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Tunable interactions between paramagnetic
colloidal particles driven in a modulated ratchet
potential†

Arthur V. Straubea and Pietro Tierno*bc

We study experimentally and theoretically the interactions between paramagnetic particles dispersed in

water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating

magnetic field modulates the stray field of the garnet film and generates a translating potential landscape

which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-

particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of

particles can approach each other and form stable doublets which afterwards travel along the

modulated landscape at a constant mean speed. We measure the strength of the attractive force

between the moving particles and propose an analytically tractable model that explains the observations

and is in quantitative agreement with experiment.
1 Introduction

The transport of particles due to a ratchet mechanism1 is a
general phenomenon arising in many branches of physics and
biology.2–4 Ratchet effects are found in Abrikosov vortices,5 and
Josephson vortices in superconductors,6 electrons in semi-
conductor heterostructures,7 cold atoms,8 ferrouids9 and
granular materials10 to name a few examples. In biological
systems, ratchet effects are also found inmolecular motors such
as myosin11–13 or actin.14–16

Single particles, molecules or proteins, when placed in an
asymmetric potential will undergo a net transport under non-
equilibrium uctuations. However, when considering an
ensemble of interacting species, the system transport proper-
ties are oen dictated by a delicate balance between the
particle interactions and the rectication process above the
asymmetric potential. Unlike molecular machines, or quasi-
particles in quantum systems, colloidal particles are charac-
terized by experimentally accessible time and length scales,
and these features promote their use as a model system to
investigate the emergence of novel ratchet effects.17–21 In
addition, in colloidal systems forces and potentials between
the individual particles can be directly measured via particle
tracking techniques.22,23
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When colloidal particles can be polarized, like paramagnetic
colloids, external elds can be used to induce dipolar interac-
tions, and assemble these particles into compact structures
such as doublets,24 chains25,26 or clusters.27 Magnetic substrates
with features on the colloidal length scale have been recently
used to induce directed ratchet transport of paramagnetic
colloidal particles.28,29 However, most of the recent studies
concerned the transport of magnetic colloidal particles focused
mainly on the dynamic properties of individual particles or
collective ensembles, but not on measuring the interaction
forces between the transported particles. On the other hand,
theoretical studies on interacting pairs of particles exhibiting a
ratchet-like transport showed the richness of the physical
system.30–32

In addition, the use of magnetic elds gives the freedom to
induce attractive or repulsive interactions via dipolar forces.
Thus, the competition between dipolar forces, which align the
particles, and the substrate eld which transports them could
give rise to novel colloidal structures and dynamic phases.33–36

In this article, we present a detailed study of the interactions
between pairs of paramagnetic particles driven in a periodic
potential via a deterministic ratchet effect. The latter is realized
by externally modulating the magnetic stray eld generated at
the surface of a ferrite garnet lm (FGF). The modulation cor-
responding to the rotation of the eld breaks the symmetry and
induces a net particle transport above the FGF. The elliptic
polarization of the rotating eld is used to tune the inter-
particle interactions from net repulsive to net attractive. The
experimental situations considered are schematically depicted
in Fig. 1(a1) and (a2). When the ellipticity of the eld is such
that repulsive interactions dominate (a1), the paramagnetic
colloidal particles either stay disperse or couple into oscillating
Soft Matter, 2014, 10, 3915–3925 | 3915



Fig. 1 (a1 and a2) Schematic illustrations of a pair of paramagnetic particles transported above the ferrite garnet film (FGF). The particles
display either repulsive (a1) or attractive (a2) interactions induced by a rotating magnetic field with elliptic polarization. The field is characterized
by a frequency f, amplitude H0 and ellipticity parameter b < bc (a1) or b > bc (a2); for particles having no relative displacement along the stripes,
bc ¼ �1/3. (b1 and b2) Series of optical microscopy images at consequent instants showing a pair of particles (highlighted in blue) driven above
the FGF and subjected to a magnetic field with f ¼ 10 Hz, H0 ¼ 730 A m�1 and b ¼ �0.6 (b1), b ¼ 0.6 (b2).
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pairs, which move above the lm. In the opposite situation,
when the eld ellipticity forces the particles to attract each other
(a2), moving particles approach until forming stable doublets.
Aerwards, such doublets propel above the FGF at a constant
mean speed. We apply a theoretical model that accounts for
magnetic dipolar interactions between the particles driven
across the stripes. By integrating out the fast oscillatory motion
caused by the temporal modulation, we put forward an analyt-
ically tractable model describing the dynamics at slow time
scales. The theoretical predictions drawn from this model
explain the pairwise interactions and are in good quantitative
agreement with experiments.

2 Experimental system

In the experiments, we used a monodisperse suspension of
paramagnetic colloidal particles (Dynabeads M-270, Dynal) with
radius a ¼ 1.4 mm and magnetic volume susceptibility c � 1.37

The particles displayed a paramagnetic-like behaviour due to
the uniform doping (20% by weight) with superparamagnetic
iron-oxide grains (g-Fe2O3 and Fe3O4) in the polymer matrix.
The particles were originally dispersed in puried water at a
concentration of �2 � 109 beads per ml. We diluted the stock
solution with high deionized water (MilliQ system, 18.2 MU cm)
3916 | Soft Matter, 2014, 10, 3915–3925
up to a concentration of �3 � 109 beads per ml and deposited a
drop of it on top of the ferromagnetic domains of a uniaxial
ferrite garnet lm. The FGF lm was grown by dipping liquid
phase epitaxy on a gadolinium gallium garnet (GGG)
substrate.38 The FGF was characterized by a series of parallel
stripe domains with opposite magnetization and spatial peri-
odicity l ¼ 2.6 mm, which is twice the domain width, Fig. 1(a).
Between opposite magnetized domains there are Bloch walls
(BWs), i.e. narrow transition regions (�20 nm) where the
magnetization rotates, and thus the stray eld of the lm is
maximal.

