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Colloidal particles driven across periodic optical-potential-energy landscapes
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We study the motion of colloidal particles driven by a constant force over a periodic optical potential energy
landscape. First, the average particle velocity is found as a function of the driving velocity and the wavelength of
the optical potential energy landscape. The relationship between average particle velocity and driving velocity
is found to be well described by a theoretical model treating the landscape as sinusoidal, but only at small trap
spacings. At larger trap spacings, a nonsinusoidal model for the landscape must be used. Subsequently, the critical
velocity required for a particle to move across the landscape is determined as a function of the wavelength of
the landscape. Finally, the velocity of a particle driven at a velocity far exceeding the critical driving velocity is
examined. Both of these results are again well described by the two theoretical routes for small and large trap
spacings, respectively. Brownian motion is found to have a significant effect on the critical driving velocity but a
negligible effect when the driving velocity is high.
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I. INTRODUCTION

The phenomenon of a particle traveling over a potential
energy landscape is important to the behavior of many physical
systems of scientific interest and technological importance.
This includes the diverse cases of countersliding rough
surfaces [1], the movement of adatoms on atomic surfaces
[2], and the motion of mobile rings on a poly-rotaxane [3]. Of
particular current relevance are superconductor effects, such
as direct-current-driven Josephson junctions [4,5] and charge
density waves [6]. Such systems are, however, challenging
to image [7], making microscopic scale motion difficult to
study at easily accessible temperatures and pressures. Another
well-studied case is vortex motion in type-II superconductors
[8–12]. Vortices may be directly imaged by techniques
including Lorentz microscopy [13], Bitter decoration [14],
or magneto-optical imaging [15], but direct, controllable
access to microscopic motion is not available under readily
accessible experimental conditions. Extensive work using
computer simulation has been conducted [16–18], but there is
still a requirement for model systems in which it is possible
to examine behavior in real space.

The experimental model system used in this paper is that of
Brownian particles driven across a periodic optical potential
energy landscape. Various techniques have been used to
drive colloidal systems in optical potential energy landscapes
[19–24] in order to address numerous problems from tribology
[19,20] to particle sorting [21–24]. Of note is work considering
the deflection of particles driven at an oblique angle across
two-dimensional optical potential energy landscapes, where
particle direction is dictated by the competition between the
symmetry of the landscape and the direction of the driving
force [22,24,25]. Furthermore, motion over both one- and
two-dimensional potential energy landscapes has been used
in models of friction, such as the Prandtl-Tomlinson model
[26,27] and the Frenkel-Kontorova model [27,28].
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The nonlinearities in systems driven far from equilibrium by
an external force have garnered recent interest in theory and
experiment [29–33]. Considerable attention has been given
to the problem of colloidal particles diffusing in a periodic
potential [34–36] and diffusing over threshold potentials [37].
Further, the behavior in a tilted periodic potential has been
examined, with the bias leading to transport effects [38–44]
and giant [45,46] or suppressed [47] diffusion.

In this article, we particularly focus on the critical driving
velocity on changing the optical potential energy landscape
from sinusoidal to nonsinusoidal by tuning the spacing
between the optical traps constituting the landscape. We also
study the average particle velocity well above the critical
velocity. We compare our experimental results to a simple
theoretical framework that describes the potential energy
landscape in the limit of small and large trap spacing. We
show that the Brownian motion of the particles only needs to
be taken into account close to the critical driving velocity.

The paper is organized as follows. In Sec. II, we establish a
simple theoretical model to explain the landscape-dependent
dynamics of the driven particles. The experimental methods
are outlined in Sec. III, and their results are presented and
compared to the theory in Sec. IV. Finally, we present our
conclusions in Sec. V.

II. THEORY

The following Langevin equation is used to describe the
overdamped motion of a spherical Brownian particle driven by
a constant force across a (periodic) potential energy landscape,
UT(x), (see Fig. 1) [34,48]:

