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Abstract
We develop a theory describing how a convectively unstable active field in an open flow is
transformed into absolutely unstable by local mixing. Presenting the mixing region as one
with a locally enhanced effective diffusion allows us to find the linear transition point to an
unstable global mode analytically. We derive the critical exponent that characterizes weakly
nonlinear regimes beyond the instability threshold and compare it with numerical simulations
of a full two-dimensional flow problem. The obtained scaling law turns out to be universal as
it depends neither on geometry nor on the nature of the mixing region.

PACS numbers: 47.54.−r, 47.70.−n, 89.75.Kd

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

In many geophysical and laboratory flows active chemical
and biological processes occur. These active processes are
crucially dependent on the nature of the flow. Especially,
important from the theoretical point of view becomes
understanding the role of mixing. As we demonstrate below,
even localized region of strong mixing introduced in the
laminar flow is able to significantly change the overall picture
of activity. Because the active processes accompanied by
mixing are widespread, the outcomes of our analysis are
highly relevant to practically important problems varying
from chemical reactions in micro-mixers to plankton growth
in ocean, see [1] and references therein.

What turns out to be generic, the active processes quite
often occur in an open rather than in a closed geometry.
Here, the main issue is whether the throughflow is stronger
or weaker than the activity. One has to compare the velocity
of the throughflow with the velocity of the activity spreading
due to diffusion. If the throughflow is stronger, the activity
is blown away like a candle flame in a strong wind, in
the opposite case sustained activity can be observed [2–4].
This simple picture is valid, however, only for homogeneous
media. Often additional vortexes are superimposed on a
constant throughflow, due to, e.g. wakes behind islands in
ocean currents or mixing enforced by revolving fan blades
in laboratory experiments. We want to study under which

conditions such an additional kinematic mixing in a strong
open flow can lead to a transition to sustained activity, and to
characterize this transition quantitatively.

Our main model is a reaction–advection–diffusion
equation for the dimensionless concentration of an active
scalar field u(r, t)

∂u

∂t
+ [V + W(r, t)] · ∇u = D0∇

2u + au(1 − u p). (1)

Here, V = (V, 0, 0) is a constant throughflow in the
x-direction, D0 is molecular diffusion of the scalar field.
Activity is assumed to be of the simplest form: a linear
growth with rate a with saturation at u = 1. The nonlinearity
index p is typically integer (1 or 2) for chemical reactions,
while for biological populations a wide range of values of
p has been recently reported [5]. Mixing is described by
a spatially localized incompressible velocity field W(r, t),
its intensity is denoted as W . Note that in the absence
of fluid flow equation (1) is reduced to the famous
Kolmogorov–Petrovsky–Piskunov–Fisher (KPPF) model of
an active medium with diffusion (see, e.g., [6] for original
references, analysis and applications of KPPF), while for a =

0 equation (1) describes linear evolution of a passive scalar in
a flow. Model (1) can be used for the description of biological
activity, where u is, e.g., concentration of a growing plankton,
advected by oceanic currents [7]; for a possible laboratory
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Figure 1. (a): Quasi-one-dimensional open flow with a localized
mixing zone. Panels (b) and (c) illustrate the construction of the
nonlinear global mode, they show qualitative profiles u(x) and
z(x)= u−1 du

dx in the linear approximation at criticality (dashed line)
and in nonlinear regime slightly beyond criticality (full line). In the
latter case, the profile is nearly linear for x < xr but deviates due to
nonlinear terms for x > xr , see discussion of equation (16). Regions
‘source,’ ‘tail’ and ‘plateau’ are explained in the text.

realization see recent experiments with an autocatalytic
reaction in a Hele–Shaw cell with a throughflow [8].

