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Temporal ChaosVersus Spatial Mixing in Reaction-Advection-Diffusion Systems
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We develop a theory describing the transition to a spatially homogeneous regime in a mixing flow
with a chaotic in time reaction. The transverse Lyapunov exponent governing the stability of the
homogeneous state can be represented as a combination of Lyapunov exponents for spatial mixing and
temporal chaos. This representation, being exact for time-independent flows and equal Péclet numbers
of different components, is demonstrated to work accurately for time-dependent flows and different
Péclet numbers.
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Complex spatiotemporal dynamics has attracted large
interest in the last decades. Recently, reaction-diffusion
equations have been subject of intense research due to
their rich variety of patterns. They describe many impor-
tant physical systems, such as chemical reactions [1],
lasers [2], or semiconductors [3]. On the other hand,
complex structures can be created in fluid mechanics by
spatial mixing [4]. In this Letter, we consider the com-
bined action of the above effects, leading to a reaction-
advection-diffusion system, see Eq. (2) below. Such sys-
tems have been investigated with respect to front propa-
gation [5], excitable dynamics [6], and the filamental
structure of reactive particles [7]. Practically, stirred
flows with reaction are relevant from large scales (plank-
ton dynamics in the oceans [8]) to microscales (construc-
tion of a lab on a chip [9]), and are important for
biophysical, ecological, and chemical applications; simi-
lar equations describe the dynamo effect in magneto-
hydrodynamics [10].

In this Letter, we consider a temporally chaotic re-
action process. It is known that in presence of diffusion,
temporal chaos can lead to the appearance of nontrivial
spatial structures and space-time chaos. We demonstrate
that such structures can appear in the presence of mixing,
too. We develop a theory for the transition from a spa-
tially homogeneous (fully mixed) temporally chaotic
state to a nonhomogeneous one, and compare it with
calculations. Our approach is strongly related to the the-
ory of complete synchronization of coupled chaotic sys-
tems, which is significantly extended because the spatial
mixing leads to special types of coupling.

We now formulate the reaction equations. The evolution
of the concentrations �i, i � 1; . . . ; N due to reaction is
described by a nonlinear system

d�i

dt
� Fi��1; . . . ; �N�; (1)

with regular or chaotic solutions �0
i �t�. Additionally, each

component is subject to diffusion and advection by an
incompressible velocity field v�r; t�. Normalization by the
characteristic advection time allows a description by di-
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mensionless diffusion constants di (equivalent to Péclet
numbers d�1

i � Pei, generally different) and the dimen-
sionless reaction rate, or Damköhler number, Da. The
resulting spatiotemporal equations are

@�i

@t
� �v � r��i � dir

2�i � DaFi��1; . . . ; �N�: (2)

We assume that the concentrations do not influence the
flow, so that the field v�r; t� does not depend on �i. We
supply Eq. (2) with no-flux boundary conditions r�ijS �
0 on the boundary S (periodic boundary conditions are
straightforwardly treated in an analogous way).

For a homogeneous spatial distribution of concentra-
tions �i, the advection and diffusion term vanish and the
Eqs. (2) reduce to (1) with rescaled time. To study the
stability of spatially homogeneous solutions �0

i �Dat� of
(2), we linearize the equations near this solution and
obtain for a small perturbation field ’i�r; t�

@’i

@t
� �v � r�’i � dir

2’i � DaCij�Dat�’j; (3)

where Cij�t� �
@Fi
@�j

is the Jacobi matrix of the system (1)

on the solution 
�0
1�t�; . . . ; �

0
N�t��. Generally, the solutions

of (3) grow or decay exponentially in time jj’jj � e�t,
where � belongs to the spectrum of Lyapunov exponents
(LE). Clearly, the LEs of the solution of (1) belong to this
spectrum, describing growth or decay of homogeneous
perturbations. The stability of the solution towards inho-
mogeneous perturbations is described by the largest LE
corresponding to a spatially varying Lyapunov vector
’�r; t�—the transverse LE �? [in the sense that it is
transverse to a manifold of spatially homogeneous solu-
tions of (3)]. For diffusion constants and time-dependent
flow v�r; t� given, the transverse LE can be determined
only numerically. For certain situations, considered be-
low, we obtain this exponent analytically.