ζ
dx(t)

dt
= FDC + FT(x) + ξ (t) , (1)

where the instantaneous particle velocity, v(x,t) = dx/dt ,
at position x and time t , depends on the constant (DC;
note that in this paper, DC and AC are used in analogy to
direct- and alternating-current, but refer directly to constant-
and oscillating-velocity drives rather than electrical currents)
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FIG. 1. (a) Schematic of the experimental geometry. A one-
dimensional periodic optical potential energy landscape, UT(x), is
generated by a line of overlapping optical traps created from focused
laser spots, time shared using acousto-optical deflectors, separated by
a spacing λ. A spherical colloidal particle sedimented to the bottom of
the sample cell is driven across the landscape by a constant force FDC.
(b) The optical potential energy landscape, UT(x), corresponds to a
trap spacing of λ = 3.5 μm and a laser power per trap of 0.75 mW.
The tilted “washboard” potential, U (x), for FDC/ζ = 2.25 μm s−1 is
shown in the lower panel. The symbols are the experimental data and
the solid black line a fit with sine function. The solid orange line in
the lower panel illustrates a hypothetical tilted washboard potential
corresponding to a subcritical driving force, which leads to finite
barriers in the potential.

driving force, FDC, the force from the optical potential energy
landscape, FT(x) = −∂UT/∂x, the Brownian force, ξ (t), and
the friction coefficient, ζ . The impact of thermal fluctuations
is modeled by Gaussian white noise, such that 〈ξ (t)〉 = 0 and
〈ξ (t)ξ (t ′)〉 = 2ζkBT δ(t − t ′), where kBT is thermal energy.
Thus, in the case where UT(x) represents a spatially periodic
landscape with a wavelength, λ, Eq. (1) describes the motion
of a Brownian particle in a tilted “washboard” potential,
U (x) = −xFDC + UT(x), where FDC determines the tilt (see
Fig. 1).

The relative importance of the deterministic and stochastic
parts of Eq. (1) may be quantified using the Péclet number.
We define this in our context as the ratio of the time taken

for the particle to diffuse over a distance equivalent to one
wavelength of the landscape (the “Brownian time,” τB = λ2/D

with D = kBT/ζ being the diffusion coefficient) and the time
taken for the particle to be driven over one wavelength of the
landscape, τD = λ/v, where v is the average particle velocity:

Pe = τB

τD
= ζ λ v

kBT
. (2)

The time taken for the particle to be driven over one wavelength
of the landscape, τD, results from the balance between the
driving force and the force due to the optical potential energy
landscape and thus contains the average particle velocity rather
than the driving velocity.

When Pe � 1, the effect of diffusion is negligible relative
to the driving force, but as Pe → 1, diffusion becomes more
important. To simplify the analysis of Eq. (1), we will neglect
the stochastic force term, ξ (t), for now. This approximation is
instructive and is justified because the Péclet number is much
higher than unity for most driving velocities used here. The
(deterministic) equation of motion thus becomes:

ζ
dx(t)

dt
= FDC + FT(x) . (3)

To define the periodic optical potential energy landscape,
UT(x), we assume that the landscape extends infinitely, from
trap i = −∞ to trap i = ∞, with traps separated by a spacing
λ. Each individual trap i is modelled by a Gaussian well Vi(x)
of depth V0 and stiffness k [22,24,49,50],

Vi(x) = −V0 exp

[
−k(x − λi)2

2V0

]
. (4)

We stress that although in the vicinity of the trap center,
|x − λi| � λ, Eq. (4) reduces to the conventionally used
harmonic potential, Vi(x) = k(x − λi)2/2, the harmonic ap-
proximation generally fails to properly describe the energy
landscape; see also Refs. [49,51], where the nonharmonic na-
ture of the optical potential is crucial for capturing equilibrium
and nonequilibrium pattern formation. As shown in Ref. [50],
individual potentials are additive, so the potential landscape
may be expressed as UT(x) = ∑∞

i=−∞ Vi(x), which leads to
an optical force,

FT(x) = −k

∞∑
i=−∞

(x − λi) exp

[
−k(x − λi)2

2V0

]
. (5)

In the experiments, two main observables are considered:
the average particle velocity over an integer number of
wavelengths of the landscape, v, and the critical driving
velocity, FC/ζ , required for the particle to move. First,
we consider the average particle velocity. For the periodic
landscape, the time, �t , in which the particle passes a
single wavelength of the landscape, λ, is [see Eq. (3)]:
�t = ζ

∫ λ/2
−λ/2 [FDC + FT(x)]−1dx. It therefore follows that in

the deterministic regime:

v = λ

�t
= λ

[∫ λ/2

−λ/2

ζ

FDC + FT(x)
dx

]−1

. (6)

Next, the critical driving force required to cause the particle
to overcome a maximum in the optical force is considered. By
setting dx/dt = 0 in Eq. (3), we find a stationary solution,
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x = x0, such that FDC + FT(x) = 0. This solution describes
the locked state because the particle is pinned to the periodic
landscape and shifted from one of its nearest local minima at
xmin = iλ (i = 0,±1,±2, . . . ) by δx such that x0 = xmin + δx.
The locked state exists only if the constant driving force is
small enough, FDC < FC, that there are finite barriers in the
full potential [see Fig. 1(b), orange line], with the critical force

