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For self-propelled particles in a corrugated potential landscape, we describe a discontinuous change of the clas-
sical depinning transition and a host of unique behaviors sensitive to the persistence of the propulsion direction.
Exact and semianalytic results for active Brownian particles corroborate a creep regime with a superexponentially
suppressed drift velocity upon lowering the force towards the threshold value. This unusual nonlinear response
emerges from the competition of two critical scaling laws with exponents of 1/2 for rapidly reorienting particles
and d/2 for particles with a persistent orientation; the latter case depends on the dimensionality d of rotational
motion and also includes run-and-tumble particles. Additionally, different giant diffusion phenomena occur in
the two regimes. Our findings extend to random dynamics with bounded noise near a saddle-node bifurcation
and have potential applications in various nonequilibrium problems, including arrested active matter and cell
migration.
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Introduction. A depinning transition occurs when a phys-
ical system is driven out of an immobile state by an external
force f such that, upon increasing the force above a critical
value fc, the system depins and starts to drift with a velocity
vD [1–3]. Approaching the transition from above, this re-
sponse scales as vD ∼ ( f − fc)β , with a universal exponent β.
The phenomenon appears in a variety of contexts: it governs
the onset of motion of fronts [4–6], contact lines [7], and
domain walls [8–10], as well as vortices in superconductors
[11–13] and magnetic skyrmions [14]. The depinning tran-
sition is fundamental for the phenomena of sliding friction
and superlubricity [15–19], synchronization [20], and locking
[21–26]. Colloidal systems have provided insight into the de-
pinning transition of individual particles [27–30], monolayers
[31–34], and in glasses [35–37].

Unlike passive matter, active particles—motile microor-
ganisms, artificial microswimmers, and active colloids—
propel themselves and perform a persistent motion, with
direction randomized over time [38–42]. Experimental re-
search in this field is fueled by the vision of microrobots
performing specific transport tasks [43–45]; such particles
move through structured channels, blood vessels, or surmount
geometric constrictions [46]. More fundamentally, the in-
herently nonequilibrium nature of self-propulsion leads to
a complex interplay with a patterned substrate [42,47–52],
which changes the macroscopic transport and yields, e.g., di-
rectionality [53], negative mobility [54,55], or superdiffusion
[56]. Self-propulsion also produces counterintuitive behaviors
in Kramers’ escape over high barriers [57–60]. An open issue
is the impact of active motion on the depinning transition, i.e.,
the nonlinear response to external driving, which has potential
relevance to a range of applications, including cell migration
[61–64].
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In this Letter, by combining exact theory with a semian-
alytical treatment and stochastic simulations, we show that
self-propulsion gives rise to a hitherto undescribed kind of
depinning transition. The phenomenology is found to be sen-
sitive to the persistence and the dimensionality d of rotational
motion. Our findings encompass two scaling regimes with
exponents β = 1/2 and β ′ = d/2, an unusual creep regime
with superexponentially suppressed drift, a splitting of the
force threshold into two singular points, and in between them
different unbounded enhancements of the dispersion.

Specifically, we consider the paradigm of the active
Brownian particle (ABP) confined to a periodic potential en-
ergy landscape U (r) and subjected to an external force f
[Fig. 1(a)]. The ABP’s position r and the orientation u satisfy
the Itō–Langevin equations [65,66]:

ṙ(t ) = μ0[ f − ∇U (r(t ))] + vAu(t ) + ξ(t ) , (1a)

u̇(t ) = ω(t ) × u(t ) − τ−1
R u(t ) , (1b)

where vA � 0 is the propulsion strength and μ0 is the
mobility of the free particle. The random linear and angu-
lar velocities, ξ and ω, respectively, are unbiased Gaussian
white noise processes with covariances 〈ξ(t ) ⊗ ξ(t ′)〉 = 2D01

δ(t − t ′) and 〈ω(t ) ⊗ ω(t ′)〉 = 2DR1δ(t − t ′) for the transla-
tional and rotational diffusion constants D0 and DR, respec-
tively, and τR is the persistence time of the orientation. With
τ−1

