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MAGNETIC FIELD ABOVE THE SUBSTRATE

The total magnetic field H above the bubble-pattern
ferrite garnet film (FGF) is determined by the externally
applied time-alternating field Hext and the stray field of
the substrate Hsub, as given by their superposition,

H(r, t) = Hext(t) + Hsub(r, t). (S1)

The ac component of the field has elliptic polarization,

Hext(t) ≡ (−Hx sinωt, 0, Hz cosωt), (S2)

with Hx = H0

√
1 + β, Hz = H0

√
1− β and the elliptic-

ity β. Here, H0 and ω are the amplitude and angular
frequency of modulation.

The main difficulty is the evaluation of Hsub. Al-
though the exact solution is available, it is too cumber-
some. To gain qualitative physical insights, we therefore
resort to a much simpler approximation.

Exact solution

To calculate Hsub exactly, we sum up the field from
a triangular lattice with period a of magnetic bubbles
with lattice vectors p = na− + ma+, with a± :=
(
√

3a/2,±a/2), and n, m integers. Each bubble is con-
sidered as a cylindrical uniformly magnetized ferromag-
netic domain [1], generating a stray field above its sur-
face, which can be written in cylindrical (r, z) coordinates
as h = erhr(r, z, t) + ezhz(r, z, t), where

hr =
Ms

π

√
D

2r
Q 1

2

(
r2 +D2/4 + z2

rD

)
, (S3a)

hz = Ms −
Ms

π
[κ−Π(n+|K) + κ+Π(n−|K)] . (S3b)

Here, Ms is the saturation magnetization, er = (x −
px)x̂/r + (y − py)ŷ/r, r =

√
(x− px)2 + (y − py)2, Qn

is the Legendre function of the second kind and or-
der n, Π(n,m) gives the complete elliptic integral of
the third kind, K =

√
2rD/[z2 + (r +D/2)2]; D(t) =

2a
√

(Hext
z (t)/Ms + 1) sin (π/3)/2π, n± = 2r/(r ±

√
r2 + z2), and κ± = (

√
r2 + z2 ± D/2)(

√
r2 + z2 ±

r)/(z
√

(r +D/2)2 + z2).
The field generated by such array is given by Hb =∑
n,m hnm with the indexes n and m over the entire tri-

angular lattice. The substrate field is obtained as the su-
perposition Hsub(r) := Hb−Hf, where Hf is the contri-
bution due to the oppositely magnetized film calculated
for a cylindrical domain covering the entire sample area.
Note that solution (S3) can be alternatively expressed
in integral form [2] rather than using the Legendre func-
tions and elliptic integrals, which are formally equivalent
representations.

Simplified solution

The realistic distribution of magnetization M(x, y) is
extremely sharp, leading to a highly combersome solution
for the substratre field [see Eq. (S3) and eventual expres-
sion for Hsub(r)] and impeeding analytic treatment. A
much more tractable solution is obtained by consider-
ing a simplified “smooth and soft” hexagonal distribu-
tion M(x, y) = Ms

∑2
i=0 cos(ki ·r) with the wave vectors

k0 = kx̂, k1 = k(x̂ +
√

3ŷ)/2, k2 = k(x̂ −
√

3ŷ)/2 and
k = 4π/(

√
3a). The stray field Hsub(r) above the FGF

(z > 0) satisfies the Laplace equation, ∇2Hsub = 0,
along with the periodicity conditions and the require-
ment Hsub

z (x, y, z → 0) = M(x, y). Solving this bound-
ary value problem yields

Hsub(x, y, z) = Ms e−kz hsub(x, y) (S4)

with the field components hsubx (r) =
∑2

i=0 ai sin(ki · r),

hsuby (r) =
∑2

i=0 bi sin(ki · r), hsubz (r) =
∑2

i=0 cos(ki · r),

where a0 = 1, a1 = a2 = 1/2, b0 = 0, b1 = −b2 =
√

3/2.
At a given elevation z above the FGF the total field is

H(r, t) = Hext(t) + Hsub(r)

= H0[hext(t) + αhsub(x, y)], (S5)

where Hsub/Hext ' α := Ms e−kz/H0. Similarly to the
stripe-patterned FGF setup [3], the elevation of the par-
ticle above the film surface z ' a. As a result, for the
typical experimental conditions 0 < α < 1.
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FIG. S1. Evolution over a time period of the single particle potential (S6) from the exact model based on solution (S3) (top),
and the approximate potential from the simplified model, Eq. (S7).