Aer deposition of the droplet, it takes a few minutes to
sediment the particles above the lm and get pinned above the
BWs. To prevent particle adhesion to the magnetic substrate
due to the strong attraction of the BWs, the FGF was coated with
a 1 mm thick layer of a photoresist AZ-1512 (Microchem,
Newton, MA) following a protocol detailed in a previous study.39

The polymer lm also reduced the strong attraction of the BWs,
since the stray eld of the FGF decreases exponentially with the
elevation.40

The external rotating magnetic eld elliptically polarized in
the (x, z) plane was provided by using two custom-made
Helmholtz coils perpendicular to each other. The currents in
the coils were supplied by two independent bipolar ampliers
This journal is © The Royal Society of Chemistry 2014
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(Kepco BOP 20-10M, KEPCO) controlled with a wave generator
(TGA1244, TTi). The coils were assembled on the stage of an
upright optical microscope (Eclipse Ni, Nikon) which was
equipped with a 100 � 1.3 NA oil immersion objective. The
particle dynamics were recorded with a CCD camera (Balser
Scout scA640-74fc) which enabled us to grab video clips in B/W
up to 75 frames per second. A total eld of view of 145 �
109 mm2 was obtained by adding to the microscope optics a TV
adapter with a lens having a magnication 0.45�. Wemeasured
the positions of the colloidal particles using commercial frame-
grabbing soware Streampix (Norpix) and analyzed the videos
with particle tracking routines.41
3 Individual particle dynamics

Before considering the interactions between particles, we
discuss here the transport mechanism of an individual one
above the FGF.

A paramagnetic particle of radius a and volume V¼ (4/3)pa3,
subjected to an external eld H acquires a dipole moment m ¼
VcH, with c being the effective volume susceptibility of the
particle. For the eld strengths used, H < 1.5 kA m�1, the
particle magnetization increases linearly with the applied
eld,44 which justies the linear relationship between the
induced moment and the eld. The energy of interaction of the
induced dipole with the magnetic eld B is Us ¼ �m$B.
Assuming low elds and using the linear relationship B ¼ msH,
where ms is the permeability of the solvent, the energy becomes
Us ¼ �VcmsH

2.
The total eld above the FGF is given by a superposition H ¼

Hsub + Hext of the stray eld of the substrate, Hsub, and the
external eld, Hext. The external eld with elliptic polarization
has the form:

Hext ¼ (H0x cos(2pft), 0, �H0z sin(2pft)), (1)

where f is the frequency. The amplitude of modulation H0 and
the ellipticity parameter b ˛ [�1, 1] are dened as:45

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0x

2 þH0z
2

2

s
; b ¼ H0x

2 �H0z
2

H0x
2 þH0z

2
; (2)

such that b ¼ 0 corresponds to the case of circular polarization.
In all the experiments, we keep H0 xed, and change the driving
frequency and the ellipticity of the applied eld.

The general expression for Hsub can be obtained using the
conformal mapping technique.42,43 At a moderate modulation,
H0 � Ms, and at a particle elevation z x l, as in our experi-
mental conditions, the expression for the stray eld
becomes independent of the form of modulation and can be
simplied to:43

Hsub ¼ 4Ms

p
e�2pz=l

�
cos

2px

l
; 0;�sin

2px

l

�
; (3)

where Ms denotes the lm saturation magnetization.
The overdamped dynamics of a single particle in the global

eld H above the FGF can be described as the motion in the
This journal is © The Royal Society of Chemistry 2014
potential Us ¼ �VcmsH
2 taken at a xed elevation (see eqn (16)

in Appendix A), within the framework of the Langevin equation

z cx ¼ � vUsðx; tÞ
vx

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTz

p
xðtÞ; (4)

where z is the viscous friction coefficient, kBT is the thermal
energy, and the stochastic force modeled via the Gaussian white
noise with zero mean, hx(t)i ¼ 0, and the autocorrelation hx(t)
x(t0)i ¼ d(t � t0). This model admits a simple interpretation, in
particular we quantify transport by analyzing the averaged
speed of the particle.

3.1 Transport in a circularly polarized eld, b ¼ 0

In the case of circular polarization, b ¼ 0, the potential can be
approximated as a traveling harmonic wave,43 Us(x, t) f

cos(2p(x � vmt)/l). This expression describes a spatially
periodic landscape with the period l and minima at the posi-
tions xmin(t) ¼ nl + vmt (n ¼ 0, 1, 2, .), which continuously
translate with time with a constant speed vm ¼ lf along the x
axis. Further, we proceed to rescaled variables by measuring the
length, time, magnetic eld, and energy in the units of l, zl2/U0,
Ms, and U0, respectively. We choose the energy unit to be the
characteristic energy of the interaction of an induced dipole
with the eld generated by the FGF, U0 ¼ VcmsMs

