (2)—(5), are linear, if considered separately
at intervals with the fixed and moving contact line. Only the
periodic switching between these regimes makes the problem
nonlinear. We also note that the problem, Egs. (2)—(5), is
inhomogeneous. However, the inhomogeneity ocos ()¢
changes its sign under time transformation (37), as required.
Second, we take the same threshold value vy, used for the
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FIG. 3. (Color online) Amplitude-frequency response at A=1 and different
values of v,. Amplitudes of the surface deviation at (a) the pole, £, and on
(b) the substrate, £,

advancing and receding motion of the contact line. Our nu-
merical tests with 7y, and 7y, # 7y, for the thresholds of the
advancing and receding motion, respectively, have confirmed
this statement. For the distinct threshold values, we detect
nonvanishing even harmonics, whose contributions to the
power spectrum become more pronounced as y, and 7y, be-
come more distinct. In the opposite case of y; — v, the even
harmonics die out and we come back to the perfect antisym-
metry, as in relation (37).

Along with the contact angle, we measure the deviations
of the free surface from its equilibrium position at the pole of
the hemisphere, {,(1)={(6=1,r) and on the substrate {,()
={(6=0,1), Fig. 2(a). The latter characteristic shows the dy-
namics of the contact line. We see that the evolution of the
system consists of two interchanging regimes. During the
time intervals characterized by supercritical values of the
contact angle, | ()| > 7,, the contact line keeps sliding over
the substrate. This motion takes place until vy enters the sub-
critical domain, —7y,< y(r) <',, where the contact line be-
comes “frozen.” In Fig. 2(a), the time intervals when the
contact line remains fixed are presented as the gray-filled
areas. As we clearly see, {,(f)=const here, whereas other
characteristics are changing. The contact line remains fixed
until the contact angle is outside the subcritical domain. Af-
ter that, the contact line proceeds to move. Thus, the contact
line dynamics corresponds to the periodic sliding interrupted
by the intervals when it is frozen, or, in other words, to
stick-slip motion.

We now keep the value of the wetting parameter fixed,
A=1, and analyze how the amplitudes {,,,=max,|¢,(1)| and
Lom=max,|{,(#)| change while varying the external frequency
Q) and the critical contact angle, v,. The corresponding de-
pendencies are illustrated in Fig. 3. As we see from the forms
of these response characteristics, the system demonstrates
well pronounced resonances. Since the contact line motion
with a finite value of the wetting parameter A is dissipative,
the resonant amplitudes remain bounded. In Fig. 3(a) we also
present the nondissipative limiting case of A=0.

We next pay attention to the dependence on 7,. The
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FIG. 4. The diagram of contact line motion on the plane (€2, y,). The solid
lines are determined by the condition I'(2) =17, and separate the domains of
oscillations with the fixed contact line (I' < ,, in gray) and with the contact
line moving in the stick-slip regime (I"> 7,). Courtesy of S. Shklyaev.

partial case of y,=0 corresponds to no hysteresis so that at
A=1 the contact line keeps moving all the time. With the
increase in 7,, the part of the period when the contact line
moves becomes less and is gradually replaced by the regime
with the fixed contact line. At large values of 7,, the contact
line remains fixed for the most part of the period, which
becomes equivalent to the case of small A. In other words,
the dynamics with the fixed contact line dominates. At A\
=0, the contact line is pinned, {,=0, and the oscillations are
no longer dissipative, which results in the divergence of reso-
nant amplitudes of £,. We note that the case of A=1 is char-
acterized by the resonant frequencies close to w,, for all 7y,
where w,, are the eigenfrequencies at A=0, see Eqgs. (12) and
(13). As a consequence, the amplitudes of oscillations at the
pole, {,,., are significantly higher than those on the contact
line, -

Let us now point out another generic feature caused by
the contact line hysteresis. We start with the limiting case of
no hysteresis, y,=0. We recall that in this case,” the contact
line remains fixed, {,=0, at certain values of the driving
frequency, (0=, and at any value of the wetting param-
eter, \. For this reason, the values (),. are referred to as
antiresonant. Such frequencies are well recognized in Fig.
3(b). As becomes clear from the figure, the contact line hys-
teresis, 7y, # 0, transforms the discrete number of antireso-
nant points into antiresonant bands of finite width, Fig. 3(b).
With the growth of 7, the islands of stick-slip dynamics
become narrower, whereas the regions of dynamics with the
completely fixed contact line widen.

We emphasize that the width of the antiresonant bands is
determined solely by the value of 7y, and is independent of \,
which is explained as follows. The dynamics at frequencies
within the antiresonant band corresponds to the oscillations
with the fixed contact line, as if A=0. It is clear from Eq. (5)
that here we have I'(Q) <y, with '=max (), whereas out-
side the domain of antiresonant behavior the opposite equal-
ity holds, I'(€2) > ;. Hence, the border between the domains
of stick-slip dynamics and behavior with the fixed contact
line is defined by the equality I'(2)=1, or even much sim-
pler: T'y(Q)="y,, where [',=T"|,_y. As we can see, the ques-
tion about the width of the antiresonant bands can be effi-
ciently answered within the nonhysteretic model.* The
corresponding diagram is shown in Fig. 4.