FC = max
x

[−FT(x)] = −FT(x∗) . (7)

Here x∗ is the position of the maximum in the optical force,
defined by F ′

T(x∗) = 0, where the prime denotes the derivative
with respect to x. For FDC > FC there exist no stationary
solutions, dx/dt 
= 0. This regime corresponds to the sliding
state, meaning that the particle is sliding across the landscape
with a certain averaged speed. The transition from the locked
to sliding state occurs when FDC = FC. With FT(x) given by
Eq. (5), the critical force may be stated directly:

FC = k

∞∑
i=−∞

(x∗ − λi) exp

[
−k(x∗ − λi)2

2V0

]
. (8)

Note that in this regime FDC is greater than, but close to, FC,
implying that the Péclet number is close to 1 and diffusion is
important, as will be discussed further in Sec. II D. Equations
(6) and (8) are rigorous, but not analytically tractable, for
the full optical landscape [Eq. (5)]. We therefore make some
approximations in the description of the optical potential
energy landscape.

A. Sinusoidal landscape: Small trap spacing

Since the optical energy landscape is periodic, it may be
expressed as a Fourier series:

UT(x) = 1

2
a0 +

∞∑
m=1

[
am cos

(
2πmx

λ

)
+ bm sin

(
2πmx

λ

)]
.

The calculation of the first Fourier coefficient,
am = (2/λ)

∫ λ/2
−λ/2 UT(x) cos(2πmx/λ) dx, yields:

am = −2
√

2πV
3/2

0

λk1/2
exp

(
−2π2m2V0

λ2k

)
,

with m = 0,1,2, . . . . The second Fourier coefficient vanishes,
bm ≡ 0, because UT(x) sin (2πmx/λ) is an odd function
integrated within symmetric limits. As a result, the trapping
potential UT(x) is represented as:

UT(x) = −2
√

2πV
3/2

0

λk1/2

×
[

1

2
+

∞∑
m=1

exp

(
−2π2m2V0

λ2k

)
cos

(
2πmx

λ

)]
.

(9)

In Ref. [50] it was demonstrated that if the trap spacing
is sufficiently small, the velocity profile for a particle passing
across the periodic potential is well described by a sinusoidal
function. It is therefore asserted that for small λ, the potential
may be approximated by the leading sinusoidal term. Indeed,
as becomes evident from Eq. (9), at small λ the amplitudes

decay exponentially fast with m. For this reason, terms with
m > 1 may be neglected in Eq. (9), and the optical trapping
force follows directly:

FT(x) ≈ −4
√

2(πV0)3/2

λ2k1/2
exp

(
−2π2V0

λ2k

)
sin

(
2πx

λ

)
.

(10)

The critical driving force, FC, is found from Eq. (7).
Accordingly, solving the equation F ′

T(x∗) = 0 for FT(x) as
in Eq. (10) yields x∗ = λ/4 + iλ (where i = 0,±1,±2, . . .) so
the critical force for small trap spacing λ becomes:

FC = −FT(x∗) = 4
√

2(πV0)3/2

λ2k1/2
exp

(
−2π2V0

λ2k

)
. (11)

By taking into account Eqs. (10) and (11), the deterministic
equation of motion, Eq. (3), is reduced to an Adler equation
[52,53]:

ζ
dx(t)

dt
= FDC − FC sin

(
2πx

λ

)
, (12)

which offers a much simpler solution to the average ve-
locity, Eq. (6). The time taken for a particle to pass
one wavelength of the landscape in this case is �t =
ζ

∫ λ/2
−λ/2 [FDC − FC sin(2πx/λ)]−1 dx = ζλ(F 2

DC − F 2
C)−1/2,

leading to an average particle velocity of [54]:

v =

⎧⎪⎨
⎪⎩

0, if FDC � FC;

1

ζ

√
F 2

DC − F 2
C, if FDC > FC.

(13)

These equations will be compared to experimental results for
potential energy landscapes with small trap spacings.