2.
In these units, the averaged speed of the particle can be

calculated as:43

h cxib¼0

vm
¼
(
1; if ~f\ ~f cð0Þ;
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~f c

2ð0Þ=~f 2
q

; if ~f . ~f cð0Þ;
(5)

without thermal uctuations and

h cxib¼0

vm
¼ 1� sinhðpDÞ

pDjIiDðDcÞj2
(6)

with thermal uctuations. Here, we have introduced three
parameters,

h0 ¼ H0

Ms

; ~f ¼ f zl2

U0

; s ¼ kBT

U0

; (7)

which are, in order, the dimensionless amplitude, frequency,
and strength of thermal uctuations. Then, ~f c(0) ¼ 16h0e

�2pz is
the critical frequency at b¼ 0, D¼ ~f /(2ps), Dc¼ ~f c(0)/(2ps), and
Iiv(x) is the modied Bessel function of the rst kind of an
imaginary order.

From eqn (5) and (6) it follows that, increasing the driving
frequency, the system is characterized by two dynamic states
separated by the critical value ~f c. This behaviour is also illus-
trated in Fig. 2, where we report measurements of the average
speed of a single particle as a function of the driving frequency.
The paramagnetic particle is driven above a garnet lm by a
circularly polarized (b ¼ 0) magnetic eld with the amplitude
H0 ¼ 730 A m�1. At low frequencies, the particle is trapped close
to the minima of the translating potential, and moves with the
maximal speed, vm. Beyond a critical frequency of fc z 7.6 Hz,
the particle starts to lose its synchronization with the moving
landscape entering into a “sliding” regime, where it decreases
its average speed. Fig. 2 also shows that thermal uctuations
Soft Matter, 2014, 10, 3915–3925 | 3917



Fig. 2 Mean speed h _xi of a single particle normalized by vm ¼ lf as a
function of frequency f for the case of circular polarization, b ¼ 0. The
deterministic (dashed line) and stochastic (solid line) theoretical
predictions, as in eqn (5) and (6), respectively, are fitted against the
experimental data (filled squares). The dotted line corresponds to the
high frequency (h.f.) theory, eqn (8) in the text. Green circles indicate
the cuts at frequencies f ¼ 10, 15 and 20 Hz further analyzed in Fig. 3.

Fig. 3 The normalized mean speed, h _xi/vm, as a function of the
ellipticity parameter, b, at three different frequencies, as shown by
green circles in Fig. 2. The experimental data (filled markers) are
plotted against the predictions of numerical simulations (open
markers), eqn (4), and of the h.f. theory (dotted lines), eqn (8).
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smooth the transition from the phase-locked dynamics to the
sliding motion near the critical point. By xing the particle
elevation above the lm to z ¼ 0.923 (in the units of l), we
estimated the dimensionless amplitude h0 z 0.1457 and noise
strength of s z 2 � 10�5.
3.2 Transport in an elliptically polarized eld, b s 0

The transition between the locked and sliding phases illus-
trated in Fig. 2 occurs also for different values of b, i.e. when the
modulation has elliptic polarization. In particular, the critical
frequency ~f c depends on b, and we nd that it shis to lower
frequencies, ~f c(b) < ~f c(0). To gain insight into the sliding
dynamics of a single particle at b s 0, we perform the time
averaging of eqn (4) taken in the deterministic limit, s ¼ 0. The
latter is justied by the fact that, as shown in Fig. 2, thermal
uctuations play a negligible role away from the critical
frequency. As a result, the mean speed of a single particle is
given by:

v0ðbÞ
vm

¼ h cxihf
vm

¼ 1

2

�
16h0
~f

�2

e�4pz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q �
~f[~f c

�
(8)

valid for any b at high frequencies. A complete derivation of
eqn (8) is given in Appendix A. The accuracy of this
prediction can be estimated from Fig. 2. Although the high
frequency (h.f.) analysis is formally valid in the high
frequency limit, ~f /~f c [ 1, we see that it works well already at
~f /~f c(0) z 2 (15 Hz) and is still reasonable even at the lower
frequency of 10 Hz.

In Fig. 3 we show the impact of the ellipticity of the eld, b,
on the average speed h _xi of a single particle and at
three different driving frequencies. For circularly polarized
eld (b ¼ 0), h _xi is maximum for all frequencies, and it
decreases as b s 0, in a symmetric way with respect to the
3918 | Soft Matter, 2014, 10, 3915–3925
positive and negative values of b according to the root law
h cxi=vmf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
: The experimental results are in good

agreement with the predictions of simulations using eqn (4)
and the h.f. theory, eqn (8), as described in Appendix A. Fig. 3
also shows that the h.f. approximation well represents the
dependence of h _xi on b.

4 Interacting particles

Increasing the number of particles forces the latter to interact
via magnetic dipolar interactions, see Appendix B for details.
Experimentally, we observed a different behaviour depending
on whether the particles were moving in the phase locked or in
the sliding regime. In the rst regime, the particles formed
were equally spaced along the direction of motion (x), and all
of them were moving at the same average speed, vm. In this
situation, even for large ellipticity, the particles always keep
the difference in their x coordinates constant, and it was not
possible to induce attraction or repulsion, breaking the robust
dynamic pattern. In contrast, in the sliding regime, each
particle was unable to follow the fast dynamics of the trans-
lating potential and it lost the phase-locking with the eld at
different times. Since this process did not occur synchronously
for all the particles, the moving colloids showed a certain
degree of randomization in their speeds. As a consequence,
between each pair of particles the average distance along x was
not always xed, but it could increase or decrease depending
on the relative speed. Thus, in the sliding regime, we found
that it was possible to tune the particle interaction by
changing b.