In the absence of flow, the diffusion causes the active
state to spread forming eventually a front with velocity
Vf = 2

√
aD0 [9]. Thus, for vanishing mixing W = 0, the

activity is blown away provided V > Vf. For this parameter
range, the instability in equation (1) is convective and in
the absence of external sources, no activity is observed in
the medium. A nontrivial state is, however, possible if there
is a localized source of the field u: then a growing tail
stretches from this source in the downstream direction, where
it eventually saturates at u = 1. The linearized problem with a
point (δ-function) source of intensity ε can be readily solved,
yielding

u(x)= ε(Ṽ )−1 exp[xV/2D0] exp(−|x |Ṽ /2D0), (2)

in one-dimensional setups and

u(r)= ε(2πD0)
−1 exp[xV/2D0]K0(|r|Ṽ /2D0), (3)

in two dimensions (where K0 is the modified Bessel function,
Ṽ = (V 2

− V 2
f )

1/2). Note that in both solutions u ∼ exp(µ∓x)
as x → ±∞, where µ± = (2D0)

−1(V ± Ṽ ).
In this paper, we demonstrate that, beyond some critical

intensity Wcr, a localized mixing W(r, t) turns the convective
instability locally into the absolute one, which results in
a stationary (in statistical sense) profile of u (see figure 1
for a sketch of the profile and figures 4 and 7 below for
numerical examples). Beyond criticality W > Wcr, the mixing
region acts as an effective source of the field, in figure 1
this region is denoted as a ‘source’. A ‘tail’ where the field
grows exponentially as in (2) and (3) extends downstream
of the source. Further downstream stretches the ‘plateau’

domain, where u = 1. Our main quantitative result, obtained
by matching solutions in these three domains, is the critical
exponent β relating the intensity of the effective source εeff to
the mixing intensity: εeff ∼ (W − Wcr)

β .
To develop the theory, we use the concept of global

modes [10–12]. In this concept, a self-sustained non-advected
pattern arises due to inhomogeneities of the system. Typically,
one considers inhomogeneities of the growth rate a: if a =

a(r) has a hump where locally the front velocity is large
V loc

f > V , then a global mode appears, located at this hump
and downstream. In this paper, we are interested in another
mixing-based mechanism of a global mode appearance. It
can be easily understood if the concept of effective diffusion
(see, e.g., [13]) is used to describe the mixing term in (1).
In this approach, we phenomenologically introduce effective
diffusivity D(r)= D0 + Dmix(r) that accounts for the coarse
grained mixing dynamics, and write instead of (1) an equation
with a non-homogeneous diffusion

∂u

∂t
+ V · ∇u = ∇[D(r)∇u] + au(1 − u p). (4)

A hump of diffusivity D(r) leads to an increase of the
local front velocity Vf, and one expects that when the front
propagation prevails over the throughflow, a stationary global
mode can appear, producing a mixing-induced sustained
structure. We focus on a geometry shown in figure 1(a): in
a constant open flow there is a localized region of strong
mixing, which, as we will see below, is not necessarily
chaotic or turbulent. The theory below will be developed
for a one-dimensional case, which is relevant, e.g., for
flows in a micropipe; the results will be supported by
numerical simulations of two-dimensional flows. We restrict
ourselves to this case because of computational simplicity,
and also because two-dimensional flows are relevant for
many geophysical and laboratory (especially in microfluidics)
experimental situations.

2. Linear stability analysis

2.1. Effective diffusion model

We start with a linear analysis of a one-dimensional situation,
described by the linearized at u = 0 equation (4):

∂u

∂t
+ V

∂u

∂x
=
∂

∂x

[
D(x)

∂u

∂x

]
+ au. (5)

We look for an exponentially growing in time solution and
with an ansatz u(x, t)∼ exp[λt +

∫ x z(ξ)dξ ] obtain

dz

dx
= −z2 +

V −
dD(x)

dx

D(x)
z −

a − λ

D(x)
. (6)

As |x | → ∞, we have a homogeneous medium with D = D0,
here the solution should tend to values z0

±
= (2D0)

−1(V ±√
V 2 − 4(a − λ)D0) at which the rhs of (6) vanishes. More

precisely, as x → −∞, we have z → z0
+ and as x → ∞,

we have z → z0
−

. With these two boundary conditions one
easily finds the solution of (6) numerically, matching at z = 0
integrations starting at large |x | from the values z0

±
. In a

particular analytically solvable case of a piecewise-constant
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Figure 2. The critical line for model (9). Dashed line denotes the
minimal radius for the high-diffusive spot

√
a/D0 Rmin ≈ 1.905.

diffusivity: D = D0 for |x |> l and D = D1 > D0 for |x |< l,
one can perform the integration analytically and obtain the
equation for the growth rate λ:

l =
2D1√

4(a − λ)D1 − V 2
arctan

√
V 2 − 4(a − λ)D0

4(a − λ)D1 − V 2
. (7)

