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We study the dynamics of a thin film over a substrate heated from below in a framework of a strongly
nonlinear one-dimensional Cahn-Hilliard equation. The evolution leads to a fractalization into smaller and
smaller scales. We demonstrate that a primitive element in the appearing hierarchical structure is a dissipative
compacton. Both direct simulations and the analysis of a self-similar solution show that the compactons appear
at superexponentially decreasing scales, which means vanishing dimension of the fractal.
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I. INTRODUCTION

A vast number of intriguing pattern-formation phenomena
can be described with equations of Cahn-Hilliard type. Since
their introduction �1�, these equations have been successfully
applied to a great variety of natural and technological pro-
cesses such as phase separation �see, e.g., a survey �2��, to-
pology transitions in a Hele-Shaw cell �3�, dynamics of lay-
ered systems �4,5�, thin films �6�, population dynamics in
biology �7�. In the thin film context, numerical studies of an
amplitude equation of Cahn-Hilliard type �8,9� have evi-
denced film rupture leading to the formation of a cascade of
“drops” and “fractal-like fingering” �10� comprising the gaps
or “dry spots” �9� between the drops. These findings have
been supported by direct simulations of the Navier-Stokes
equations �11,12�.

The goal of this paper is twofold. First, we relate liquid
droplets with zero contact angle to dissipative compactons. A
usual compacton is a well-known compact �i.e., with finite
support� traveling-wave solution, which emerges in conser-
vative systems with nonlinear dispersion �13�. We show that
its stationary analog with compact support naturally appears
in dissipative systems with nonlinear dissipation and, there-
fore, can be referred to as a “dissipative compacton” �DC�.
Second, we demonstrate that a DC is a primitive element
mediating the formation of hierarchical fractal structure and
characterize the fractal properties of this structure quantita-
tively.

Our basic model is a generalized one-dimensional Cahn-
Hilliard equation describing dissipative evolution of a con-
served field h�x , t�

ht + �h�−1hx + h�hxxx�x = 0, � � 3. �1�

The flux here consists of two nonlinear terms, the first one
responsible for instability of a uniform field, and the second
one for the saturation of this instability. The relation between
nonlinearities of these terms ensures the existence of com-
pact self-affine solutions. Noteworthy, under certain condi-
tions this relation describes the dynamics of a thin film over
a substrate heated from below. In this example, h plays the
role of the local film thickness and is governed by (see, e.g.,
Eq. �4� in Ref. �8�):

ht + �f�h�hx + g�h�hxxx�x = 0, �2�

f = − Boh3 +
BMh2

2�1 + Bh�2 , g = h3. �3�

Dimensionless Bond �Bo�, Biot �B�, and Marangoni �M�
numbers determine the levels of the gravity, of the heat flux
at the free surface, and of the convective flow, respectively.
Although function f here has a rather complex form, for h
→0 one can set f �0.5BMh2. This approximation holds also
for moderate values of h, provided the gravity can be ne-
glected, Bo→0, the heat transfer at the free surface is poor
�B small� while the thermocapillary effect is strong �M
large�. Assuming the limiting form of f , after an appropriate
rescaling of the time, the field, and the coordinate we arrive
at our basic Eq. �1� with �=3. Before proceeding to its
analysis, we notice invariance under the scaling

h → p2h, x → px, t → p−2��−2�t , �4�

meaning that solutions with smaller h evolve slower.