4.1 Two particles moving one behind another

To study the effects caused by the dipole–dipole interactions, we
rst analyze the one-dimensional situation in which a pair of
This journal is © The Royal Society of Chemistry 2014
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particles has no relative displacement along the stripes (y1¼ y2),
moving one behind the other in the sliding regime.

Fig. 4 shows the time evolution of the positions x1 and x2 of a
pair of colloidal particles initially placed at a relative distance of
d¼ 8.2 mm, and driven above an FGF by an elliptically polarized
magnetic eld with the amplitude H0 ¼ 730 A m�1, frequency
f ¼ 15 Hz and ellipticity b ¼ 0.6. As we show in this section, this
value of b corresponds to attracting dipolar interactions. The
displacements shown in Fig. 4 illustrate the three regimes of
motion. In the rst one (regime I), the separation distance is too
Fig. 4 (a) Positions x1 and x2 versus time t of two approaching para-
magnetic colloidal particles subjected to an external field with the
frequency f ¼ 15 Hz, amplitude H0 ¼ 730 A m�1, and ellipticity b ¼ 0.6.
We distinguish three regimes: one characterized by a slow approach of
the particles (I), a second characterized by dipolar attraction and
leading to the doublet formation (II), and finally the last where particle
motion occurs in the form of a doublet (III). The inset shows the
separation distance d ¼ |x2 � x1| versus time, t. (b) Separation distance
d versus time t in regime II plotted at different b. Scattered points are
experimental data, solid red lines are fits following the theoretical
model, see eqn (12) in the text. The inset shows the mean distance
between the particles hdi versus the ellipticity b, once the doublet is
formed (regime III). Black squares are experimental data and red circles
result from numerical simulations.

This journal is © The Royal Society of Chemistry 2014
large to cause an evident effect of attraction, and the particles
slowly approach each other due to a small difference in their
speeds in the sliding regime. The relative dynamics are gov-
erned by the interplay between thermal uctuations and the
driving potential. Note that the separation distance d ¼ d(t)
displays pronounced oscillations. As explicitly shown in
Appendix A, these oscillations are caused by the external
modulation and occur with the external frequency f. When the
particles come close enough, to about d x 5.2 mm in our case,
their relative motion speeds up and their distance d rapidly
decreases to a minimal distance dictated by steric interactions
(regime II). Aer that the particles have formed a stable doublet
(regime III) and propel as a whole. As shown in the inset of
Fig. 4(a), in regime III the distance between the particles slightly
uctuates around a constant value. The inset of Fig. 4(b) illus-
trates the mean distance hdi between the particles, once the
doublet is formed, as a function of the eld ellipticity. Although
hdi slightly reduces with the increase in b, hdi never reaches the
lower bound set by the hard-core distance 2a. Similar tendency
can be qualitatively captured by simulations of eqn (27), whose
predictions, however, slightly undershoot the experimental data
as shown in the inset of Fig. 4(b). This observation suggests that
the detected dependence hdi(b) is mainly due to steric interac-
tions between the particles. The small deviation can be attrib-
uted to the presence of electrostatic repulsive interactions not
included in the simulations.

To address the one-dimensional problem theoretically, we
will apply the h.f. theory developed in Appendix C. The inter-
action of the two particles with the slowly evolving coordinates
R1 ¼ (X1, Y1) and R2 ¼ (X2, Y2) is described by the effective
potential given by eqn (34) or (35). Taking into account that Y1¼
Y2 (or w ¼ 0, where w is the angle between the axis x and the
straight line going through the centers of particles) and intro-
ducing the distance between the particles as d ¼ |X12| ¼ |X1 �
X2|, we have R ¼ d, X12

2/R2 ¼ 1. Hence, the effective interaction
potential that describes the slow dynamics of particles
simplies to

UddðdÞ ¼ �ah0
2ð1þ 3bÞ
2d3

: (9)

Whether the particles attract or repel depends on the sign
of the factor 1 + 3b. Setting it to zero, we nd that the critical
value is

bcðw ¼ 0Þ ¼ � 1

3
: (10)

For b < bc the particles repel each other, while for b > bc

attraction takes place.
The separation distance satises the dimensionless equation

_d ¼ �2vdUdd ¼ �3ah0
2(1 + 3b)/d4. Rewriting this equation back

in the original variables, as before re-scaling, we obtain

z cd ¼ � kð1þ 3bÞ
d4

¼: FddðdÞ; (11)

where the constant k ¼ 3ms(cVH0)
2/(4p). Thus, at a given eld

amplitude, H0, the strength of interactions between a pair of
Soft Matter, 2014, 10, 3915–3925 | 3919
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particles scales with the ellipticity of the eld, b, the suscepti-
bility c and size a of particles as Fdd f (1 + 3b)c2a6.

Assuming that at time t ¼ 0 the particles are initially sepa-
rated by a distance d ¼ d0, we integrate eqn (11) to nd a power
law for the separation distance as a function of time:

dðtÞ ¼
�
d0

5 � 5kð1þ 3bÞ
z

t

�1=5

; (12)

From eqn (12), it can be observed that for b < bc(0)¼�1/3 (b >
bc(0)), the separation distance increases (decreases) with time.
During attraction, the particles approach until reaching a
minimal distance dm which for hard spheres is given by dm ¼ 2a.
From eqn (12) it is possible also to estimate the time taken for the
particles to come into contact, as sc ¼ z(d0

5 � dm
5)/[5k(1 + 3b)].