We start the analysis of (3) with the simplest case, a
time-independent velocity field v � v�r� and equal diffu-
sion constants di � d. In this case, the ansatz ’i�r; t� �
X�r�	i�t� allows for a separation of time and space de-
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FIG. 1. Numerical calculation of transverse LEs from
Eqs. (3) and from the approximations (8) and (16). Parame-
ters: ax�ay�20, hTinti � 0:5. Squares: di � 0:1; circles: d1 �

0:1, d2 � 0:2, d3 � 0:5. Lines are according to (8) and (16).
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pendence of the perturbation field. The spatial component
is determined by the advection-diffusion eigenvalue
problem

dr2X � �v � r�X � �
X; rXjS � 0: (4)

The eigenvalue 
 describes the decay of nonhomogeneous
states of the scalar field u�r; t�, governed by

@u
@t

� �v � r�u � dr2u; (5)

because for an exponentially time-dependent solution, (5)
reduces to (4). This problem has been recently analyzed
in [11]. The eigenvalue 
 � 0 corresponds to the spatially
homogeneous solution and does not contribute to the
stability of inhomogeneous perturbations. For the latter,
the mode corresponding to the smallest nonzero eigen-
value of (4) is relevant; we denote it by �. As has been
argued in [11], this eigenvalue crucially depends on the
nature of flow v�r�, and thus on Pe. If the flow is mix-
ing, the eigenvalue � is well separated from zero even
for small diffusion constant d. However, a flow typi-
cally contains chaotic and regular domains (islands of
Kolmogorov-Arnold-Moser tori). Then, for small diffu-
sion constants, there are weakly decaying modes concen-
trated in these islands, so that � may be rather small. We
notice that in terms of effective diffusion (coarse grained
on the system size L), this eigenvalue can be represented
as � � deffL�2 [12].

The equation for the temporal part 	i is

d	i

dt
� ��	i � DaCij�Dat�	j: (6)

With the ansatz 	i � e��twi, this equation is trans-
formed to the equation for linear perturbations of the
reaction problem (1)

dwi

dt
� DaCij�Dat�wj; (7)

its asymptotic solution is jjwjj � eDa�t, where � is the
largest LE of the attractor in (1). Thus, for the perturba-
tion we have 	i � e�Da����t and the explicit formula for
the transverse LE reads:

�? � Da � �� ��Pe�: (8)

The stability condition of the spatially homogeneous state
can be formulated as �? < 0. If the oscillations of the
concentrations are regular, then the largest LE is non-
positive � 
 0 and this regime is always stable against
spatially inhomogeneous perturbations. A nontrivial
transition occurs for a chaotic regime, if � > 0. Here
the stability condition leads to the critical value

Da cr �
��Pe�
�

: (9)

A similar condition for a trivial case of reaction-diffusion
system has been obtained in [13] and for an abstract
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mapping model of mixing in [14].We emphasize that con-
dition (9), obtained for a realistic reaction-advection-
diffusion system, can be directly applied to an experi-
ment. Indeed, the eigenvalue � can be directly measured
from the time evolution of the contrast of a passive scalar
in the flow under investigation [15]. The LE � can be
determined from the advection-free setup: the critical
domain size Lc at which the patterns appear is related
to � via CdL�2

c � �, where C is a geometrical factor
depending on the domain form.

The analysis above is based on simplifying assump-
tions: time independence of the velocity field and equality
of diffusion constants. In general, if the velocities are
time dependent and the diffusion constants are different,
Eq. (3) cannot be simplified and should be analyzed
numerically. Since we are interested in stability with
respect to spatially inhomogeneous perturbations, the
solution should be sought in the class of fields ’ having
zero spatial average [the spatially homogeneous modes in
(3) are decoupled from other modes]. Numerically, one
can use the usual method for calculation of the largest LE:
starting with an arbitrary initial field in (3) with vanish-
ing spatial average, one integrates (3) along with (2),
performing normalization of the linear field to avoid
numerical over- or underflow; averaging the logarithm
of the normalization factors yields the transversal LE �?.