II. STEADY STATE AND ITS STABILITY

Consider non-negative stationary solutions h=H�x� of Eq.
�1�. Looking for symmetric patterns, after one integration we
obtain

HH� + H� = 0 �5�

with a compact H�x� in the form of a DC or a “touchdown
steady state” �14�, nonvanishing for �x�� l only:

x = � ��H erf��1

2
ln

H
H
	, H = max

x
H�x� , �6�

where erf�z�=�2 /�
0
ze−t2dt. The fact of compactness makes

the DC highly nontrivial, as at x= � l the higher derivatives
of H�x� become singular, which can present a serious diffi-
culty for conventional numerical approaches. Despite such a
non-smoothness, exactly this solution evolves from initial
data. Equation �6� presents a self-affine one-parameter family
of DCs parametrized by H and expressed in terms of the

base DC H̃�x� having H=1 �Fig. 1�:
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H�x� = HH̃�x/�H�, l = ��H . �7�

For a thin film, the DC describes the stationary profile of
a drop with the height H and zero contact angle. The prop-
erty of self-affinity is a necessary prerequisite for the emer-
gence of fractal structure of droplets described by Eq. �1�, as
we discuss below. Particularly, Eq. �7� shows that DCs be-
come narrower for smaller amplitudes–contrary to other ex-
amples of compact solutions where typically the width and
the amplitude are independent �4,13�.

To explore the stability of a DC, we introduce a small
perturbation ���x�exp�	t� of H�x�, where 	 is the growth
rate. By linearizing Eq. �1�, we obtain

	� + �H���� + H−1����� = 0. �8�

Assuming ���l�=0, we multiply Eq. �8� by ��+H−1� and
integrate by parts to arrive at an integral relation

	�
−l

l ��� −
H�

H�
�	2

dx = − �
−l

l

H����� +
�

H
	�2

dx , �9�

which is closely related to the variational principle for Eq.
�2� �15� and the fact that the Lyapunov functional has a local
minimum on the DC. As H�0, both the integrals in Eq. �9�
are non-negative and the perturbations are nongrowing, 	
�0. This result, however, does not guarantee against the
instability, as there exist two modes of neutral linear stability,
	=0, satisfying ���l�=0. One mode, �1

�0�=H�, reflects trans-
lational invariance of Eq. �1� and cannot give rise to insta-
bility. Another mode, �2

�0�=H−xH� /2, is characterized by a
nonzero volume. Our numerical simulations of Eq. �1� show
that the corresponding perturbation grows nonlinearly lead-
ing to a breakup of the DC with the emergence of a complex
structure. Note that for finite-amplitude perturbations of zero
volume we detect the temporal decay.

III. EVOLUTIONARY PROBLEM

We now demonstrate numerically the formation of a frac-
tal, hierarchical structure of DCs �see Fig. 2� for a thin film
application, �=3. We discretize Eq. �1� in the domain 0
�x�d with 1000 nodes, impose periodic boundary condi-
tions, and apply the Newton-Kantorovich method �8�. We
choose a distorted uniform profile h�x , t=0�=1
+0.1 cos�2�x /d� as an initial condition. Results of computa-
tions are presented in Fig. 2. There we also compare the
numerically obtained profile h�x� having local maxima hm

�n�,
n=1,2 , . . . with the DC profiles with H=hm

�n�, denoted as
DC�n�. We see that the initial profile develops into a hierar-

chical structure of DCs of different amplitudes.
This finding is a key for resolving the structure at finer

scales, as we can increase the efficiency of the numerics
significantly: because after their formation the DCs remain
constant in their bulk, we exclude these domains from nu-
merical simulations and impose the corresponding boundary
conditions for the still evolving domains between the formed
DCs via Eq. �6�. Thus, while proceeding to smaller DCs, we
can considerably refine the mesh and also increase the time
step, which allows us to reliably resolve high-order DCs up
to n=4.

The observed structure along with the property of self-
affinity suggests that the formation of higher-order DCs
never stops and the dry spots between DCs, form a fractal
reminiscent of the Cantor set. Thus, a DC plays a role of an
“intrinsic mode,” inherent in the fractalization. To character-
ize properties of this fractal quantitatively, we plot in Fig.
3�a� the variation of Ln, the distance between the neighboring
DCs of nth and �n−1�th orders, versus the base 2ln of DC�n�.
The numerical results for different d fit well a power law:

Ln � 
�2ln��, 
 � 0.2, � � 1.25. �10�

Note that deviations from this law for the points related to
the biggest DCs stem from the initial condition. On the other
hand, for higher orders the self-similarity of the formation of
DCs is evident from Fig. 3�a�.