In order to directly derive the strength of the dipolar inter-
actions from the experimental data, we estimated the depen-
dence of the force Fdd on the separation distance d. The inset of
Fig. 5 shows the dependencies Fdd(d) for different b. The values
of the force were computed using the Stokes law, Fdd ¼ zvd,
where the speeds vd were recovered from the solid red curves in
Fig. 4(b) that t the experimental data. The friction coefficient
was drawn from the relationship z ¼ 6pha, where h ¼ 10�3 Pa s
is the dynamic viscosity of water. Following eqn (11), we expect
the ratio Fdd/(1 + 3b) ¼ k/d4 to be independent of the eld
ellipticity, b. This prediction is validated in Fig. 5, by plotting
the force Fdd normalized by 1 + 3b as a function of the distance
d. We note that all the dependencies for the different values of b
shown in the inset collapse into the same curve. Furthermore,
from the regression we obtain a value of the constant k z 5.91
pN mm4, which is in good agreement with the theoretical
prediction k ¼ 3ms(cVH0)

2/(4p)z 5.93 pN mm4, evaluated based
Fig. 5 log–log plot of the force Fdd between a pair of particles
normalized by (1 + 3b) and plotted as a function of the separation
distance d. Scattered data correspond to the lines fitting the experi-
mental points in Fig. 4(b), the solid red line is a fit according to eqn
(11), showing the dipolar nature of the interaction. The inset shows
the force versus distance without the normalization for different
values of b.

3920 | Soft Matter, 2014, 10, 3915–3925
on the experimental parameters, taking into account the
uncertainty related to the exact value of c.37 The magnetic
permeability of the solvent was estimated as the permeability of
free space.

We note that eqn (11) and (12) present purely deterministic
predictions for the dipolar force and the separation distance.
Similar to the situation of a single particle, as e.g., in Fig. 2,
thermal uctuations are expected to slightly slow down the
deterministic dynamics in regime II, as in eqn (12). As
conrmed by simulations of eqn (27) for a pair of attracting
particles, results not shown here, the thermal noise indeed
effectively weakens the attractive forces shortly before the
particles come into contact, thus slightly increasing the time of
approach of the particles in regime II. This tendency can also be
seen from Fig. 5, where the experimental data start to under-
shoot the deterministic predictions at small d, close to the
smallest particle distance.
4.2 Particles with arbitrary positions

We now consider the general situation in which a pair of
particles have arbitrary positions in the (x, y) plane, and using
the h.f. theory. First, we mention the motion of the center of
mass of the two particles. The equation of motion for the center
of mass, Q ¼ (R1 + R2)/2, can be deduced from eqn (33) in
Appendix C. The center of mass moves strictly across the stripes
with the constant speed of a single particle, and there is no
displacement along the stripes, _Q ¼ ( _Q, 0)¼ v0êx, irrespective of
the positions of the particles in the plane (x, y).

Then, we analyze the relative motion of particles. Instead of
the Cartesian coordinates R12 ¼ (X1 � X2, Y1 � Y2), it is conve-
nient to proceed to the polar coordinates (R, w) introduced such

that R12 ¼ R(cos w, sin w), where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1 � X2Þ2 þ ðY1 � Y2Þ2

q
is the distance between the particles, see Fig. 6(a). Aer the
transformation, the equations of motion _R¼�2vRUdd(R, w) and

R2 _w ¼ �2vwUdd(R, w) with Udd(R, w) given by eqn (35), result in:

c
R ¼ 3ah0

2

R4

�
2� 3ð1þ bÞcos2w�; (13)

cw ¼ � 3ah0
2ð1þ bÞ
R5

sin 2w: (14)

By setting _R ¼ 0 in eqn (13) we consider the marginal case
that separates the situations of repulsion, _R > 0, and attraction,
_R < 0. This condition gives us the critical value of the ellipticity
parameter,

bcðwÞ ¼ �1þ 2

3 cos2w
; (15)

generalized for arbitrary values of w. Again, the condition b < bc

corresponds to repulsion, while the opposite case b > bc is
responsible for attraction. In the partial case of the particles
moving along the x direction, w ¼ 0, eqn (15) predicts bc(0) ¼
�1/3, in agreement with the previously considered case, see eqn
(10). The opposite partial case of particles traveling across the
stripes side by side, w ¼ p/2, is always repulsive, which is seen
This journal is © The Royal Society of Chemistry 2014



Fig. 6 (a) Schematic showing a pair of interacting particles driven above the FGF and having arbitrary positions in the plane (x, y). (b) Phase
diagram in the plane (w, b), showing the regions of attraction and repulsion. Here, w denotes the polar angle introduced as shown in panel (a).
Scattered data are experimental points and the solid line is according to eqn (15).
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from eqn (13), since _R > 0. A repulsion–attraction diagram,
which demonstrates agreement between the theory and exper-
iment, is shown in Fig. 6(b).

