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Steady Stokes Flow with Long-Range Correlations, Fractal Fourier Spectrum,
and Anomalous Transport
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We consider viscous two-dimensional steady flows of incompressible fluids past doubly periodic
arrays of solid obstacles. In a class of such flows, the autocorrelations for the Lagrangian observables
decay in accordance with the power law, and the Fourier spectrum is neither discrete nor absolutely
continuous. We demonstrate that spreading of the droplet of tracers in such flows is anomalously fast.
Since the flow is equivalent to the integrable Hamiltonian system with 1 degree of freedom, this
provides an example of integrable dynamics with long-range correlations, fractal power spectrum, and
anomalous transport properties.
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when the component of the flow along the cylinder axes is
absent. This geometry is typical, e.g., for the cooling

variables, and � plays the role of energy. In terms of �
Eq. (1) turns into the biharmonic equation ��� � 0.
The last two decades have witnessed growing interest
in theoretical and applied aspects of chaotic advection in
steady or temporally periodic velocity fields of hydro-
dynamical flows [1,2]. The contrast between the trivial
behavior of the field and the complicated dynamics of
individual fluid particle is due to the fact that the field is
usually described by means of Eulerian variables in the
laboratory reference frame, whereas for the fluid particle
the Lagrangian description is more appropriate, since its
reference frame is carried by the flow. An Eulerian ob-
server performs measurements in the fixed point of the
physical space and registers a steady or periodic process.
For a Lagrangian observer, physical space turns into
phase space, streamlines become phase trajectories, and
a ‘‘measuring device’’ is advected along these trajectories
and explores different regions of the flow pattern.
Therefore the motion of the fluid particle can be chaotic
in spite of the time-independent state at any given place.
A consequence of this dynamics is intensive stirring and
mixing. Examples of chaotic advection are widespread,
from microscopical flows of nanotechnology and cellular
biology to large-scale phenomena in astrophysics and
geophysics; for a list of references see a recent review [3].

To exhibit Lagrangian chaos, a flow of incompressible
fluid must be three dimensional, time dependent, or both.
In two-dimensional setup, there is no place for exponen-
tial divergence of streamlines, and in conventional ex-
amples the motion of a typical fluid particle is periodic
and well correlated. Below, we discuss a class of steady
two-dimensional flows for which the correlations decay
and the power spectra are fractal.

Consider a slow steady flow of a viscous incompressible
fluid past the square lattice of parallel solid circular
cylinders. We restrict ourselves to the ‘‘transverse’’ case
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flows past the rods of the reactor; on the other hand, it
serves as the starting point for the analysis of fluid
motions in composite and porous media. Usual assump-
tions of the creeping flow allow one to neglect nonlinear
terms in the Navier-Stokes equations and reduce them to
the Stokes equations for the velocity V and pressure p:

�rp� ��V � 0; divV � 0; (1)

where � is the viscosity of the fluid. Boundary conditions
enforce periodicity on the borders of the elemental cell of
the lattice, as well as vanishing velocity on the border @�
of the cylinder �. If the axes x and y are aligned along the
axes of the lattice, and the cell size is chosen as the length
unit, the boundary conditions are

V�0; y� � V�1; y�; V�x; 0� � V�x; 1�; Vj@� � 0:

(2)

Formulation of the boundary problem is completed by
prescribing the components of mean flow along both axes:

Z 1

0
Vxdy � 
;

Z 1

0
Vydx � �: (3)

Equations (1)–(3) were treated in terms of periodic
Green’s function by Hasimoto who evaluated the drag
on a cylinder [4]; the fundamental solution was expressed
in terms of series containing elliptic functions [5].
Permeability of the array of cylinders was estimated in
[6]. As every two-dimensional flow of incompressible
fluid, the problem can be cast into a Hamiltonian frame
by introducing the stream function ��x; y�: Vx � @�=@y
and Vy � �@�=@x. Motions along the streamlines are
governed by the integrable Hamiltonian system with
1 degree of freedom in which Vx and Vy are canonical
 2002 The American Physical Society 244101-1
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No-slip boundary conditions require @�=@xj@� � @�=
@yj@� � 0, whereas conditions for mean flow and perio-
dicity are ensured by putting ��x; y� � 
y� �x�
	�x; y� where 	 has period 1 in both arguments.