Because ��1 in Eq. �10�, with the increase in n the ratio
Ln / ln diminishes implying that the smaller daughter DCs
tend to occupy the whole space between their bigger parent
DCs. The fraction of dry spots tends to zero and, therefore,
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FIG. 1. �Color online� The shape of the base DC, H̃�x�.
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FIG. 2. �Color online� Evolution of the field h�x , t� illustrating
hierarchical formation of droplets, d=10. �a� Fragment of the evo-
lution. Notice logarithmic scales of t and h. �b� Snapshots of h.
Panels �c� and �d� are zoomed in fragments of panel �b�. Lines
represent numerical results for Eq. �1�, circles show the profiles of
corresponding DCs as in Eq. �6�.
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the fractal dimension of this set equals zero. Furthermore, for
large n we can neglect the distance between DC�n� and
DC�n+1� and put Ln�2ln+1. As a result, Eq. �10� entails a
remarkable superexponential scaling of ln with n:

log�ln� � �n log�l0� . �11�

IV. SELF-SIMILAR SOLUTION

To alternatively support the conclusions about the fractal
dimension and the superexponential scaling, we construct
self-similar solutions, which originate from the rescaling
property, Eq. �4�. By seeking the solution of Eq. �1� in the
form

h = t−1G��,  = x�t , �12�

we arrive at an ordinary differential equation for G��:

G� − 2G + 2�G2G� + G3G��� = 0, �13�

where primes stand for d /d. Numerical solutions of Eq.
�13� with various initial conditions all demonstrate a qualita-
tively similar behavior of G��, which displays an infinite
number of oscillations of increasing amplitudes. Two solu-
tions with different initial conditions are shown in Fig. 4. We
note that the fractal structure can be considered formed when

t �and, therefore, � is large. In this limit, the scaling is
independent of initial conditions.

For large G, where we can estimate d /d��1/2 with �
�G−1�1, the first two terms in Eq. �13� become negligible
in comparison with the last two terms. In this limit, Eq. �13�
is reduced to Eq. �5� with G�� instead of H�x�. Therefore,
G�� can be approximated by the solution for a DC �see Eq.
�6� and the inset in Fig. 4� everywhere except for its tails,
where G is no more large. Thus, G�� looks like a sequence
of DCs with superexponentially growing amplitudes Gk

�exp�Ak� and widths �k=2��Gk. The positions k of
maxima for large k satisfy k���Gk, implying the same
asymptote for Gk�k� for all initial conditions, see markers in
Fig. 4.

To specify the superexponential growth of Gk with k, we
construct a mapping Gk→Gk+1 valid for large G. In the

range of �−k����Gk, G�GkH̃�xk� with xk��
−k� /�Gk. To bridge the solution for DC�k� with the similar
one for DC�k+1�, we substitute a representation G=�−2��y�,
y= �−k−��Gk��, ��Gk

−1/6 into Eq. �13� and neglect the
terms ��, which yields

y0�� + 2��2�� + �3���� = 0. �14�

Here, primes denote d /dy and y0=k /�Gk+���2��. We
solved Eq. �14� numerically matching the solution to DCs at
y→ ��, which gives the transformation Gk→Gk+1 �see Fig.
3�b��. The results fit well a power law

Gk+1 � 40Gk
2.83. �15�

Equation �15� shows a superexponential growth for Gk
with k, as required by the self-affinity and the similar behav-
ior for the lengths, see Eq. �11�. The exponent 2.83 in Eq.
�15� is in reasonable agreement with 2� in Eq. �10�, obtained
within the evolutionary problem. �Recall that the amplitude
�l2, cf. Eq. �7��. The fact that the correspondence is not
perfect is not surprising as Eq. �15� is the asymptote of ex-
tremely large t �i.e., large k�, while Eq. �10� is a fit obtained
for the early stage of the evolution �small k�. Nevertheless,
we see that the self-similar solution is closely related to the
hierarchical structure of DCs described by the evolutionary
problem.