We apply this numerical method to the time-dependent
flow, 2� periodic in space, suggested in [16]:

v � faxf�t� cos
y� �x�t��;

ay
1� f�t�� cos
x� �y�t��g:
(10)

Here, the simple analytical analysis above is not appli-
cable. Depending on the functions f�t�; �x�t�; �y�t�, the
flow can be time periodic or irregular. In the former
case, the particle trajectories demonstrate typical
Hamiltonian dynamics with chaotic regions and stability
islands (see [11,16]). A weakly turbulent irregular flow
occurs if f�t�; �x�t�; �y�t� are random functions of time.
174501-2
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FIG. 2. Generalized transverse LEs for the Lorenz model
according to (12) with �z � 0 and Da � 1. The zero contour
level is shown with a line.
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We have considered both of these cases with the reaction
dynamics (1) given by the Lorenz equations.

An irregular flow was modeled by setting f�t� as a
�0; 1�-telegraph process with independent exponentially
distributed time intervals Tint, and independent uniformly
distributed phases �x; �y 2 �0; 2��. The transverse LE
has been calculated as described above; the results are
shown in Fig. 1. Remarkably, �? is nearly a linear func-
tion of Da like in (8). Moreover, we can demonstrate
numerically that the formula (8) is valid also quantita-
tively when all the diffusion constants are equal. To this
end, we have calculated the decay rate � from the linear
evolution Eq. (5) of the passive scalar. Now this equation
does not yield the simple eigenvalue problem (4) because
the velocity field is time dependent, but defines in full
analogy with the discussion above the asymptotic decay
rate � in the sense of the LE (cf.[17]):

� � �lim
t!1

lnjju�r; t�jj
t

: (11)

Thus, � is physically interpreted as the asymptotic decay
rate of the contrast of the passive scalar in the advection-
diffusion problem (5). In Fig. 1, we compare the trans-
verse LE �?, calculated from (8), with the numerical
estimation of �?. Here, the value of � has been calculated
according to (11), � is the largest LE of the Lorenz model;
the correspondence with the numerics is within statistical
errors. This result indicates that the time dependencies
due to chaotic time evolution of species and due to ir-
regularity of the flow are essentially ‘‘separable.’’

The analysis above must be modified if the diffusion
constants in (3) are different. In this case, one has differ-
ent passive scalar evolution problems Eq. (5), and Eq. (6)
is modified to

d	i

dt
� ��i	i � DaCij�Dat�	j: (12)

The generalized transverse LE for (12) is

�?�Da; �1; . . . ; �N�; (13)

for �1 � . . . � �N � �, it reduces to (8), but generally
cannot be related to the LE of the reaction system like in
(7). As a result, instead of (8) and (9), we obtain the
following condition for the critical Damköhler number

�?�Dacr; �1; . . . ; �N� � 0: (14)

There is a connection of the defined above transverse
LEs with the theory of synchronization. In the latter one
considers two coupled nonlinear systems

d��1�
i

dt
� Fi
�

�1�
j � �

�i

2

��2�

i ���1�
i �;

d��2�
i

dt
� Fi
�

�2�
j � �

�i

2

��1�

i ���2�
i �;

(15)

and looks for the stability of the completely synchronized
174501-3
state ��1�
i �t� � ��2�

i �t�. Then the linearized equation for
perturbations coincides with (12). Thus, the generalized
transverse LE �? determines the synchronization thresh-
old. This analogy shows that in a stirred reaction, the role
of coupling constants �i is played by effective decay rates
where both advection and diffusion contribute.

In general, some coupling constants can be absent, i.e.,
the corresponding coefficients �i vanish. In the context of
chaotic mixing, such a situation appears, e.g., for surface
reactions. Here, it can happen that mobility of some
chemical species is large so that they are advected by
the fluid flow, while other species are so strongly chemi-
sorbed that they cannot move laterally across the surface
(see, e.g., [18]). These chemisorbed species are described
by vanishing spatial decay �i. In the biological context,
mixed and nonmixed components interact, e.g., in marine
sediments by tidal flows.