We note that this analysis implies that the angle w is
constant and refers not only to a given position but also to a
given instant of time. However, the polar angle w generally
evolves in time. As follows from eqn (14), it admits two xed
points, w(1)

0 ¼ 0, p and w(2)
0 ¼ �p/2. The rst one, when the

particles move one behind another across the stripes, is stable.
The second one, when the particles travel across the stripes side
by side is unstable. The evolution of the angle is determined by
the sign of sin 2w and we conclude that independent of the
ellipticity b, the particles evolve towards the stable state with
w ¼ 0, p. In other words, the particles tend to reorient such that
the straight line through the centers of particles aligns along the
x axis.
5 Conclusions

In this article, we studied both experimentally and theoretically
the dynamics of interacting paramagnetic colloidal particles
magnetically driven above a stripe patterned garnet lm. We
show that attractive dipolar interactions between propagating
particles become important for distances shorter than d0 � 6
mm for the used eld strength of H0 ¼ 730 A m�1, although this
distance can be tuned by changing the amplitude of the applied
eld H0. When particles approach closer than d0, they form
stable doublets which move at a constant mean speed along the
modulated landscape.

The suggested theoretical model, which describes the slow
dynamics of interacting particles averaged over the fast oscil-
latory time scale, is analytically tractable. It captures the
experimental results quantitatively well. In particular, we gain
insight into the details underlying the interaction, by outlining
an effective interaction potential. These ndings can be used to
extend the model towards more complicated situations,
This journal is © The Royal Society of Chemistry 2014
involving a large number of particles or binary mixtures driven
above a garnet lm. On the other hand, the application of a
similar approach is potentially promising for studying the
transport of interacting particles in other systems using
magnetic structure substrates.46–50

The possibility to tune the sign of the inter-particle interac-
tions and their relative strength in transport at small scales has
potential applications in microuidics and lab-on-a-chip
systems. In particular, it can be used to pick up and capture a
microscopic cargo between attractive particles, transport this
cargo and nally release it at a prescribed location by switching
the attractive interaction to become repulsive.

Furthermore, the use of attractive interactions between the
moving particles can be used to generate longer chains traveling
along the modulated landscapes, as shown for smaller parti-
cles.35 These chains can serve as a model to study uctuations in
driven Brownian worms,51 or novel ratchet effects arising from
condensed particle trains.52–54
Appendix
A Slow dynamics of a single particle

At high frequencies, different time scales naturally present in
the system become well separated and admit the possibility to
reduce the complexity by effectively decoupling the fast and
slow motions.55 The “fast” dynamics are associated with the
external driving with the characteristic time scale sf ¼ 1/f. The
“slow”motion, such as propulsion of a single particle across the
stripes in our system, is the “net” or mean (time-averaged)
response of the system at time scales t [ sf.

We now consider the overdamped motion of a single particle
in the eld H above the substrate, which is described by the
dimensionless potential

Usðx; tÞ ¼ � 8h0

p
e�2pz½u1 cosð2pxÞ þ u2 sinð2pxÞ� (16)
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with u1ðb; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
cosð2p~f tÞ and u2ðb; tÞ ¼ffiffiffiffiffiffiffiffiffiffiffi

1� b
p

sinð2p~f tÞ: To obtain the description for the slow motion
of the particle, we have to perform time averaging of eqn (4)
without thermal noise

_x(t) ¼ �vxUs(x, t) ¼ Fs(x, t), (17)

Fs(x, t) ¼ �16h0e
�2pz[u1 sin(2px) � u2 cos(2px)]. (18)

The problem is considered deterministic, s ¼ 0, because, as
explained in the main text, thermal uctuations are negligible
for high-frequencies, ~f [ ~f c. Following the method of aver-
aging,56–58 we present the solution as a superposition:

x(t) ¼ X(t) + dx(t), dx(t) ¼ ~xe2pi
~f t + ~x*e�2pi~f t, (19)

where X(t) and dx(t) describe the slow (time-averaged over the
period 1/~f of modulation) coordinate and its fast (time-periodic)
counterpart oscillating with the frequency ~f , respectively. The
quickly evolving contribution dx(t), which has to be considered
small compared to X(t), is then represented via the complex
amplitude ~x and its complex conjugated pair ~x*, as in eqn (19).
The complex amplitudes do not explicitly depend on the fast
time ~f t. We note that it is convenient to use exponential
representation of the functions cos(2p~f t) and sin(2p~f t). The
spatially dependent functions cos(2px) and sin(2px) are
expanded using the smallness of dx, according to g(x)¼ g(X + dx)
z g(X) + vxg(X)dx.

Substituting the ansatz eqn (19) into (17), using the
described representations, and retaining the leading terms, we
nd for the complex amplitude:

~xðX Þ ¼ 4h0

p~f
e�2pz

h
i
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
sinð2pXÞ �

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
cosð2pX Þ

i
: (20)

To obtain the equation for X, we perform the time-averaging
of eqn (17). We evaluate the time-averaged contribut-

ions, sinð2pxÞcosð2p~f tÞ ¼ pð~x*þ ~xÞcosð2pXÞ ¼ �ð8h0=~f Þe�2pzffiffiffiffiffiffiffiffiffiffiffi
1� b

p
cos2ð2pXÞ and cosð2pxÞsinð2p~f tÞ ¼ ipð~x*� ~xÞ

sinð2pXÞ ¼ �ð8h0=~f Þe�2pz ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
sin2ð2pXÞ: Here, the over-

lines denote the time averaging over the period of modula-

tion,
���
F ¼ ~f

ð1=~f
0

F dt; and the combinations ~x* + ~x ¼ 2Re(~x)

and i(~x* � ~x) ¼ 2Im(~x) are evaluated via the real and imagi-
nary parts of eqn (20). As a result, the time averaged equation
takes a simple form

v0ðbÞ :¼ c
X¼h cxihf ¼

1

2

ð16h0Þ2
~f

e�4pz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
; (21)

which, being written relative to the maximal speed, vm¼ ~f , gives
eqn (8).