The value λ= 0 corresponds to the onset of global instability,
in this case, (7) gives the relation between the critical values
lcr and D1cr:

lcr =
2D1cr√

4aD1cr − V 2
arctan

√
V 2 − V 2

f

4aD1cr − V 2
. (8)

From (8) it follows that D1cr → ∞ as lcr → lmin = Ṽ /(2a).
In other words, there exists a minimal size of the mixing
region, so that for l < lmin even a very strong mixing, with
a very large effective diffusion, cannot create a global mode
(the same is true for a smooth profile of D(x); note also
that the size of the mixing region is not limited from above).
This is in contrast to the situation when the global mode
is induced by a local hump of the growth rate a (cf [15]):
here one can obtain instability even when a(x) is highly
localized (a delta-function), a global mode then looks as in (2)
and (3).

A similar analysis can be performed for a
two-dimensional inhomogeneous linear reaction–advection–
diffusion equation

∂u

∂t
+ V

∂u

∂x
= ∇[D(r)∇u] + au, (9)

where we assume D = D1 for r < R and D = D0 for
r > R. Presenting the solutions in the inner and outer
domains as ui = ψi(r, θ) exp[(2D1)

−1V r cos θ + λt] for r <
R and uo = ψo(r, θ) exp[(2D0)

−1V r cos θ + λt] for r > R, we
obtain equations for ψi,o whose solutions can be written down
as series in Bessel functions Jm and Km . Matching these series
at r = R leads to rather cumbersome expressions in terms of
expansion coefficients. As a result, the eigenvalue problem
reduces to a matrix equation which we solved numerically.
In figure 2, we show the critical line (corresponding to the
condition λ= 0) on the plane (R, D1) for V/Vf = 3/2. One
can see that, similar to the one-dimensional case, there exists
a minimal radius of the higher diffusivity spot, so that for
R < Rmin the global mode cannot arise.
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Figure 3. Growth rate characterizing stability of the global mode
mixed by the flow with a stationary vortex (11).

2.2. Non-uniform flow

Now, we discuss the linear stability not in the framework
of the effective diffusion model (4), but in the full
reaction–advection–diffusion problem as in equation (1).
After the linearization, we arrive at a linear stability problem

∂u

∂t
+ [V + W(r, t)] · ∇u = D0∇

2u + au, (10)

which is non-stationary if the velocity field W is
time-dependent. For a time-independent W, the stability
is defined by the growth rate λ as before. For time-dependent
fields W, the proper way to determine the stability is to
calculate the largest Lyapunov exponent (LE)3=

〈
d
dt ln ‖u‖

〉
.

This can be done numerically, as described in [16].
Noteworthy, in this consideration, is that we are not restricted
to a deterministic flow, as the LE can be calculated also for a
randomly or chaotically time-dependent field W(r, t).

We first calculate the growth rate λ for a linearized quasi-
one-dimensional reaction–advection–diffusion equation (10)
subject to a constant open flow with a superimposed stationary
vortex, described by a stream function

91(x, y)= V y + W [cos(2πy)− 1] exp(−x2b−2). (11)

We fix parameters V = 1, b = 1 and evaluate the growth rate
for different molecular diffusion constants D0 and vortex
intensities W (figure 3). Note that the parameter a simply
shifts λ, therefore we plot λ− λ0, where λ0 = a − V 2/(4D0)

is the growth rate for a non-mixed flow with W = 0.
We see that the mixing-induced enhancement of field growth
is most pronounced for small diffusion and saturates at
W ≈ 0.5.

The role of a mixing vortex can be understood in the
following way. In the case of a passive advection–diffusion
process and for relatively small molecular diffusivity, the field
is trapped by the vortex. In the limit of vanishing diffusivity
the field u outside the vortex is blown away, whereas
everything inside the vortex is trapped and cannot escape for
an infinitely long time, as e.g. in [17]. As a result, a pattern
in the form of a cloud arises. Because of diffusion, such a
pattern is no longer stable and its concentration gradually
decays. Hence, under an advection–diffusion process, the

3
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Figure 4. An example of the global mode in the quasi-one-
dimensional flow (11) with V = 1, W = 0.45, evaluated for b = 1,
D0 = 0.01, a = 1.5 and p = 1. Higher and lower values of the
active field concentration are plotted with the lighter and darker
colours, respectively.
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Figure 5. Lyapunov exponent characterizing stability of the global
mode mixed by periodically blinking vortex (12).

cloud exists only for a limited time. However, if we now take
into consideration activity, this time is spent by the active field
to grow, which is enough to compensate the loss caused by
diffusion. Thus, a self-sustained pattern is born, figure 4.