Notice that although a transformation 	i � e�stWi
does not allow us to reduce (12) to (7), one parameter,
say �N , can be eliminated with such a transform. As a
result, the generalized transverse LE (13) can be repre-
sented as a function of N � 1 parameters only:

�?�Da;�i��Da�?�1;
�1��N

Da
; . . . ;

�N�1��N

Da
;0���N:

(16)

In Fig. 2, we show �? for the Lorenz system. The above
result for �? agrees well with the direct calculation of
transverse LEs for the full system (3), see Fig. 1.

Above we have performed the stability analysis of the
spatially homogeneous regime. Next we discuss proper-
ties of structures that appear beyond the stability thresh-
old. A natural quantity to characterize the inhomogeneity
of the pattern is the contrast, or variance, Wi � h��i �
h�ii�

2i. We solved (2) using (10) with the periodic func-
tion f�t� � �0; 1� like in [16] with unit period and con-
stant �x;y, and the Lorenz model as reaction. All three
components show the same onset, consistent with linear
theory, see Fig. 3. Near the onset of spatial inhomogene-
ity, the temporal behavior of the pattern contrast is highly
174501-3
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FIG. 3. Time-averaged contrast of the reaction species vs the
Damköhler number [the critical value is 1.096 cf. (9)]. The
inset shows temporal intermittency of the contrast of W1 for
Da � 1:15. Parameters: di � 0:04 � �2, ax � ay � 1:2 � �.
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intermittent (see inset in Fig. 3). As in a transition to
complete synchronization, the reason for this intermit-
tency is the fluctuations of the local exponents �? and �i,
similar to previous results [13,19].

We have demonstrated that the transition to spatially
inhomogeneous structures in a mixed flow with chaotic in
time evolution of concentrations is determined by the
transverse LE. This exponent can be with good accuracy
represented by a sum of ‘‘temporal’’ and ‘‘spatial’’ con-
tributions according to (8), or, more generally, to (16). We
can give the following physical arguments in favor of this
effective ‘‘decoupling’’ allowing for the separation an-
satz. (i) For large Péclet numbers, although different
species have different diffusion constants, their mixing
properties are to a large extent determined by advection.
Thus, one can expect that spatial structures of Lyapunov
vectors for different variables ’i�r; t� in (3) are close to
each other. This is confirmed by numerical simulations:
we have calculated the spatial correlation coefficients
between different variables for the example presented in
Fig. 1 (the case of different diffusion constants) and have
found for these correlations the values larger than 0.83.
The same property can be expected for small Péclet
numbers, where the spatial structure is given by the purely
diffusive version of (4) and one has the same modes for
different species, only the decay constants are different.
(ii) Although stirring for a time-dependent flow is not
constant in time, this seems to have a very small effect on
the average transverse LE. We have checked this by solv-
ing the generalized system (12) where the decay rates �i
are not constants but oscillating functions of time. In
some range of periods, the corresponding LE �? re-
mained the same within 1% even if the modulation was
as large as 100%.

Concluding, we have applied the method of generalized
transverse LEs to the analysis of transition from homo-
geneous to inhomogeneous field in a stirred, temporally
174501-4
chaotic chemical reaction. Our theory is valid for general
chaotic reactions and general mixing setups—the latter
do not need to be perfect (hyperbolic). For equal diffusion
constants, the critical value of the Damköhler number (9)
has a clear physical meaning: it determines whether the
growth rate due to temporal chaos (given by the maximal
LE of the nonlinear system) wins over the decay rate due
to mixing (given by the decay rate of the contrast of a
passive scalar in the flow). For different diffusion con-
stants, or for surface reactions where only some species
are stirred, the determination of the critical Damköhler
number can be formulated as a novel problem in the
theory of complete synchronization, whose solution is
expressed in terms of generalized transverse LEs.
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