B. Nearest-neighbor landscape: Large trap spacing

Now the case of widely spaced traps is considered,
by treating them as almost nonoverlapping Gaussian traps
[Eq. (4)]. An approximation is made that the local optical
potential may be described by one central trap, numbered for
simplicity by i = 0, and its two nearest neighbors, i = ±1.
Taking this approach, only terms with |i| � 1 are taken from
the full sum for the optical potential energy landscape, i.e.,
UT(x) = ∑1

i=−1 Vi(x), leading to the following expression for
the optical force:

FT(x) = −k

1∑
i=−1

(x − λi) exp

[
−k(x − λi)2

2V0

]
. (14)

This may be substituted into Eq. (6) to find the average particle
velocity numerically.

In order to calculate the critical driving force for widely
spaced traps, first the case is considered where the traps are
infinitely spaced, λ → ∞, and only a single term (i = 0)
is taken from the sum in Eq. (14). The trapping force is
then F∞

T (x) = −kx exp[−kx2/2V0], and maximizing this as
in Eq. (7) leads to the position of the maximum optical force,
x∞

∗ = √
V0/k, which in turn provides an expression for the
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critical driving force of a single trap:

F∞
C = −FT(x∞

∗ ) =
√

kV0 exp
[− 1

2

]
.

Next we take into consideration the optical potential of
the nearest-neighboring traps (i = ±1) to account for the
dependence of FC on the large but finite λ. Accordingly,
by substituting an ansatz x∗ = x∞

∗ + δx∗ into Eq. (14)
and then solving F ′

T(x∗) = 0, retaining only the lead-
ing term, we obtain the exponentially small correction
δx∗ = −√

k/V0λ
2 exp [−kλ2/2V0]. The critical force for large

λ then follows from Eq. (7):

FC = k

1∑
i=−1

(x∗ − λi) exp

[
−k(x∗ − λi)2

2V0

]
, (15)

with

x∗ =
√

V0

k
−

√
k

V0
λ2 exp

[
− kλ2

2V0

]
. (16)

These expressions for the average velocity and the critical force
will be compared to experimental measurements for periodic
optical potential energy landscapes with large trap spacings.

C. Comparing the approximations

Figure 2 shows periodic optical potential energy land-
scapes comprising 11 single Gaussian traps, with spacings
varying from 2 to 10 μm and typical trapping parameters of
k = 3.8 × 10−7 kg s−2 and V0 = 90 kBT . Note that we also
give the trap spacings in units of

√
V0/k, which is a measure

for the width of a single trap. For comparison, we additionally
show the landscapes corresponding to the sinusoidal [small
λ, as in Eq. (9) with a single term m = 1 only], and
the nearest neighbor [large λ, as in UT(x) = ∑1

i=−1 Vi(x)]
approximations. The five large panels show the full landscape
for each trap spacing, and the small panels show details of these
to highlight the comparisons between the different models.

Several features should be noted from the comparisons.
First, the height of the barrier in the landscape increases with
trap spacing, until it is equal to the depth of a single trap,
when the trap separation is very large (λ = 10 μm). At very
small trap spacing (λ = 2 μm), the barrier is on the order of
4 kBT , easily accessible by diffusion alone. However, already
at λ = 2.5 μm the barrier is 20 kBT , making diffusion from
one minimum to another unlikely. Second, it is observed
that the sinusoidal (small λ) approximation describes the full
landscape very well for 2 μm � λ � 4.5 μm. Above this,
however, both the form and depth of the potential landscape
are poorly described. Conversely, the nearest-neighbor (large
λ) approximation does not describe the landscape well below
λ = 4 μm but is a very good description when λ � 4 μm. The
small and large λ approximations therefore cover the whole
interval of required values of λ and have a small overlapping
interval, 4 μm � λ � 4.5 μm.

D. The effect of Brownian noise

So far, a deterministic Langevin equation has been used,
which is only valid at high Péclet number, Pe. Just above
the critical driving velocity, the particle velocity is very low

/(V0/k)
1/2 = 2.03 (  = 2 m)

/(V0/k)
1/2 = 2.53 (  = 2.5 m)

/(V0/k)
1/2 = 4.05 (  = 4 m)

/(V0/k)
1/2 = 5.07 (  = 5 m)

/(V0/k)
1/2 = 10.14 (  = 10 m)

FIG. 2. Comparison of theoretical approximations for the optical
potential energy landscape UT(x). ( ) Periodic landscape composed
of the sum of 11 individual Gaussian optical traps at trap spacing λ

given in μm and units of
√

V0/k, using typical trapping parameters

k = 3.8 × 10−7 kg s−2 and V0 = 90 kBT . ( ) Sinusoidal landscape:
small λ; ( ) nearest-neighbor landscape: large λ.

and Pe ∼ 1, so the stochastic force term, ξ (t), is of the same
magnitude as the driving force, FDC. In this regime, it is
therefore necessary to consider the effect of Brownian motion
on the particle velocity.

