FU Berlin: WiSe 10/11 (Lineare Algebra und Analytische Geometrie I, Weber)

Definitionen-Zettel Nr. 1

Lernziel: Mengen und Abbildungen.

Definition 1.1: Unter einer **Menge** verstehen wir die Zusammenfassung von wohlunterschiedenen Objekten (den **Elementen**) unserer Anschauung oder unseres Denkens zu einem Ganzen. Besitzt eine Menge keine Elemente, so nennen wir sie **leere Menge** und schreiben $\{$ $\}$. Ist x ein Element der Menge A, so schreiben wir $x \in A$, andernfalls schreiben wir $x \notin A$.

Definition 1.2: A heißt **Teilmenge** von B, geschrieben $A \subseteq B$, genau dann, wenn aus $x \in A$ auch $x \in B$ folgt. Ist A Teilmenge von B und sind A und B verschieden, dann heißt A **echte Teilmenge** von B, geschrieben $A \subseteq B$.

Definition 1.3: Die **Schnittmenge** von A und B, geschrieben $A \cap B$, ist definiert als

$$A \cap B = \{x : x \in A \text{ und } x \in B\}.$$

Zwei Mengen heißen **disjunkt**, wenn $A \cap B = \{\}$.

Definition 1.4: Die **Vereinigungsmenge** von A und B, geschrieben $A \cup B$, ist definiert als

$$A \cup B = \{x : x \in A \text{ oder } x \in B\}.$$

Sind die Mengen A und B disjunkt, so schreibt man für die Vereinigungsmenge auch $A \dot{\cup} B$.

Definition 1.5: Die **Restmenge** von A bezüglich B, geschrieben $A \setminus B$, ist definiert als

$$A \setminus B = \{x : x \in A \text{ und } x \notin B\}.$$

Definition 1.6: Die **symmetrische Restmenge** von A und B, geschrieben $A\Delta B$, ist definiert als

$$A\Delta B = (A\backslash B) \cup (B\backslash A).$$

Definition 1.7: Das **kartesische Produkt** von A und B, geschrieben $A \times B$, ist definiert als die Menge aller Paare

$$A \times B = \{(a, b) : a \in A \text{ und } b \in B\}.$$

Definition 1.8: Eine **Zuordnung/Relation** R auf den Mengen A und B ist eine Teilmenge $R \subseteq A \times B$. Ist (a,b) ein Element einer Relation R der Menge A mit der Menge A ("sich selber"), dann schreibt man auch $a \sim$ b.

Definition 1.9: Eine Zuordnung auf den Mengen A und B, bei dem zu jedem Element a aus A genau ein Element b aus B zugeordnet wird, nennt man **Abbildung/Funktion** f. Für eine Abbildung schreibt man auch $f: A \to B$. Auf der Ebene der Elemente schreibt man $a \mapsto b$ oder $a \mapsto f(a)$ oder b=f(a).

Definition 1.10: lst $f: A \rightarrow B$, so ist das **Bild** von f definiert als folgende Menge

$$im(f) = \{b \in B : Es \ gibt \ ein \ a \in A \ mit \ f(a) = b\}.$$

Das **Urbild** eines Elementes b von B unter der Abbildung f ist definiert als

$$f^{-1}(b) = \{a \in A: f(a) = b\}.$$

Definition 1.11: Sei $f: A \rightarrow B$ eine Abbildung.

- 1. f heißt **injektiv**, wenn für alle $a \in A$, $b \in A$ aus der Gleichung f(a)=f(b), stets a=b folgt.
- 2. f heißt **surjektiv**, wenn es zu jedem $b \in B$ ein $a \in A$ gibt, so dass f(a)=b.
- 3. f heißt bijektiv, wenn f injektiv und surjektiv ist.