We solved the biharmonic equation numerically, im-
posing periodic boundary conditions upon a polar grid
with 600� 1200 nodes; for tracer dynamics, the 2nd
order interpolation scheme was used. Figure 1(a) presents
the flow pattern with inclination 
=� � �

���
5

p
� 1�=2 and

radius of the cylinder 1=6.
Since the flow is steady, in every point of the laboratory

reference frame the values of velocity and pressure are
time independent. The picture looks different in a frame
attached to a neutral tracer carried by the flow. We char-
acterize it in terms of normalized autocorrelation, defined
for a time-dependent observable �t� as

C��� �
h�t��t� ��i � h�t�i2

h2�t�i � h�t�i2
; (4)

where averaging over t is performed. Since autocorrela-
tion is the Fourier transform of the power spectrum (the
Wiener-Khinchin theorem), its properties are related to
the nature of the Fourier spectral measure. For periodic
and quasiperiodic dynamics, C��� displays series of
peaks with unit or asymptotically unit amplitude at ar-
bitrarily large values of �; this corresponds to the discrete
(pure-point) power spectrum. In case of chaotic behavior
(impossible in two-dimensional dynamics) autocor-
relation decays exponentially, and the power spectrum
is absolutely continuous with respect to the Lebesgue
measure.

Qualitative features of the autocorrelation are indepen-
dent of the choice of a generic observable. We take the
absolute value jVj of the velocity and measure it for the
fluid particle moving along the streamline of the flow.
The plot of C��� is presented in Fig. 2(a). The largest
plotted values of � correspond to the passage through, on
the average, 3� 104 lattice cells in the y direction. We
observe that autocorrelation decays, in spite of the or-
dered laminar structure of the flow. The decay is slower
than exponential; as seen in Fig. 2(b), the highest peaks
of C��� which form a log-periodic lattice, decrease in
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FIG. 1. (a) Flow pattern with 
=� � �
���
5

p
� 1�=2;

(b) divergence of passage time for streamlines near the cylin-
der. Crosses: numerical values; straight line: power law
�jx� x0j

�1=2.
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accordance with the power law C��� � ��0:28. Power-law
decay of autocorrelation (‘‘long-range correlations’’) is
abundant in physics of critical and nearly critical states
[7] and has been recovered in many natural phenomena,
from DNA sequences [8–10] to atmospheric variability
[11]. However, to our knowledge, such decay has been
reported neither in the context of steady two-dimensional
flows nor in a more general context of integrable autono-
mous Hamiltonian systems with 1 degree of freedom,
where the correlations are usually not supposed to decay
at all. Our results show that integrability does not guar-
antee against the decay of correlations.

Properties of autocorrelation characterize both quali-
tatively and quantitatively the set which supports the
Fourier spectral measure. A useful tool is the integrated
autocorrelation Cint�t� � t�1

R
t
0 C���

2d�: if Cint�t� van-
ishes in the limit t ! 1, the power spectrum does not
include the discrete component. Furthermore, Cint�t� �
t�D2 where D2 is the correlation dimension of the spectral
measure [12]. The decay of Cint�t� over several orders of
magnitude in Fig. 2(c) indicates the absence of the dis-
crete component in the Fourier spectrum of the tracer
velocity. Estimation of the curve slope yields D2 � 0:82;
hence, the set which supports spectral measure is fractal.
Apparently, in this intermediate situation between chaos
and order the Fourier spectrum of velocity is singular
continuous: neither discrete nor absolutely continuous.

Origin of this unconventional state can be understood
if the viscous flow is viewed as a dynamical system.
From this point of view, Eqs. (1)–(3) describe the area-
preserving vector field _xx � Vx�x; y�, _yy � Vy�x; y� on a
2-torus whose rotation number � equals 
=�. Pecu-
liarity of this field is its identical vanishing on the cylin-
der border @�: no-slip boundary conditions turn each
point of @� into the fixed point. Below, we deal with
irrational values of �. Most of the existing work on
dynamics on 2-tori, starting with the classical paper in
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FIG. 2. Autocorrelation and integrated autocorrelation.
(a)–(c) Stokes flow (1)–(3); (d)–(f) special flow (5). Dashed
lines: power laws.
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[13], refers to fields without fixed points. Consider a map-
ping of a line transversal to the flow (e.g., the boundary
y � 0 of the square) onto itself. In the absence of fixed
points, the ‘‘return time’’ �ret�x� needed for one iteration
of this mapping (a turn around the torus) is bounded. As a
consequence, dynamics of the flow is adequately repro-
duced by the circle map x ! �x� ��mod1. For a passive
tracer in such quasiperiodic flow, the Fourier spectrum is
discrete, and the autocorrelation does not decay.