R = (d − 1)DR, Eq. (1b) describes free diffusion of u(t )
on the unit circle (d = 2) or unit sphere (d = 3) [66]. In
particular, the process u(t ) is isotropic and non-Gaussian with
|u(t )| = 1 and 〈u(t ) · u(t ′)〉 = exp(−|t − t ′|/τR). We will fo-
cus on the case d = 3, which is relevant for colloidal particles
[48,67–69]. Results are also provided for d = 2 and large
τR; this setup coincides with the depinning problem of run-
and-tumble particles (RTPs) mimicking the motion of bacteria
such as E. coli [70,71].
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FIG. 1. Panel (a): depinning of an active Janus particle from a corrugated potential landscape and subject to a driving force f (bottom).
The problem can be mapped to passive motion in a randomly tilted potential landscape (top) such that the tilt has a constant contribution − f x
(black line) which, depending on the orientation u(t ), is increased (green line) or decreased (red line) by random, finite amounts. Panels (b),(c):
drift velocity vD( f ) of the active particle with (b) fixed orientational persistence time τR = τL but varying propulsion velocity vA and (c) fixed
vA = 0.2vL but varying τR. In panel (b), the inset shows the same data as in the main panel on a logarithmic scale. Panel (d): high-precision
data for vD( f )/vL from the numerical solution of the Fokker-Planck equation, shown on an iterated logarithmic scale and corroborating
the superexponential convergence of vD( f ) → 0 as f ↓ f −

c [Eq. (6)]. Panels (e),(f): differential mobility μ( f ) = dvD( f )/d f and effective
diffusion constant Deff( f ) as functions of the driving force f for fixed vA = 0.2vL and varying τR. All panels: thin lines interpolate between
stochastic simulation results (symbols); thick lines are analytic predictions for the limits of the hyper wobbler (gray, τR → 0) and the lazy
wobbler (orange, τR → ∞).

As potential we use a corrugated landscape with the pro-
totypical sinusoidal shape [72]: U (r) = UL(1 − cos kx) with
x = r · ex and the unit vector ex pointing perpendicular to the
ripples; 2UL is the barrier height, λ = 2π/k is the period
length, and k the corresponding wave number. We fix the
direction of the force to f = f ex ( f � 0) and, focusing on the
depinning singularity, switch off the translational Brownian
noise (D0 = 0), which is known to mask the critical singular-
ity, leading to a rounded rather than a sharp transition [73–75].
This reduces the model to an Adler equation amended by the
“active noise” vAux(t ) = vAu(t ) · ex:

ẋ(t ) = μ0[ f − fL sin(kx(t ))] + vAux(t ). (2)

The force fL = ULk, the velocity vL = μ0 fL, and the
timescale τL = λ/vL serve as an intrinsic system of in-
dependent units. Regimes of different responses are then
distinguished by comparing the relative strengths of the ex-
ternal driving f / fL and of the rotational noise τR/τL to unity.
For the stochastic simulations, we combined Euler integration
of Eq. (2) with a geometric scheme for Eq. (1b) [66] and
noise reduction [76]. The drift velocity was calculated from
averaging over the driven stationary ensemble as vD( f ) =
limt→∞〈x(t )〉 f /t and the dispersion coefficient followed from
the variance Deff( f ) = limt→∞ Var[x(t )] f /2t .

The right-hand side of Eq. (2) may also be viewed as
originating from a time-dependent tilted potential U (x) −
fA(t )x with fA(t ) = f + (vA/μ0)ux(t ). Its barriers can only
be crossed if ux(t ) > ux,c = (vL/vA)(1 − f / fL) [Fig. 1(a),

green shading], which lets them act as a randomly rocking
ratchet, rectifying the a priori unbiased self-propelled motion
and thus facilitating transport.

We note that the active noise vAu(t ) differs qualitatively
from the thermal, white noise ξ(t ), both entering Eq. (1a):
vAu(t ) is bounded in magnitude, whereas ξ(t ) can assume ar-
bitrarily large values. Only in the latter case is the probability
of crossing the potential barrier nonzero for any, even small,
driving force. Mathematically, the integral

∫ t
0 vAu(s) ds is a

finite-variation process, unlike the Wiener process
∫ t

0 ξ(s) ds,
and thus yields a drift rather than a diffusion term in the
Fokker-Planck operator (see [76,77]). Hence the active noise
can be interpreted as a random tilting of the potential land-
scape but not as an intrinsic diffusion.