SIMPLIFIED MAGNETIC LANDSCAPE AND
DIPOLAR INTERACTIONS

Here we utilize an approximate analytic solution based
on Eq. (S4) to put forward a simplified theoretical model.
It helps guessing physical mechanisms underlying direc-
tional locking observed in the experiment. In particular,
the model explains the mean drift of particles and sug-
gests what interaction governs the assembly and aligne-
ment of particles along the crystallographic directions.
We note that our model neglects hydrodynamic interac-
tions suggesting that magnetic forces dominate the dy-
namics of the system.

Dynamics of individual particles

A spherical paramagnetic particle of volume V and ef-
fective magnetic susceptibility χ polarizes in the mag-
netic field H, acquiring an induced magnetic moment
m = χVH. The energy of interaction of the induced
dipole with the field above the substrate reads

Us(r, t) = −1

2
µ0(m ·H) = −1

2
µ0χVH2(r, t), (S6)

where µ0 = 4π × 10−7 H m−1 is the magnetic perme-
ability of free space. If α in Eq. (S5) is small enough,
potential (S6) can be approximated as

Us(x, y, t) ≈ −U0 h
ext(t) · hsub(x, y) (S7)

with the characteristic energy U0 = µ0χV H0Mse
−kz.

Comparison of the exact and approximate potentials is
given in Figs. S1 and S2 (with the frequency f = ω/(2π)),
which manifest their qualitative similarity. Note that
the potentials display the same morphology in a wide
range of β, where the modulation remains essentially el-
liptic. The typical picture of individual Brownian motion

in potential (S7) reflects the mean speed observed in the
experiment, see Fig. S3. The value of ellipticity is set
to β = −1/3 and the period of lattice is chosen to be
close to the experimental value, a = 3.2µm. The charac-
teristic frequency f0 (∝ U0) ≈ 4.2 Hz defines the transi-
tion from the running to sliding dynamic states and the
free diffusivity D0 softens the transition. For the mean
drift along the y direction, the modulation field as in
Eq. (S2) is to be replaced with the expression Hext(t) =
(0,−Hy sinωt,Hz cosωt) with Hy = Hx = H0

√
1 + β.

FIG. S2. Snapshots of the energy landscape from the exact
model based on solution (S3) (top) and from the simplified
model, Eq. (S7) (bottom) and calculated for two instant of
times. The blue arrows in the two images at the left indicate
the minima along the −1− 1 direction which disappear after
t = 0.5/f .
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FIG. S3. Mean speeds of a Brownian particle 〈vx〉 (top) and
〈vy〉 (bottom) corresponding to potential (S7) for the modula-
tion in the (x, z)- and (y, z)-planes, respectively. Parameters
are β = −1/3, λ = 3.2µm, ω0 = 2πf0 = 26.5 rad/s and
D0 = 0.05µm2/s.