Next, we calculate the LE for a linearized two-
dimensional reaction–advection–diffusion equation (10) with
a constant open flow and a superimposed oscillating vortex,
described by the stream function

92(x, y, t)= V y + W exp[−(x2 + y2)R−2] cos(ωt). (12)

Here, we fix V = 1, R = 1 and ω = 2, and calculate the LE
3, see figure 5. As before, we plot 3−30, where 30 =

a − V 2/(4D0) is the LE for a non-mixed flow with W = 0.
Again, the mixing-induced enhancement of field growth is
most pronounced for small diffusion. In contrast to the
previous case the dependence on W is non-monotonic and has
a maximum at W ≈ 3. This is the mixing strength at which
a chaotic saddle [1] in the Lagrangean particle trajectories
appears. A further increase of the vortex intensity does not
lead, however, to significant growth of the LE.

3. Nonlinear analysis: a universal scaling law

Now, we develop a nonlinear theory of the global mode. It
is clear that the nonlinear saturation stops the exponential
growth of a slightly supercritical linear mode and leads to
a nonlinear solution with finite amplitude. Our aim is to
describe the dependence of this amplitude on the deviation
from criticality. First, we notice that the very notion of the
amplitude is here nontrivial. Indeed, the nonlinear solution
looks as in figure 1(b) (cf figure 7 below); it saturates to u = 1

in the downstream direction. However, outside the mixing
region the field looks like a solution caused by a localized
field source. Thus, we can take the effective intensity of this
source εeff, which is proportional to the characteristic field
amplitude in the mixing region u(0) (see relations (2) and (3)),
as the order parameter of the transition. The deviation from the
criticality we will measure with the growth rate λ, for which
holds λ∝ W − Wcr in the full model (1) or λ∝ D − Dcr in
model (4).

We will consider the simplest possible setup, namely the
nonlinear modification of one-dimensional equation (5):

∂u

∂t
+ V

∂u

∂x
=
∂

∂x

[
D(x)

∂u

∂x

]
+ au(1 − u p). (13)

We look for a stationary global mode u(x), and rewrite this
equation as the system

dz

dx
= −z2 +

V −
dD(x)

dx

D
z −

a

D
+

a

D
u p. (14)

du

dx
= zu. (15)

We consider this system separately in two spatial domains.
The first, linear region, includes the inflow and the mixing
domains (‘source’ in figure 1): −∞< x < xr , where the field
u(x) remains small. In the second, outflow region xr < x <
∞, the field u further grows (‘tail’) and nonlinearly saturates
(‘plateau’). In the linear region, because of smallness of the
field, we can neglect u p in (14), thus we obtain an equation
similar to (6). The only difference is that because we look
for a stationary solution, in (14) the term ∼ λ is absent. Near
criticality, where λ is small, we can consider this term as a
perturbation, therefore the solution of (14) in the linear region
is close to the solution of equation (6); it has the asymptotic
z → µ+ as x → −∞. Due to the perturbation term ∝ λ, at
the right border of the linear region z deviates from µ−:
the deviation µ− − z(xr ) is proportional to λ, and, thus, to
D − Dcr. At xr , the field u is small and u(xr )∝ u(0).

Next, we consider full equations (14) and (15) in the
nonlinear region x > xr . Here, the solution should tend as
x → ∞ to the saddle fixed point u = 1 and z = 0. Thus,
starting integration from large values of x in the negative
direction, we have to follow the stable manifold of this saddle
and match this solution at x = xr with that obtained above.
Because the value to be matched z(xr ) is very close to µ−, in
the region where the solution (z, u) approaches (z(xr ), u(xr ))

we can write z2
≈ µ2

−
− 2µ−1z to obtain

d

dx
1z = (µ+ −µ−)1z −

a

D
u p(xr )epµ−(x−xr ). (16)

Here, since 1z = µ− − z(x) is small, we have approximated
the solution of (15) as u ≈ u(xr )eµ−(x−xr ). Because linear
inhomogeneous equation (16) is solved in the negative
in x-direction, the solution follows the slowest exponent:
1z ∝ exp[γ (x − xr )], where γ = min(µ+ −µ−, pµ−).