Depinning transition. Driving passive particles (vA = 0)
with f > fL =: fc, they depin from the confining potential
and drift with the velocity [78]

v
(p)
D ( f ) = μ0

√
f 2 − f 2

L , f > fL. (3)

Otherwise, v
(p)
D ( f ) = 0. Expanding Eq. (3) close to its critical

point, fc = fL, yields a square-root singularity:

v
(p)
D ( f ↓ fc) ∼ ( f − fc)β, β = 1/2. (4)

For self-propelled particles, simulations of Eq. (2) show
that the force-velocity relationship vD( f ) deviates progres-
sively stronger from this law upon increasing the propul-
sion strength vA while fixing the orientational persistence,
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τR = τL [Fig. 1(b)]. Conversely, changing τR at fixed vA =
0.2vL yields a similar picture [Fig. 1(c)], which remains for
other values of τR or vA. Importantly, the ABP with vA >

0 and τR > 0 displays a nonzero drift also for f < fc. At
first sight, this seems to resemble the rounding of the depin-
ning transition caused by translational Brownian noise [73].
However, we will show that the effect of active propulsion
on the transition is entirely different and cannot be mim-
icked by translational diffusion, D0 > 0. In particular, the
self-propelled particle is pinned for f < f −

c with the shifted
threshold f −

c = fL − vA/μ0 [79].
The existence of an activity-controlled critical force f −

c
is justified by the second observation: upon increasing τR

from 0 to ∞ at fixed vA < vL [Fig. 1(c)], the force-velocity
curves vary monotonically between the analytical solutions
for the two limiting cases, τR → 0 and τR → ∞, which we
shall develop below. Both bounds yield vD( f ) = 0 if f < f −

c ,
which implies a sharp transition for all values of τR.

Scaling regimes. We refer to the case of small τR as a
“hyper wobbler,” i.e., an ABP with a rapidly changing ori-
entation such that τR is the smallest timescale of the problem,
τR � τL and τR � τ f = λ/(μ0 f ). Such an ABP quickly sam-
ples all possible orientations before any translation occurs
and the active noise ux(t ) is averaged out from Eq. (2). Thus
self-propulsion is inefficient for the hyper wobbler, leading
to creep for f −

c < f < fc with a strongly suppressed drift.
Letting τR → 0, Eq. (3) holds again and the scaling exponent
β = 1/2 is obeyed.

The opposite regime describes a “lazy wobbler” (τR �
τL, τ f ), which changes its orientation slowly. The trajecto-
ries x(t ) can be thought of as a random walk composed of
a sequence of long independent segments i = 1, 2, . . . with
fixed orientations ui isotropically distributed and randomly
changing at random times with rate τ−1

R ; equivalently, we
specify polar angles ϑi such that ux,i = cos ϑi. The regime is
identified with the standard model for RTPs with switching
rate τ−1

R [70,71]. Pictorially, transport is fastest if the orien-
tation is fixed in the direction of the driving force (ϑ = 0),
whereas the opposite direction (ϑ = π ) is the most inefficient
situation [Fig. 1(a)]. The increased persistence leads to a well-
developed drift for f −

c < f < fc. For large τR < ∞, different
angles ϑi are sampled over time and vD( f ) is not simply a
shifted version of the curve v

(p)
D ( f ). Instead, vD( f ) appears

smoother near the transition at f = f −
c , which is apparent

from the exact solution v
(∞)
D ( f ) for τR → ∞ [cf. Eq. (8)]

exhibiting a larger critical exponent:

v
(∞)
D ( f ↓ f −

c ) ∼ ( f − f −
c )β

′
, β ′ = 3/2 . (5)

Creep regime. How are the critical laws (4) and (5) con-
nected upon changing τR? Do the force threshold and the
scaling exponent vary continuously? Since the stochastic
simulation data [Fig. 1(c)] are not sufficiently conclu-
sive to answer these questions, we have obtained precise
numerical solutions of the corresponding Fokker-Planck equa-
tion [Fig. 1(d)], allowing us to follow vD( f )/vL down to 10−15

[76]. These semianalytical results suggest a creep regime with
superexponential rather than power-law behavior:

vD( f )  vL exp[−b( f − f −
c )−α], f ↓ f −

c . (6)

The coefficients α > 1 and b > 0 depend on τR and we found
that α decreases as τR is increased. The form of Eq. (6) is
in line with predictions from related discrete-time models
[80,81] and it is rooted in a very slow initial increase of
the probability that the particle slips along ex by one period
length upon increasing f > f −

c . (This probability is zero for
f < f −

c .) For τR � τL and upon increasing f further, the
behavior (6) crosses over to closely follow the lazy-wobbler
solution, vD( f ) ≈ v

(∞)
D ( f ). We conclude that vD( f ) > 0 for

f > f −
c , i.e., the critical point is the same for all τR > 0.

