FU Berlin: SoSe 12 (Lineare Algebra und Analytische Geometrie I, Caiazzo/Weber)

Definitionen-Zettel Nr. 13: Affine Abbildungen

Lernziel: Affine Abbildungen und Teilverhältnis

Definition 13.1: Sei \mathcal{G} eine Gerade, und seien $P_0, P_1, Q \in \mathcal{G}$. Das **Teilverhältnis**

 $TV(P_0, P_1, Q) = \frac{\overline{P_0 Q}}{\overline{P_1 P_0}}$

entspricht die $\mathit{relative\ Distanz}$ (oder die relative Koordinate) von Q die Gerade entlang.

Definition 13.2: Seien $\mathcal{A}(V)$, $\mathcal{A}'(V')$ affine Räume. Eine Abbildung $F: \mathcal{A} \to \mathcal{A}'$ heißt **affine Abbildung** wenn es gilt

$$F\left(\sum_{i=1}^{n} \alpha_i P_i\right) = \sum_{i=1}^{n} \alpha_i F(P_i)$$

für jede affine Kombination von $P_1, \ldots, P_n \in \mathcal{A}$.

Folgende Definition ist äquivalent: die Abbildung $F: \mathcal{A} \to \mathcal{A}'$ ist eine affine Abbildung, genau wenn eine lineare Abbildung $f: V \to V'$ existiert, so daß

$$F(P + \mathbf{v}) = F(P) + f(\mathbf{v}), \forall P \in \mathcal{A}.$$

Theorem [13-1]: Parallelität von Geraden und Teilverhältnis sind *invariant* unten affine Abbildungen.