The next question to answer is the possibility of any
significant difference in the dynamics for other values of the
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FIG. 5. (Color online) Amplitude-frequency response at A=5 and different
values of y,. Amplitudes of the surface deviation at (a) the pole, £, and on
(b) the substrate, ¢,

wetting parameter. The case of small values of N is out of
interest because the dynamics becomes very similar to the
case of the pinned contact line, A\ — 0. Our numerical tests
show that this limit is practically reached at A=1/2. As a
result, the variation of 7, demonstrates almost no significant
changes and hence the case of A <1 brings basically nothing
new.

Much more promising is the opposite situation, A> 1. In
the nonhysteretic (y,# 0) case, the contact line is not fixed
and the sliding motion dominates. In contrast to the case of
A << 1, interaction of the drop with the substrate is weakened.
The eigenfrequencies become close to the eigenfrequencies
of the even modes for a spherical drop, €1,. In the case of
hysteresis, y,#0, the system is switched between two
weakly dissipative kinds of oscillations. As we have seen for
the case of A=1, the stage of evolution with the fixed contact
line is characterized by the resonant frequencies w,,. For the
stage of the sliding contact line, the resonances are found at
Q,<w,. Thus, a competition of the qualitatively different
resonances is expected for the stick-slip motion. Our compu-
tations indicate that the described scenario with A>1 can be
observed already at A=5. The corresponding response char-
acteristics £, and ¢, are shown in Fig. 5.

We first discuss the dependence of {,, on () and 7,
where the competition of pairs of neighboring resonances is
well seen. As in the case of A=1, the growth of v, demon-
strates convergence to the resonant curve corresponding to
the fixed contact line, A=0. The transition is, however, non-
trivial. In contrast to Fig. 3(a), the curve associated with 7,
=0 has resonant peaks at 1=(),. As the parameter 7, is
increased, the peaks do not simply shift from )= (), toward
the values ()=w,. This transition is accompanied by the
emergence of intermediate local maxima in the dependence
£,m(£2). We note that such local maxima appear near every
resonant frequency. Another interesting distinction is that the
amplitudes of resonant peaks now change nonmonotonically
with the increase in 7, which as well takes place for all
resonances. Consider this feature, for instance, for the first
resonance, () € (2,6). At ¥,=0, we have a single maximum
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FIG. 6. (Color online) Characteristics of the steady-state oscillations at \
=5, y,=3, and 01=9.8. (a) Evolution of the contact angle, y(z). The hori-
zontal dashed lines are for y= = vy,. The filled areas display the time inter-
vals of the subcritical contact angles, |y| < y,. (b) The Fourier power spec-
trum evaluated for (7).

with the resonant amplitude ¢, ~7.30. With the growth of
Y0, this resonant amplitude starts to decrease and approaches
its minimal value, ,,~3.09 at y,=1.45. The further in-
crease in vy, leads to the growth and then divergence of the
resonant amplitude, as in the case of A=0.

The dependence of ¢, on 7y, and () is qualitatively the
same as described for A=1 and is in agreement with the
diagram of contact line motion, Fig. 4. However, because of
a weaker dissipation, {j,, have higher values for A=5 than
for A=1.

We next examine the evolution of vy and its Fourier spec-
trum evaluated at A=5 and y,=3, see Fig. 6. As we see, the
dependence () looks not only more complicated in com-
parison with that given in Fig. 2, but qualitatively different.
To avoid any confusion, we hereafter stick to the following
convention. We focus on such half a period of the signal (r)
that y>0. Note that in the case discussed in Fig. 2(a) we see
a single maximum. If we now go back to Fig. 6(a) we detect
the birth of the second /ocal maximum, the origin of which is
discussed in a few lines below. As a result, the power spec-
trum becomes wider than in Fig. 2(b) and the contribution of
higher harmonics is stronger. It is important to note that a
very similar feature has been recently observed experimen-
tally, see Fig. 11 of Ref. 6. Along with the experimental
study, the authors have suggested a simple theoretical model.
Their model is able to qualitatively explain the existence of
the stick-slip motion but fails to reproduce the two-maxima
feature in the evolution of the contact angle, (). Although
the considered problems are not exactly the same, the advan-
tage of our approach comes into play. Our model allows us
not only to describe the stick-slip motion itself but also to
capture the subtle feature of a nonsingle maximum in the
evolution of a contact angle.

To gain a deeper insight into the two-maxima phenom-
enon, we provide Fig. 7 evaluated at N\=5, y,=3, and ()
=11.4. We now consider half a period of ,(¢) with £,>0.
Figure 7(b) additionally presents the profiles of the drop at
different times as indicated with solid circles in Fig. 7(a).