Differential mobility. The differential mobility μ( f ) =
dvD( f )/d f is an alternative measure of the transport and more
sensitive to singular behavior [Fig. 1(e)]. For 0 < τR < ∞,
we have calculated μ( f ) from the numerical results for vD( f )
and it is readily obtained analytically for the limiting cases
[Eqs. (3) and (8)]. In any situation, the potential landscape be-
comes irrelevant for sufficiently strong driving, μ( f → ∞) =
μ0. For the hyper wobbler (τR → 0), the mobility diverges at
the corresponding critical force, μp( f ↓ fc) ∼ ( f − fc)−1/2,
whereas it vanishes as μ∞( f ↓ f −

c ) ∼ ( f − f −
c )1/2 for the

lazy wobbler. In addition, μ∞( f ) remains finite but exhibits a
cusp at the force f +

c = fL + vA/μ0, pinpointing the presence
of a second singular point, at which μ∞( f ) is maximal. In
between these limiting cases, the mobility has a maximum
that, upon varying τR, interpolates in peak height and position
between the divergence at f = fc (τR � τL) and the cusp at
f = f +

c (τR � τL). Concomitantly, the left flank of the peak
moves from f = fc to f −

c , broadening the peak.
Activity-induced giant diffusion. For passive depinning,

the differential mobility is a good proxy of the dispersion
coefficient, Deff( f ) ∝ μ( f ), which restores a linear response
relation [82]. For ABPs with small τR, the curves of Deff( f )
and μ( f ) are strikingly similar [Figs. 1(e) and 1(f)]; in partic-
ular, Deff( f )/Dfree shows a peak near the transition ( f ≈ fc),
which grows in height without bounds as τR → 0; Dfree =
v2

AτR/3 is the effective diffusion of the free ABP. Such giant
diffusion was studied for passive particles [83–85] and has
been seen in experiments [27,86]; similar behavior was found
for circle swimmers subject to gravity [26].

For lazy wobblers (large τR), the corrugated potential in-
duces a different kind of enhanced dispersion. In this regime,
the data for Deff( f )/Dfree depend only weakly on τR and
closely follow the exact result for Deff( f ) [Fig. 1(f), orange
line]. The latter follows from again invoking the random
walk picture of uncorrelated velocities vD( f ; ϑi ) changing
at a “collision rate” τ−1

R ; see Eqs. (S22) and (S25) of [76].
The curve shows a maximum Dmax = Deff( fmax) near fmax ≈
( fc + f +

c )/2. Expanding for vA � vL yields

Dmax  (9Dfree/8)(vL/vA + 3/5), (7)

which predicts an 6.3-fold enhancement of Deff( f ) over Dfree

for vA = 0.2vL, as is observed in the data for τR = 10τL near
f ≈ 1.1 fL [Fig. 1(f)]. We anticipate an arbitrarily large en-
hancement of the dispersion, Dmax/Dfree ∼ 1/vA, for weakly
self-propelled particles with τR � τL.

Analytical theory. Before developing the theory for self-
propelled particles, we briefly recall the passive case. For
vA = 0, the particle motion is governed by the dynamic
system ẋ = g(x, f ) with g(x, f ) = μ0( f − fL sin kx), which
exhibits a saddle-node bifurcation [87]. Two equilibria x±

∗ ∈
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[0, λ), obeying g(x∗, f ) = 0, exist for f < fc and disappear at
the critical point fc = fL, which fulfills the additional require-
ment ∂xg(x∗, fc) = 0. Thus the particle is pinned for f < fL

and remains immobile, v
(p)
D ( f ) = 0. For f > fL, the particle

slides with v
(p)
D ( f ) = λ/τ1( f ), where τ1( f ) = ∫ λ

0 g(x, f )−1 dx
is the time it takes to travel one wavelength. Evaluating the
integral for the sinusoidal potential yields v

(p)
D ( f ) in Eq. (3),

which admits for the scaling form v
(p)
D ( f ) = vLs( f / fL) with

the rescaled force y = f / fL and the scaling function s(y) =√
y2 − 1 for |y| > 1 and s(y) = 0 otherwise.
For an ABP with fixed orientation u, the active noise

term in Eq. (2) can be absorbed in the shifted driving force
fA(ϑ ) = f + (vA/μ0) cos ϑ , where ux = cos ϑ . With this, the
dynamic system reads again ẋ = g(x, fA(ϑ )) and it follows
that the velocity-force relationship of an ABP with prescribed
orientation ϑ has the same functional form: vD( f ; ϑ ) =
vLs( fA(ϑ )/ fL). Merely the condition | fA(ϑ )| > fc implies a
shift of the critical point from fc = fL to fL − (vA/μ0) cos ϑ .
The latter expression depends on ϑ and varies between the
values f ±

c = fL ± vA/μ0. In particular, vD( f ; ϑ ) = 0 for f �
f −
c irrespective of ϑ .