The average velocity of an overdamped Brownian particle
in a tilted periodic potential, U (x) = −xFDC + UT(x), can be
expressed as [34,54,55]

v = λkBT

ζJ

(
1 − exp

[
−FDCλ

kBT

])
(17)

with

J =
∫ λ/2

−λ/2
exp

[
−U (x)

kBT

]
dx

∫ x+λ

x

exp

[
U (x ′)
kBT

]
dx ′. (18)

Generally, for an arbitrary periodic potential UT(x), integral
(18) admits no analytic representation and Eq. (17) has to be
computed numerically. For the case of small λ, however, the
optical potential is sinusoidal (see Sec. II A) and Eq. (18) can
be explicitly integrated to yield J = λ2 exp(−πF)|IiF (FC)|2
[55]. Here, IiF (x) is the modified Bessel function of the first
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kind, and

F = FDCλ

2πkBT
; FC = FCλ

2πkBT
,

with FC taken from Eq. (11). Thus, the average velocity of a
particle driven over a landscape with small λ is

v =
(

2kBT

λζ

)
sinh(πF)

|IiF (FC)|2 . (19)

Critical driving forces are determined numerically from these
expressions, as described in Sec. III D below.

III. EXPERIMENTAL METHODS

A. Colloidal model system

The colloidal system used is composed of Dynabeads
M-270 (radius a = 1.5 μm), in 20% EtOHaq, held in a quartz
glass cell (Hellma) with internal dimensions of 9 mm ×
20 mm × 200 μm. After filling we wait for sufficient time
for residual flows to be absent. The particles are much more
dense than the solvent, so they sediment into a single layer
near the lower wall of the glass sample cell. The friction
coefficient, ζ , in the absence of any optical landscape is found
from diffusion to be ζ = 9.19 × 10−8 kg s−1, which is slightly
higher than would be expected from Stokes friction alone
(ζStokes = 6πηa, with η the viscosity), due to the proximity
of the wall. Particle concentration is low, such that only a
single particle is visible in the field of view.

B. Experimental setup and parameters

The experimental setup consists of an infrared (1064-nm)
laser, controlled using a pair of perpendicular acousto-optical
deflectors and focused using a 50×, NA = 0.55 microscope
objective [50]. One-dimensional periodic optical landscapes,
with trap spacings 2.5 μm � λ � 10 μm, are generated in
Aresis Tweez software, controlled using a LABVIEW interface.
The traps are time shared at 5 kHz such that on the time scale of
the particles (with a Brownian time of ∼50 s and a driven time
of at least ∼1/3 s per trap spacing), the traps form a constant
potential energy landscape.

The laser power and the total number of traps are held
constant throughout the experiments, so the laser power
per trap (and hence the trapping parameters k and V0)
are consistent. A laser power of 350 mW is set, and 46
traps are used, corresponding to ∼0.75 mW per trap at the
sample position. This gives typical trapping parameters for
trap stiffness, k = 3.8 × 10−7 kg s−2, and trap strength,
V0 = 90 kBT . The particle is forced closer to the wall by
the optical potential energy landscape, thus increasing the
friction over the value quoted above. In order to account for
this difference, we measured the friction coefficient felt by a
particle in a single trap with the parameters described here
and found a value of ζ = 1.07 × 10−7 kg s−1, a difference of
around 10% relative to the case where the optical landscape
is absent. As this variation is much less than the variation in
the velocity due to the optical landscape, this effect does not
significantly affect our measurements. The number of traps
which fit in the field of view changes with trap spacing, so
excess traps are positioned at the edges of the field of view, in

lines parallel to the experimental landscape. These extra traps
are sufficiently far away as to not influence the experiment and
have the added advantage of catching extra particles which
diffuse into the field of view.

The driving force is provided by a PI-542.2CD piezo
stage, controlled using the LABVIEW interface, moving at
0.05 μm s−1 � FDC/ζ � 10 μm s−1.

C. Average velocity experiments

Images are focused onto a camera (Ximea MQ013MG-E2)
using a 40×, NA = 0.50 microscope objective. Experimental
parameters are set automatically in the LABVIEW interface,
and six repeats are made at each driving velocity for each trap
spacing. Particle position is recorded live at 40 Hz from the
camera image. Average velocity is found by linearly fitting to
a graph of x(t) over an integer number of wavelengths of the
landscape. Instantaneous velocity is found as the numerical
derivative of the x(t) data. The measured average properties
have typically been averaged over six repeats, and the error
bars correspond to the standard deviation of the repeats.