As we see in Fig. 7(a), the dependence {,(r) possesses
two local maxima. One of the maxima is directly connected
with the dynamics with the fixed contact line, as in the case
of A=1. The second maximum is new; it is related to the
stage of oscillations with the sliding contact line. Note that
each stage of motion is characterized by its own resonance,
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FIG. 7. (Color online) Characteristics of the steady-state oscillations at \
=5, v,=3, and Q=11.4. (a) Evolutions of the free surface deviation at the
pole, {,(¢) and the contact angle, (7). The horizontal dashed lines are for
y= = v,. The filled areas display the time intervals of the subcritical contact
angles, |y|<7,. (b) Profiles of the free surface shown at the consecutive
moments of time as indicated by solid circles 1, 2, 3, and 4 in (a). The
equilibrium shape of the drop is presented in gray.

which are competing as we discussed for the case of A=5,
Fig. 5. At y,=0, the motion with the fixed contact line is
characterized by the resonances at the frequencies w,,
whereas for the slip motion the resonances at (), become
important. At =11.4 and y,=0, the closest eigenfrequen-
cies are (),=8.49 (fixed contact angle) and w,=10.6 (fixed
contact line). If we look how these resonant values change as
7Y 1s increased, we find out that at y,=3, the resonances take

place at 62%9.10 and @,~12.0 and the value Q=114 is
well in between and close to both of them. This explanation
may also reveal the reason behind the two-maxima existence,
as in Fig. 6. Despite the fact that both those maxima are
found during the slip motion, they are caused by the compet-
ing resonances of a different nature, as we have described.

V. CONCLUSIONS

We have considered the dynamics of an oscillated sessile
drop of incompressible liquid and focused on the contact line
hysteresis. The solid substrate is subject to transverse oscil-
lations, which are assumed of small amplitude and high fre-
quency. We admit that the drop is so small that its shape is
not distorted by gravity and hence the free surface is pre-
sented by a segment of sphere of radius R. We also assume
that the equilibrium contact angle equals /2, which implies
that the equilibrium shape of the drop is hemispherical. To
take into consideration the contact line hysteresis, the bound-
ary condition suggested by Hocking is applied, see Eq. (1).
This boundary condition involves an ambiguous dependence
of the contact angle on the contact line velocity. More pre-
cisely, the contact line starts to move only when the devia-
tion of the contact angle exceeds a certain critical value. As a
result, the stick-slip dynamics can be observed: The system
is periodically switched between the states with the sliding
and the fixed contact lines.

The solution of the boundary value problem is presented
in the form of series in the Legendre polynomials. Techni-
cally, the problem is tackled by obtaining two separate solu-
tions valid at subcritical and supercritical values of the con-
tact angle. These solutions are different and correspond to
oscillations with the completely fixed and the moving con-
tact lines, respectively. For the fixed contact line, the prob-
lem admits an analytical solution obtained carlier.* In the
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situation with the moving contact line, a set of ordinary dif-
ferential equations is obtained for expansion coefficients,
which are integrated numerically. At the critical values of the
contact angle, the matching of the different solutions is per-
formed. This procedure allows one to obtain the solution of
the stated problem at any moment of time.

Because of the dissipative nature of the Hocking condi-
tion, the regime with steady nonlinear oscillations is reached.
We have measured the deviations of the free surface on the
substrate and analyzed the frequency response at different
values of the wetting parameter, \, and the critical contact
angle, ,. It is known that in the nonhysteretic limit, y,=0,
no contact line motion exists at certain frequencies =),
which are independent of the wetting parameter. For this
reason, the values (), are referred to as antiresonant frequen-
cies. We have shown that the contact line hysteresis, when
vo# 0, transforms this discrete number of (), into antireso-
nant frequency bands of finite width. With the growth of vy,
the parameter domains of the stick-slip dynamics become
narrower, whereas the one with the completely fixed contact
line grows.

We have analyzed similar frequency response for the
deviation of the free surface at the pole of the drop. Here, at
relatively small values of the wetting parameter, N, resonant
amplification of oscillations is found at frequencies ()= w,
for all y,, where w, are the eigenfrequencies of the problem
with the pinned contact line, A=0.

At higher values of A, the interaction with the substrate
is weakened. In the case of no hysteresis, y,=0, the eigen-
frequencies are close to the eigenfrequencies of the even
modes for a spherical drop, (},. We have demonstrated that
the contact line hysteresis leads to a nontrivial shift of reso-
nant frequencies from Q) =, to w,, as y,— %. For moderate
values y,=0O(1), the switching between two weakly dissipa-
tive kinds of oscillations takes place: with the sliding and the
fixed contact line. These stages of stick-slip motion are char-
acterized by the resonant frequencies (), and w,, respec-
tively. As a result, in the interval of frequencies ()
e (Q,,w,) a competition of the two resonances occurs and
nontrivial effects can be found. Particularly, the evolution of
the contact angle has displayed the emergence of an addi-
tional local maximum at half a period, which is reminiscent
of recent experimental observations,” see Fig. 6(a).
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