For lazy wobblers (large τR), we employ the RTP model
where x(t ) is a random walk with random orientations ui and
thus velocities vD( f ; ϑi ). At long times, this implies a uniform
average over the orientation, 〈·〉u := (4π )−1

∫ · sin ϑ dϑ dϕ.
For the mean drift of the lazy wobbler, it follows v

(∞)
D ( f ) =

limt→∞〈x(t )/t〉 f = 〈vD( f ; ϑ )〉u and, specifically [76],

v
(∞)
D ( f ) = v2

L

2vA
[w+( f / fL) − w−( f / fL)], (8)

introducing additional scaling functions w±(y) = w(y ±
vA/vL) with w(z) = ∫ z

0 s(y)dy. The integral evaluates to
w(z) = {zs(z) − ln[z + s(z)]}/2 if z > 1; otherwise, w(z) =
0; in particular, w±( f / fL) = 0 for f � f ∓

c . The passive limit
[Eq. (3)] is recovered as vA → 0; in this limit, the two sin-
gular points f ±

c converge to fc = fL. Due to w′(z) = s(z),
the critical exponent β increases by 1, turning the square-root
singularity [Eq. (4)] into Eq. (5).

The argument applies similarly for rotational motion in
a plane, noting that ux is distributed differently in this
case. Analysis of the leading asymptotic behavior upon
ε := ( f − f −

c )/ fL ↓ 0 yields for d = 2, 3 dimensions [76]

v
(∞)
D (ε ↓ 0) 

√
d − 1

d
v

1/2+β ′
L v

1/2−β ′
A εβ ′

, β ′ = d/2. (9)

Intuitively, the behavior of v
(∞)
D ( f ) near f ≈ f −

c may be
understood from the random tilts of the potential landscape
[Fig. 1(a)]: in an ensemble of particles, only those with ori-
entations pointing sufficiently close towards the direction of
the force contribute to the transport: ux > ux,c = 1 − εvL/vA

so that vD( f ; ϑ ) > 0. Near the transition, ux,c → 1 and the
square-root behavior vD( f ; ϑ ) ∼ (ux − ux,c)1/2 is weighted

with the distribution of ux close to 1: the latter is flat for
d = 3, but divergent ∼ (1 − ux )−1/2 for d = 2. Both factors
combine into ∼ (1 − ux,c)d/2 after integration and hence β ′ =
d/2. Transport near criticality is thus faster for d = 2 than for
d = 3 (Fig. S2 in [76]).

Conclusions. We have shown analytically and numerically
that activity alters the depinning transition: a sharp transition
is preserved in the presence of self-propulsion, yet with the
threshold force shifted from its value fc for passive particles
to f −

c < fc; the threshold depends on the propulsion strength
vA but not on the orientational persistence time τR. How-
ever, the approach to the transition from above depends on
τR and on the dimension d of rotational motion: it obeys
different power laws for the limits of the hyper and lazy wob-
bler with exponents β = 1/2 (small τR) and β ′ = d/2 (large
τR), respectively. In between, there is a creep regime where
vD( f ) vanishes superexponentially fast, contrasting from the
scenario of a τR-dependent exponent. For the lazy wobbler,
another singular point f +

c emerges as the mirror image of
f −
c relative to fc; at f +

c , the differential mobility μ( f ) is
maximum. Eventually, the dispersion coefficient shows a giant
enhancement whose scaling and position depend on τR. It
would be interesting to connect our findings with a recent
formalism for activity-assisted escape valid for small, nonzero
D0 [59]. Regarding a perturbative treatment of the passive case
with τR as the small parameter (e.g., Refs. [77,88]), it appears
unlikely that the discontinuous changes of the phenomenology
can be captured. Our work suggests that probing nonlinear
responses [35–37] can stimulate a similar debate for arrested
active matter [89–91].

The described transition scenario is in marked contrast to
the rounding of the transition due to translational thermal
noise [73–75] or in an active bath [92]. We have attributed the
changes to the bounded magnitude of the active noise, which
has the effect of a random tilting of the confining potential.
We anticipate that analogous findings apply to other dynamic
systems with bounded noise near a saddle-node bifurcation
[80,81].

Our predictions appear amenable to experimental tests,
e.g., using active colloidal particles driven by external fields
(e.g., gravitational [29,93,94] or magnetic [25,33]) over a pe-
riodic landscape [48,51,68] and potentially for the chemotaxis
of bacteria crawling on structured substrates [61,62]. Experi-
ments on active colloidal monolayers may give insight into
the activity-induced depinning of collective variables and our
study is relevant for the melting transition of active colloidal
crystals [95].
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