The presence of stagnation points in which the velocity
vanishes qualitatively changes dynamics. In this situation
�ret�x� as a function of x diverges, and equivalence with
the Poincaré map is invalidated: the flow with continuous
power spectrum can induce the map with purely discrete
spectrum [14]. Near the streamline which leads into a
generic isolated stagnation point, the return time has a
logarithmic singularity. Such stagnation points exist in
forced viscous flows with doubly periodic arrays of steady
vortices, and the Fourier spectra in these flows are fractal
[15]. Logarithmic singularities of return times are too
weak to make the flow mixing [16]. Stronger, powerlike
singularities can produce mixing [17]; however, for iso-
lated stagnation points such singularities occur only in
degenerate, structurally unstable cases.

In the flow pattern of (1)–(3) the whole curve @� can be
viewed as a structurally stable family of stagnation
points. Fluid particles exhibit the strong slowdown during
their motion along the edge of the obstacle. The collective
effect of this continuum of equilibria manifests itself
in the power-law divergence of return time: let �x0; 0�
lie on the streamline which separates the particle paths
passing the obstacle ‘‘on the left’’ from the paths passing
‘‘on the right,’’ then �ret�x� � 1=

�����������������
jx� x0j

p
[Fig. 1(b)]. The

existence of this singularity ensures the decay of corre-
lations and creates a continuous component in the power
spectrum.

Let us proceed from advection of individual passive
tracer to the transport of the ensemble of tracers by the
flow. Figure 3 shows the temporal evolution of the ini-
tially compact droplet formed by 104 fluid particles. Non-
FIG. 3. Cloud of passive tracers carried by the flow. (a) t � 0;
(b) t � 0:5; (c) t � 2; (d) t � 5; (e) t � 20; (f) t � 100.
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isochronicity of rotations around the torus stretches the
droplet. The strongest effect is observed during the pas-
sages in which the obstacle is sandwiched between the
streamlines: some particles hover in the vicinity of the
obstacle for the very long time, whereas the tracers which
pass at a larger distance are long gone. Because of the
irrational rotation number, each streamline is dense on
the torus; hence, each particle passes arbitrarily close to
the cylinder where its velocity becomes arbitrarily small.
As a result, after a hundred passages the particles are
spread over virtually the whole area of the square.
Naturally, this mixing is slower and less efficient than
mixing enabled by chaotic advection under Lagrangian
chaos [1,2]. Nevertheless, ultimately it leads to the same
result.

To quantify the rate of the spreading of the droplet on
the infinite plane, we introduce the displacement y�t� �
y�t� � y�0� and estimate the time growth of the variance
�2�t� � h2

y�t�i � hy�t�i2 by averaging over all initial
positions within the unit cell. Figure 4 shows that growth
of ��t� is described by the power law whose exponent
exceeds the ‘‘normal diffusion’’ value 1=2.

For larger values of t the computed values of ��t�
undershoot the expected power law. We assign this dis-
crepancy to insufficient statistics: slow saturation in the
dependence of � on the length of the sample over which
the averaging is made. As t grows, the main contribution
into ��t� is made by rare ‘‘large events’’: passages ex-
tremely close to the obstacle. Apparently, the longest
numerically affordable to us trajectories with 3� 106

turns around the torus (t � 2:8� 106) are still insuffi-
cient. In order to extend the range of t in which the
estimates of ��t� are reliable, we have used the model
which is computationally much less expensive: the ‘‘spe-
cial flow’’(flow over the mapping), often employed in
ergodic theory [18]. For the map u ! f�u� and the func-
tion ��u�, this dynamical system is introduced on the part
of the plane u; v defined by 0 � v < ��u�, as follows: the
orbit starts at t � 0 in the point �u0; v0�, and moves with
unit velocity parallel to v axis until reaching the border
��u0�; from there it jumps to the point �f�u�; 0�, begins the
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FIG. 4. Growth of variance in the ensemble of particles
carried by the flow. Crosses: Stokes flow (1)–(3); pluses: special
flow (5) with C � 0:3; straight line: t0:6.
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next stage of motion along v, and so on. Obviously, on
the u axis f�u� is the Poincaré mapping, and ��u� is the
return time. The trajectory is described by the expressions

ut � fn�u0�; vt � v0 � t�
Xn�1

j�0

��fj�u0�� (5)

with integer n � n�t� uniquely defined by inequalities

Xn�1

j�0

��fj�u0��< v0 � t <
Xn
j�0

��fj�u0��: (6)

The special flow for our hydrodynamical problem com-
bines the circle map f�u� � �u� 
=��mod1 with the
return time ��u� � C=

��������������������
ju� 1=2j

p
. Properties of autocor-

relation for the flow (5), presented in Figs. 2(d)–2(f), are
in qualitative and good quantitative accordance with the
respective characteristics of the Stokes flow: autocorrela-
tion decays as the power law, and the Fourier spectrum is
fractal. To evaluate the transport in (5) we used the lift of
f�u� onto the real axis. Estimates obtained from 1010

iterations of f are shown in Fig. 4 by pluses. Again, we
see the anomalously fast growth of the variance.