D. Critical velocity experiments

The driving velocity is iterated to find the critical driving
velocity at which the particle starts to slide across the optical
potential energy landscape, with a maximum resolution of
0.05 μm s−1, which constitutes the experimental uncertainty.
A particle is said to be pinned if it does not move after the stage
has moved 100 μm, or 3 min has elapsed, whichever happens
first.

To determine the critical driving velocity from Eqs. (17)
(large λ) and (19) (small λ), a numerical search is conducted
to find the driving velocity at which the particle average
velocity first exceeds a cut-off, set to the maximum resolution
of the experiments (0.05 μm s−1). Thus, at each trap spacing
(with increments of �λ = 0.1 μm), the driving velocity is
increased until v is found to exceed 0.05 μm s−1, and that
driving velocity is then defined as the critical driving velocity.
The results of these numerical experiments are presented and
compared to experimental results in Sec. IV.

IV. RESULTS AND DISCUSSION

Results are presented from experiments in which a colloidal
particle was driven across a periodic optical potential energy
landscape. Figure 3(a) shows four particle trajectories with the
same average velocity, but each driven with different driving
velocities, FDC/ζ , across a periodic optical potential energy
landscape with a different wavelength, λ. The plateaus are
spaced by the trap spacing as they are caused by the particle
sitting in a trap for a period of time. The distribution of the
waiting times between “hops” from one trap to the next is
a result of the combined effect of the external drive and
thermal fluctuations and does not reflect the uniformity of
the underlying optical potential energy landscape.

Figure 3(b) shows the particle velocities, v(t), obtained
from the four trajectories in Fig. 3(a). When the particle is
delayed in the vicinity of a trap center, its velocity is close to
zero. When a particle hops to the next minimum in the optical
landscape, there is a spike in the velocity. The irregularity
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(a) (b) (c)

FIG. 3. Trajectories of Brownian particles driven over a periodic potential. (a) Individual particle trajectories for cases with differing trap
spacings and driving velocities but the same average velocity. Lines are spaced in t for ease of comparison. (b) Particle velocity as a function
of time for the four trajectories in (a). (c) Particle velocity as a function of position for the four trajectories in (a). The dashed line in the right
panel is at v = 2.7 μm s−1.

with which the particle hops to another trap illustrates the
importance of thermal fluctuations at relatively low driving
velocities.

Combining the y axes of Figs. 3(a) and 3(b) leads to a
measure of velocity as a function of position. Figure 3(c) shows
v(x) for the four cases shown in the previous two panels.
The regions of minimal velocity are now evenly spaced by
λ, as expected from the periodic potential energy landscape,
and the regions where the particle is almost stationary are of
roughly the same size. A numerical integration of v(x), which
is directly proportional to FT(x), indeed yields a uniform and
periodic UT(x), as shown for λ = 3.5 μm in Fig. 1(b). In the
case of λ = 10 μm, when the traps are widely spaced, the
particles regain the driving velocity (dashed line) after they
have escaped the influence of each individual trap.

A. Average particle velocity

The first main observable from the experiments is the
average velocity of a particle traveling over many wavelengths
of the periodic optical potential energy landscape. Figure 4
shows the dependence of the average particle velocity, v, on
the driving velocity, FDC/ζ , at a trap spacing of λ = 3.5 μm.
At low driving velocities, the particle does not move across
the landscape. The driving force then reaches a critical value,
FDC = FC, after which the average particle velocity rises
sharply from zero, before the gradient decreases, and ends
roughly collinear to the line for the case of no traps. The
average velocity will always be lower than the case of no
traps, due to the time the particle is delayed by each trap (see
Fig. 3). The experimental data are fitted with the deterministic
expression for the average velocity for a particle driven over a
sinusoidal potential energy landscape, ζv =

√
F 2

DC − F 2
C, see

Eq. (13), which describes the data well and gives a critical
driving velocity of 1.8 μm s−1, very similar to the direct
measurement using the approach described in Sec. III D.