Magnetic interaction of particles

Magnetic interaction of dipoles m1 and m2 at posi-
tions r1 and r2 are described by the pairwise dipolar
potential Ud(r1, r2) = µ0[(m1 ·m2) − 3(r̂12 ·m1)(r̂12 ·
m2)]/(4πr312), where r12 = r1 − r2, r12 = |r12|, and
r̂12 = r12/r12. For induced dipoles, this leads us to

Ud(r1, r2) ∝ (H1 ·H2)− 3(r̂12 ·H1)(r̂12 ·H2)

r312
(S8)

with H1 = H(r1, t) and H2 = H(r2, t) given by
Eq. (S5). For small α, the leading term in Eq. (S5) reads
H(r, t) ≈ Hext(t) = H0h

ext(t). Applied to Eq. (S8) it
generally describes assembly of particles into chains in
the plane of modulation, i.e. along the x-direction, see
Eqs. (34) and (35) in Ref. [4]. At β = −1/3, however,
the particles become noninteracting along the x-direction
and weakly repulsive in all other directions.

To look for any non vanishing effect, we account for
the next term in Eq. (S5), leading to cross terms of or-
der O(α) in potential (S8). Further, motivated by ex-
perimental observation, we consider a pair of particles

separated by the lattice constant a and aligned along a
crystallographic axis, a± = (

√
3a/2,±a/2). Thus, by

putting the coordinates of particles as x2 = x1 ±
√

3a/2
and y2 = y1 ± a/2, where any of four sign combinations
are possible, Eq. (S8) is simplified to

Ud(r1) ∝ Fxx(1− 3 x̂212) + Fzz − 3Fxy x̂12 ŷ12
r312

, (S9)

where Fxx = 2Hext
x (t)Hsub

x (r1), Fxy = 2Hext
x (t)Hsub

y (r1),

Fzz = 2Hext
z (t)Hsub

z (r1), x̂12 = (x1 − x2)/r12 = ±
√

3/2,
ŷ12 = (y1 − y2)/r12 = ±1/2, and r12 = a.

The structure of potential (S9) allows us to draw few
important conclusions. First, its clear hexagonal struc-
ture [e.g., comparison at t = 0 with Eq. (S7) shows that
Ud ∝ Us] indicates that dipolar interactions exhibit at-
tractions along the crystallographic directions and evolve
in time. Together with individual propulsion, these in-
teractions suggest the formation of chains aligned and
running along the crystallographic axes (

√
3a/2,±a/2),

as observed in the experiment. Second, similarly to the
mechanism of propulsion, these dipolar interactions are
caused by the interplay of the fields of substrate and ex-
ternal modulation, which is qualitatively different to the
simple mechanism based on the modulation field [4].

SUPPORTING VIDEOS

With the article we provide 2 video clips as supple-
ments of the figures in the main text.

• Video1(.WMF): Dynamics of a dilute monolayer
of paramagnetic colloidal particles driven to the
left above magnetic bubble lattice characterized
by a lattice constant a = 3.5µm. The rotating
magnetic field has amplitudes Hx = 600 Am−1,
Hz = 840 Am−1, which give rise to H0 = 720 Am−1

and β = −1/3, and the angular frequency is ω =
25.1 rads−1. The bubbles are visible due to the po-
lar Faraday effect.

• Video2(.WMF): Paramagnetic colloids driven
through a magnetic bubble lattice under similar
field parameters as for the previous movie. Here
the magnetic bubbles are not visible due to the ab-
sence of polarization elements on the optical path.
The particle density ρ increases as time proceeds,
and the system transits from a liquid-like phase
where individual particles display random move-
ment along the transversal direction, to a direc-
tionally locked phase composed by trains of parti-
cles sliding along one of the two crystallographic
axes −10 and 0− 1. Towards the end of the video,
at high density, the particles form a closely packed
monolayer that slides linearly across the lattice and
the directional locking is lost.
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FIG. S4. (a-d) Experimental images with superimposed particle trajectories for four normalized densities: (a) ρ = 0.02, (b)
ρ = 0.23, (c) ρ = 0.16 and (d) ρ = 0.58. (e-h) Corresponding polarization microscope images showing the underlying magnetic
lattice. Point defects in form of double magnetic domains or deformed bubbles are indicated by blue arrows. (i-l) Analysis of
the mean cluster size 〈S〉 and degree of clustering δ calculated for the different experiments.
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