The equation for the slow dynamics of a single particle is
independent of X and t, which means that the particle moves on
the average with a constant speed. Therefore, expression (21) is
interpreted as the mean speed in the sliding regime, valid at
high frequencies and at all b. As follows from eqn (21), the time
averaged motion of a single particle is equivalent to the motion
in the potential of mean force
3922 | Soft Matter, 2014, 10, 3915–3925
Us(X) ¼ �v0X. (22)

It should be noted that time averaging directly the potential
in favor of the equations of motion can lead to misleading
results. For instance, performing the averaging of eqn (16) does
not lead to eqn (22) but results in identically vanishing Us(X),
which incorrectly predicts no motion.
B Magnetic dipolar interactions

In a suspension of magnetic dipoles, each dipole interacts with
the elds produced by all other dipoles. Induced dipole l with
the magnetic moment ml ¼ VcHl interacts with the eld Bl0 ¼
msHl0 generated by particle l0, leading to the dipolar energy Udd¼
�ml$Bl0 ¼ �ml0$Bl. Thus, for a system of dipoles with the
coordinates rl the total magnetic energy can be written as:

Um ¼
X
l

Usðrl ; tÞ þ 1

2

X
l

X
l0sl

Uddðrll0 ; tÞ: (23)

Here, the rst contribution stands for the interaction of each
single dipole with the nonuniformmagnetic eld above the FGF
and the second term describes the dipolar interactions with the
pairwise potential

Uddðrll0 ; tÞ ¼ �msV
2c2

4p

"
3
Hl$rll0Hl0$rll0

rll0 5
�Hl$Hl0

rll0 3

#
; (24)

whereHl ¼H(rl, t), rll0 ¼ rl � rl0, and rll0 ¼ |rll0|. By measuring the
lengths in the scale of l and energy in the units of U0 ¼ VcmsMs

2

as before and accounting for eqn (24), the dimensionless
expression for the total magnetic energy, eqn (23), becomes

Um ¼ �
X
l

Hl
2 � 1

2
a
X
l

X
l0sl

"
3
Hl$rll0Hl0$rll0

rll0 5
�Hl$Hl0

rll0 3

#
: (25)

The dimensionless parameter

a ¼ c

4p

V

l3
¼ c

3

	a
l


3
(26)

determines the strength of dipole–dipole interactions relative to
the energy of interaction with the FGF, U0. For our experimental
system, a z 0.027, if c ¼ 0.53.

Similar to eqn (4), the dynamics of interacting particles as
described by the total magnetic potential in eqn (25) is modeled
via overdamped equations:

crl ¼ � vU

vrl
þ

ffiffiffiffiffiffi
2s

p
xlðtÞ (27)

with hxjl(t)i ¼ 0, hxjl(t)xj0l0(t0)i ¼ djj0dll0d(t � t0), and j, j0 ˛ {x, y}.

Here, U ¼ Um þ ð1=2Þ
X
l

X
l0sl

Uhcðrll0 Þ with the dimensionless

hard-core repulsive interactions approximated by a steep
potential of the Weeks–Chandler–Andersen form:59

UhcðrÞ ¼
43

"�
b

r

�48

�
�
b

r

�24

þ 1

4

#
; if r# 21=24b;

0; if r. 21=24b

:

8>><
>>:
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To simulate eqn (27), we apply a standard algorithm60 and put
the dimensionless interaction strength 3 ¼ 1 and the dimen-
sionless colloid–colloid collision diameter b ¼ 2a/l.
C Slow dynamics of two interacting particles

The interaction potential between the driven particles taking
into account the dipolar interactions is quite complicated, since
it consists of different contributions resulting from the
temporal modulation, the eld of substrates and their interplay,
described in terms of order O (h0

2), O (h0e
�2pz), and O (e�4pz),

respectively. Under our experimental conditions (h0� 1, zx 1),
the mean dri of particles is due to the interplay of temporal
modulation and the eld of substrate. In contrast to the latter,
the leading contribution to the dipole–dipole interaction
potential is to a high accuracy governed by the terms of order
O (h0

2), as caused purely by the temporal modulation.
Evaluating the leading part of the dipole–dipole interaction

potential for a pair of particles with the coordinates rl ¼ (xl, yl)
and l, l0 ˛ {1, 2}, l0 s l (the elevation z is xed) yields:

Uddðr12Þ ¼ ah0
2

"
s1

r3
� s2

�
r12$êx

�2
r5

#
(28)

with the time-dependent functions s1(b, t) ¼ 1 + b cos(4p~f t) and
s2(b, t)¼ (3/2)(1 + b)(1 + cos(4p~f t)). Here, êx ¼ (1, 0, 0) is the unit
vector along the x axis, r12 ¼ r1 � r2, and r ¼ |r12| is the distance
between the particles.