Next, the dependence of the average particle velocity on the
driving velocity for different trap spacing is considered. Figure
5 shows the mean particle velocity as a function of driving
velocity for six trap spacings from λ = 2.5 μm to λ = 10 μm.
All of the experimental lines show the same shape but remain
below the no trap line. The critical driving velocity increases
with λ, which is discussed further in Sec. IV B. Each data set

is fitted with Eq. (13), which describes the average velocity
of a particle driven over a sinusoidal optical potential energy
landscape in the absence of noise. This fit is accurate up to
λ = 4 μm but fits less well at λ = 10 μm. This is expected,
as the sinusoidal nature of the potential energy landscape only
holds for small trap spacing (see Fig. 2). At higher driving
velocity, there is a decrease in average velocity as trap spacing
increases. This is due to the time the particle is delayed by each
trap, which increases with trap spacing due to the increase in
the critical force, until a plateau at around λ = 4 μm, when
the traps no longer overlap (see Fig. 7, described in Sec. IV C).

The behavior at low driving velocity is less well described
by the deterministic equation. The inset in Fig. 5 shows the
lower parts of the curves for λ = 2.5 μm to λ = 4 μm, with
the previously described fits and numerical solutions to the
stochastic Langevin equation, Eq. (19), for a sinusoidal optical
potential energy landscape. The effect of Brownian noise is
only noticeable at very low average velocity, when Pe ∼ 1.

FIG. 4. Average particle velocity against driving velocity for
λ = 3.5 μm, compared to the case of no traps. � experimental data
(error bars: standard deviation of repeats). ( ) Fit corresponding to
a sinusoidal optical potential energy landscape, ζv =

√
F 2

DC − F 2
C,

with fitting parameter FC. ( ) No traps.
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FIG. 5. Average particle velocity against driving velocity for
varying trap spacing. ( , , , , , ) Experimental data (error bars:

standard deviation of repeats). ( ) Fit corresponding to a sinusoidal

optical potential energy landscape, ζv =
√

F 2
DC − F 2

C. ( ) No
traps. Inset: The effect of Brownian noise on particle velocity close to
the critical driving velocity. ( ) Numerical solutions for a Brownian
particle driven over a sinusoidal optical potential energy landscape,
Eq. (19).

This manifests as a small deviation from the deterministic
velocity. While the deterministic velocity abruptly goes to zero
at the critical driving velocity, the fits to Eq. (19) show a clear
“smoothing” of the average velocity upon approaching the crit-
ical driving velocity, in agreement with the experimental data.

B. Critical driving velocity

Now the dependence of the critical driving velocity on
the trap spacing is considered in more detail and compared
to theoretical predictions excluding and including Brownian
noise. The experimental data shown in Fig. 6 show the critical
driving velocity, obtained as described in Sec. III D, as a
function of the trap spacing. It is observed that at small trap
spacings there is essentially no critical driving velocity, as
the height of the barriers between the minima in the periodic
optical potential energy landscape are on the order of a few
kBT , and the particle is able to diffuse across the landscape (see
Fig. 2). At λ ≈ 2 μm, the critical driving velocity increases
sharply, until it plateaus at λ ≈ 5 μm, with a value of
FC/ζ = 2.3 μm s−1, when the critical driving force becomes
the force required to escape a single isolated Gaussian trap.

Four theoretical predictions are plotted on Fig. 6. First, the
dotted line and the dashed line show the deterministic solutions
for the small λ case, Eq. (11), and the large λ case, Eq. (15),
respectively. The deterministic expression for a sinusoidal
landscape (small λ) is effective from λ = 0 to λ ≈ 4 μm,
while the deterministic expression for the nearest-neighbor
landscape (large λ) works better for large trap spacings. These
deterministic theoretical predictions generally follow the same
trend as the experimental data, though the critical driving
velocity increases from zero at too-low a trap spacing, and
the plateau at large λ lies at too high a value of FC/ζ . This is
because around the critical driving velocity the Péclet number
is on the order of unity, and the experimental FC/ζ will
be lowered due to the effect of Brownian noise, hence the

FIG. 6. Critical driving velocity as a function of trap spacing.
(◦) Experimental data (error bars: experimental uncertainty). Lines:
Theoretical predictions. Sinusoidal potential energy landscape: ( )
deterministic force, Eq. (11); ( ) stochastic force, according to
Eq. (19). Nearest-neighbor landscape: ( ) deterministic force,
Eq. (15); ( ) stochastic force, according to Eq. (17).

deterministic predictions will overestimate the experimental
critical velocity.