At criticality, the region of validity of the exponential
solution 1z ∝ exp[γ (x − xr )] becomes very large. Thus, it
is dominant for small deviations from criticality λ, therefore
we can estimate the coordinate xs at which the field u

4
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saturates (i.e. we reach the state u ≈ 1 and z ≈ 0) from
the relations above: from −µ− ≈ (z(xr )−µ−)eγ (x s−xr ) it
follows (xs − xr )≈ −γ−1 ln(µ− − z(xr )). Substituting this in
the expression for u(x), we obtain u(xr )∝ (µ− − z(xr ))

µ−/γ .
Now, we take into account that µ− − z(xr )∝ D − Dcr, and,
because the evolution of u in the interval 0< x < xr only
weakly depends on the criticality, εeff = u(0)∝ u(xr ). The
final expression for the scaling law of the amplitude of the
global mode thus reads

εeff ∝ λβ, β =
µ−

γ
= max

(
µ−

µ+ −µ−

,
1

p

)
. (17)

The critical index β depends only on the nonlinearity index p
and on the dimensionless velocity v = V/Vf:

β =


p−1, if v >

2 + p

2
√

1 + p
,

v−
√
v2 − 1

2
√
v2 − 1

, if 1< v <
2 + p

2
√

1 + p
.

(18)

This main result of our paper can be physically interpreted
as follows. The exponent β is determined solely by the
nonlinearity index p if the throughflow velocity is much
larger than the front velocity (v large). Here, the field in the
plateau domain (see figure 1) is effectively uncoupled from
the source, and the saturation of the instability is due to the
local nonlinearity at the source. For a small throughflow
velocity (v close to one), the plateau state interacts with the
source via the tail. Due to this ‘remote control’, the field at the
source is saturated more efficiently than due to nonlinearity,
here the exponent β is determined solely by the form of the
tail, which depends on the velocities ratio v.

Below we check formula (18) with direct numerical
simulations of model (1). A stationary vortex (12) with
ω = 0 and R = 1 was imposed on a constant flow with
V = 1. Keeping the diffusion constant fixed D0 = 0.3, for
different field growth rates a we have found, from the
linearized equations, the critical vortex intensities Wcr at
which the global mode first becomes unstable. Then, we
solved full nonlinear equations close to criticality and
found the exponent β according to (17). The stationary
problem was solved with a finite difference method in a
domain 06 x 6 60 and 06 y 6 40 with periodic boundary
conditions in y and conditions u(0)= 0, ∂u

∂x (60)= 0. The
results are presented in figure 6, they are in very good
agreement with the theoretical prediction (17) and (18).
Figure 7 shows the example of the stationary mode appearing
beyond the instability threshold. A similar analysis performed
for the quasi-one-dimensional flow (11) also provides very
good agreement with formula (18).

4. Conclusions

We have described the mixing-induced transition from a
convectively unstable active field in an open flow to a
persistent global mode. Our theoretical approach is based on
the representation of the mixing region as a domain with
locally enhanced effective diffusion. For a nonlinear regime
close to criticality, we have derived the critical exponent β
(18) that depends only on two parameters of the system: the
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p = 3/2
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Figure 6. The critical exponent β calculated for the model (1)
(symbols), compared with theoretical prediction (18) (lines).
One can clearly see the crossover between the two regimes of the
field saturation in dependence on parameter a, the latter is related to
v in (18) via v ∼ a−1/2.
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Figure 7. The active field behind a vortex with W = 4 placed at
x = y = 0, for V = 1, a = 0.5, D0 = 0.3 and p = 2.

dimensionless flow velocity v normalized by that of the
front, and the nonlinearity index p. For large velocities, the
critical exponent depends only on the system’s nonlinearity,
which means a local in space saturation of the instability.
For small velocities, the exponent is a function of
velocity, here the growing downstream tail of the active
field imposes the saturation. Notably, this prediction of
the one-dimensional theory is in good accordance with
two-dimensional calculations. The obtained results are
independent of the geometry and the nature of the mixing
region and for these reasons are expected in different systems
and at different scales. The generic nature of our findings
indicates that turbulent mixing can play a key role in open
flows that involve active chemical and biological processes.
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