We stress that the relation between the self-similar solu-
tion and the spatially periodic solution as in Fig. 2 is not
simple. The whole structure of successive DC-like solutions,
h�x , t�, obtained via Eq. �13�, moves with the time toward the
point x=0, whereas DCs H�x�, which are born as a result of
evolution according to Eq. �1�, are stationary objects. How-
ever, the long-time evolutions of both these solutions show
the similar displacement of the gaps between DCs by higher-
order DCs. This argument becomes transparent, if we ob-
serve the self-similar solution “stroboscopically.” Let us con-
sider a self-similar solution at moments of time tk=k

2 /x0
2.

The corresponding field profile Eq. �12� describes the forma-
tion of DCs up to the kth order in the domain 0�x�x0
+�k /�tk with DC�k� centered at x=x0. As the growth of Gk
with k is superexponential, the highest-order DC dominates
the pattern, which ensures that the fractal made of the dry
spots has zero dimension.
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FIG. 3. �Color online� �a� The distance Ln between two neigh-
boring DC�n� and DC�n−1� versus the base 2ln of DC�n�. Squares and
circles are numerical results for d=8 and d=10. Dotted line is a fit,
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Eq. �15�.
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V. CONCLUSION

We have applied the concept of DCs to the evolution of a
thin film within a framework of the generalized one-
dimensional Cahn-Hilliard equation. We have shown that as
a result of instability, the thin film evolves into a hierarchical
structure of droplets. The fact that all the droplets can be
represented by the DCs of different amplitudes is a key point
in understanding the fractalization process. The knowledge
of the DC properties, as an intrinsic mode of the structure,
allows us to solve the long standing problem of fractal-like
fingering �10�. We show that the structure is indeed a fractal,
the elements of which are characterized by superexponen-
tially decreasing amplitudes and lengths. The complementary
set built of gaps between the DCs �dry spots� has zero di-
mension. Noteworthy, in contrast to widespread random frac-
tals, the revealed fractal is a regular one. In this way it is
similar to a recent example of an exact, soliton-based fractal
in nonlinear optics �16�, but with a compact basic mode.

We stress that the DC is in many ways similar to the
conservative compacton �such as dissipative solitons that
share many properties with conservative solitons�. In both
cases, an initial profile splits into a hierarchy of self-similar
objects: traveling compactions �13� or stationary DCs. In the
latter case the DCs arrange themselves forming a fractal. We
expect this property not only for a class of Cahn-Hilliard Eq.
�1� considered, but for general models possessing self-affine
DCs.

Finally, we emphasize that for a thin film, DC has the
meaning of a sessile droplet with the zero contact angle.

Physically, its nontrivial property of self-affinity, Eq. �7�, is
ensured by the existence of a flow in the droplet, cf. Ref. �4�.
This link can serve as a motivation to observe a compacton
and to test our predictions experimentally. Of course, fracta-
lization does not occur ad infinitum in a real system. In our
model, Eq. �1�, we have neglected three factors: intermolecu-
lar �e.g., van der Waals� interaction between liquid and solid,
evaporation, and gravity, which impose restrictions on the
thin-film thickness h. For instance, for water, the role of the
first two factors, where evaporation typically dominates, can
be neglected at h�hmin�10−3 cm. Gravity imposes a re-
striction from above, h�hmax�0.1 cm. As a result, for a
water layer of initial height 0.1 cm at least three generations
of droplets are expected as they fit into the range hmin�h
�hmax. This range becomes even wider, if working with a
two-layer system, as e.g., in Ref. �5�. There, evaporation is
less important and we estimate hmin�10−5–10−4 cm, which
admits one or two more generations of droplets.
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