The numerical solutions including Brownian noise for the
small λ case [Eq. (19)] and the large λ case [Eq. (17)] are
also shown in Fig. 6. These predictions show the same trends
as the deterministic lines but have generally lower values.
The numerical results including noise compare very favorably
with the experimental results, with two caveats resulting from
the fact that the meaning of the experimental and numerical
critical velocities is not identical (see Sec. III D). First, whereas
the experimentally measured critical driving velocity is that
required for a particle to escape a single minimum in the
landscape within a reasonable period of time, the numerical
method gives a critical driving velocity equal to the DC
driving velocity required to achieve a certain threshold average
velocity (set to 0.05 μm s−1, see Sec. III D). Therefore, at very
small trap spacings, where the barriers of the landscape are on
the order of kBT , the presence of noise negates these barriers
and the average velocity is approximately equal to the applied
driving velocity. The second caveat applies at large λ, where a
small decrease in the numerically determined critical velocity
is observed with increasing λ as the impact of the traps on the
average velocity becomes less pronounced compared to the
space between them.

C. Driving far above the critical driving velocity

When the particle is driven by a velocity well in excess of
the critical driving velocity, the effect of the trap spacing on
the average particle velocity is a result of the amount of time
the particle is delayed by each trap (see Fig. 5). Figure 7 shows
this effect more clearly by plotting the average particle velocity
against the trap spacing for FDC � FC. The experimental data
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FIG. 7. Effect of the trap spacing on the average velocity of
a particle at a driving velocity of 5.8 μm s−1. (◦) Experimental
data (error bars: standard deviation of repeats). Sinusoidal potential
energy landscape: ( ) deterministic force, Eq. (13); (—) stochastic

force, Eq. (19). Nearest-neighbor landscape: (- - -) deterministic force,

Eq. (6); ( ) stochastic force, Eq. (17).

show that velocity markedly decreases between λ = 2 μm and
λ = 4 μm before gradually increasing again.

Four theoretical predictions are plotted on Fig. 7. The
deterministic solutions for the small λ case, Eq. (13), and the
large λ case, Eq. (6), are shown along with the noisy solutions
for small λ, Eq. (19), and large λ, Eq. (17), with FT(x) from
Eq. (14). Here there is no difference between the predictions
from the deterministic and noisy cases, which is consistent
with the driving velocities in this regime being far beyond the
critical velocity, so the Péclet number is large and Brownian
noise is thus unimportant. Again the small λ approximation
works up to λ ≈ 4 μm, and the large λ approximation works
above λ ≈ 2.5 μm, consistent with Fig. 6. The initial rapid
decrease in v as λ increases is due to the increased time the
particle is delayed by each trap, due to the increased optical
potential barrier. As the traps no longer overlap for larger
λ, v then increases, and the time spent between traps takes
over, bringing the average velocity back up towards the driving
velocity.

V. CONCLUSIONS

We have studied the behavior of Brownian particles driven
by a constant force through quasi-one-dimensional periodic
optical potential energy landscapes. First, we have seen a
critical driving velocity, below which the particle is pinned to
the potential energy landscape. We have considered potential
energy landscapes with a range of trap spacings, and the critical
driving velocity has been found to depend on the wavelength.
At small trap spacings, the critical driving velocity is very low,
and it then increases, reaching a plateau when the individual
traps are fully separated. Above the critical driving velocity
the particle slides, with an average velocity that increases
nonlinearly with the driving velocity. The particle velocity
is also found to depend on the landscape wavelength when
the driving velocity is far in excess of the critical driving
velocity. At small trap spacings, increasing the landscape
wavelength reduces the average particle velocity, as each
barrier in the optical potential becomes higher and delays the
particle for longer. At larger trap spacings, average particle
velocity increases again, as the particle velocity is determined
by the time spent between fully separated traps.

We have made theoretical predictions corresponding to
two different approximations for the optical potential energy
landscape. When trap spacing is small the landscape is treated
as sinusoidal, and when trap spacing is large it is treated as a
sum of three individual Gaussian traps. These approximations
have been broadened to include the effect of Brownian noise.
The trend for the average particle velocity as a function of
driving velocity and trap spacing has been shown to very
accurately match the theoretical prediction from the small trap
spacing approximation, up to a limiting landscape wavelength.
Including the effect of Brownian noise allows more realistic
prediction of the average particle velocity close to the critical
driving velocity. Critical driving velocities themselves are also
found to agree well with theoretical predictions, especially
once the effect of Brownian noise has been taken into account.
At higher driving forces, however, it is shown that the
deterministic solutions alone provide an adequate description.
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