These unusual transport properties are related to the
distribution of return times. For T large, the proportion of
returns with duration between T and T � dt decreases as
�T�3dt; the second moment of this distribution (mean
square of �ret) is infinite. This is reminiscent of Lévy
flights: random walks with power-law statistics and infi-
nite moments. Widespread in physics, Lévy flights exhibit
long-range correlations and anomalous transport [19,20].
Of course, the completely deterministic motion of a tracer
in a flow (1) is not a random walk; the sequence of return
times is rigidly prescribed by the rotation number. Never-
theless, as we see, already the presence of the power-law
tail T�3 appears to suffice for the onset of typical hall-
marks of the Lévy flights.

In dynamics of nonintegrable Hamiltonian systems,
anomalous diffusion is ascribed to sticking trajectories
near the Kolmogorov-Arnol’d-Moser surfaces and Can-
tori [21,22]. In fluid dynamics, Lévy flights were experi-
mentally observed in time-dependent flows with coherent
structures (jets, vortices, etc.), which serve as a kind of
trap for tracer particles [23–25]. Our example shows that
similar anomalously fast transport can take place also in
the framework of the two-dimensional time-independent
flow. Moreover, both basic ingredients, irrational rotation
number and vanishing velocity along the whole border-
line, are generic within the considered class of Stokes
flows. Of course, for a ‘‘random’’ rotation number 
=�
the peaks of the autocorrelation would not form a regu-
lar lattice.

In conclusion, we have studied the spectral and trans-
port properties of a plane steady viscous flow past an
244101-4
array of solid obstacles. On reducing the problem to
the time-independent integrable Hamiltonian system
with 1 degree of freedom, we find fractal Fourier spec-
trum, long-range correlations, and anomalously fast
‘‘superdiffusive’’ transport reminiscent of Lévy flights.

We thank F. H. Busse, D.V. Lyubimov, A. Pikovsky,
and J. Kurths for fruitful discussions and H. Hasimoto for
providing the preprint [5]. The research of A.S. has been
enabled by the trilateral Russian-German-French pro-
gram and Grant No. PE-009-0 of CRDF, and M. Z. was
supported by SFB-555.
[1] H. Aref, J. Fluid Mech. 143, 1 (1984).
[2] J. M. Ottino, The Kinematics of Mixing: Stretching,

Chaos and Transport (Cambridge University Press,
Cambridge, 1989).

[3] H. Aref, Phys. Fluids 14, 1315 (2002).
[4] H. Hasimoto, J. Fluid Mech. 5, 317 (1959).
[5] H. Hasimoto, Lect. Notes Res. Inst. Math. Sci. Kyoto

Univ., No. 214 (1974) (in Japanese).
[6] A. S. Sangani and C. Yao, Phys Fluids 31, 2435 (1988).
[7] H. E. Stanley et al., Physica (Amsterdam) 200A, 4

(1993).
[8] W. Li and K. Kaneko, Europhys. Lett. 17, 655 (1992).
[9] A. Arneodo et al., Phys. Rev. Lett. 74, 3293 (1995).

[10] B. Audit et al., Phys. Rev. Lett. 86, 2471 (2001).
[11] E. Koscielny-Bunde et al., Phys. Rev. Lett. 81, 729

(1998).
[12] R. Ketzmerick, G. Petschel, and T. Geisel, Phys. Rev.

Lett. 69, 695 (1992).
[13] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR Ser. Mat. 93,

763 (1953).
[14] A. S. Pikovsky et al., Phys. Rev. E 52, 285 (1995).
[15] M. A. Zaks, A. S. Pikovsky, and J. Kurths, Phys. Rev.

Lett. 77, 4338 (1996).
[16] A.V. Kochergin, Math. Notes 19, 277 (1976).
[17] A.V. Kochergin, Math. Sbornik 96, 471 (1975).
[18] I. P. Cornfeld, S.V. Fomin, and Ya. G. Sinai, Ergodic

Theory (Springer, New York, 1982).
[19] J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127

(1990).
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