The deterministic dynamics of the pair of particles,
including the motion in the FGF potential, eqn (16), and the
dipole–dipole interactions as in eqn (28), obey the equations:

crl ¼ Fsêx þ ah0
2

r5

" 
3s1 � 5s2

xll0
2

r2

!
rll0 þ 2s2xll0 êx

#
; (29)

where Fs(xl, t) is the force exerted on dipole l by the eld of
substrate, see eqn (18). In the case of no dipole–dipole inter-
action, a ¼ 0, the dynamics of particles reduce to the inde-
pendent but identical one-dimensional translation across the
stripes, as described by eqn (17) and (18), which admit no
relative motion. The relative motion comes into play when the
particles start to interact, a > 0.

To describe the slow dynamics of interacting particles, we
perform the time-averaging of eqn (29). We note that in addition
to fast evolving functions in Fs oscillating with frequency ~f , the
dipole–dipole interactions also excite oscillations with the
double frequency, 2~f , entering via the functions s1 and s2. This
time dependence suggests the corresponding ansatz:

rl(t) ¼ Rl(t) + drl(t), drl ¼ dr
(1)
l + dr

(2)
l , (30)

dr
(1)
l ¼ ~r

(1)
l e2pi

~f t + c.c., dr
(2)
l ¼ ~r

(2)
l e4pi

~f t + c.c., (31)

where Rl ¼ ðXl; YlÞ ¼ ~f
ð1=~f
0

rlðtÞdt denotes the solution averaged

over the fast oscillatory timescales, the superscripts “(1)” and
“(2)” are used to mark the solutions oscillating with the single

(~f ) and double (2~f ) frequency, respectively. The ~r ( j)l stand for the
This journal is © The Royal Society of Chemistry 2014
complex amplitudes and c.c. means the complex conjugate.
Note that the leading part of solution for r(1)l ¼ (~x(Xl), 0) is
determined by the previously considered case a ¼ 0 with ~x(Xl)
given by ~x(Xl) in eqn (20).

Before we proceed to the derivation of the complex ampli-
tudes r(2)l , we expand all spatially dependent functions in eqn
(29) as g(r12) z g(R12) + vr12g(R12)$dr12. Retaining the leading
contributions, for the evolution of the solution evolving with
the double frequency we obtain the equations: vtdr

ð2Þ
l ¼

ah0
2=R5½ð3~s1 � 5~s2Xll0

2=R2ÞRll0 þ 2~s2Xll0 êx�:Here, ~s1¼ b cos(4p~f t)
and ~s2 ¼ (3/2)(1 + b)cos(4p~f t) are the quickly evolving parts of
functions s1 and s2 oscillating with the double frequency, 2~f .
Using the exponential representation of the function cos(4p~f t)
and taking into account the explicit temporal dependence in
dr(2), see eqn (31), we solve the above equations for the complex
amplitudes to arrive at:

~r
ð2Þ
l ¼ � 3iah0

2

16p~f R5

�
pðb;Rll0 Þ � 5ð1þ bÞXll0

2

R2
Rll0

�
; (32)

with p ¼ (2(1 + 2b)Xll0, 2bYll0). From eqn (32) for ~y(2)l we see that
oscillations along the stripes of the FGF occur only if the particles
have different y coordinates, Y12 s 0. For a pair of particles
moving across the stripes one behind another no oscillations
transverse to the propagation direction take place.

The relative contribution of the quickly oscillating solutions
scales as: |~r(2)l |/|~r(1)l | x ah0e

2pz/R4. For our system, the
enumerator can be of order 1. This means that when particles
are widely separated, R [ 1, the fast dynamics correspond to
oscillations (around the time-averaged solution) with the
frequency ~f . As long as particles come closer, the relative
amplitude of oscillations with the double frequency increases
and at separations about a few diameters, the fast dynamics
present the superposition of oscillations with both frequencies,
~f and 2~f , around the slowly evolving state.

We are now ready to gure out the leading contributions into
the time-averaged equations. Taking into account the solutions
that determine the fast dynamics, we average over time eqn (29)
and arrive at the equations:

c
Rl ¼ v0êx þ ah0

2

R5

" 
3S1 � 5S2

Xll0
2

R2

!
Rll0 þ 2S2Xll0 êx

#
; (33)

where v0 is given by eqn (21) and S1¼ �s1¼ 1, S2¼ �s2¼ (3/2)(1 + b)
are the time averaged counterparts of the functions s1 and s2.

The time-averaged effect of dipole–dipole interaction of a
pair of particles is described by the effective potential:

UddðR12Þ ¼ ah0
2

R3

�
1� 3ð1þ bÞ

2

X12
2

R2

�
; (34)

where R12 ¼ R1 � R2 ¼ (X1 � X2, Y1 � Y2) and R ¼ |R12|. Alter-
natively, if we introduce the polar angle w such that R12 ¼
R(cos w, sin w), then:

UddðR;wÞ ¼ ah0
2

R3

�
1� 3

2
ð1þ bÞcos2 w

�
: (35)

Finally, we note that the same effective potential, eqn (34),
would follow from eqn (28), if we naively replaced functions s1,
Soft Matter, 2014, 10, 3915–3925 | 3923
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s2 and all the coordinates by their time-averaged counterparts.
This result, however, is not obvious a priori, before the order of
magnitude of the oscillating contributions is evaluated. We
have also made a more careful analysis of other time averaged
contributions such as, e.g., the effects of the double frequency
harmonics on the single particle motion and of the substrate
eld on the dipole–dipole interaction potential. The analysis
shows that all these contributions present only small correc-
tions to the leading one, as obtained in this section.
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