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Abstract Spectral deferred correction methods for solving stiff ODEs are known to con-
verge reasonably fast towards the collocation limit solution on equidistant grids, but show
a less favourable contraction on non-equidistant grids such as Radau-IIa points. We inter-
prete SDC methods as fixed point iterations for the collocation system and propose new
DIRK-type sweeps for stiff problems based on purely linear algebraic considerations. Good
convergence is recovered also on non-equidistant grids. The properties of different variants
are explored on a couple of numerical examples.
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1 Introduction

Spectral deferred correction methods (SDC) for solving ODEs are iterative schemes based
on approximately integrating defect equations with simple low order methods. They have
been introduced by Dutt, Greengard and Rokhlin [9] as a more directly derived variant of
the classical iterated defect correction methods [11, 23]. One of the main differences is the
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derivation in terms of the Picard integral equation instead of the differential equation itself.
A very similar approach, but staying closer to the classical defect correction structure, has
been suggested by Auzinger et al. [1–3].

SDC methods can be and have been interpreted as quite a number of different methods.
For a fixed number of sweeps, they are foremost Runge-Kutta methods, the properties of
which, such as order or accuracy and stability domains, have been studied extensively [7,9].
Applied to nonlinear differential equations, they can be seen as Newton-like methods for
solving the collocation system. Applied to the linearized system, they form preconditioners
for Krylov methods [5,14,15] or fixed point iterations in their own right [11]. Recently, SDC
methods have also been used to construct efficient time-parallel solvers [6, 10].

The interpretation of SDC methods as linear fixed point iterations will be presumed
here. Convergence results for deferred correction methods based on the contractivity of
linear fixed point iterations are scattered throughout the literature, we mention just [2,11,
14, 15, 21]. While this perspective has been used to analyze various SDC methods, it does
not appear to have been used for the construction of efficient SDC variants. This is the aim
pursued in this work. The ultimate motivation and intended application is the application
to reaction-diffusion equations such as cardiac excitation [4], the properties of which are to
be taken into account. In particular we restrict the attention to negative real eigenvalues
of the Jacobian and to the occurence of very stiff components. Moreover, we anticipate
the use of iterative solvers for the implicit basic steps and neglect the potential advantage
of reusing factorizations of the Jacobian as considered, e.g., in [2]. In Section 2 we will
introduce the notation of SDC methods used here from the perspective of linear algebra.
This will be exploited in Sections 3 and 4 for the construction of specialized correction sweeps
with diagonally implicit Runge-Kutta (DIRK) structure. Stability and accuracy domains
of the resulting methods are experimentally investigated in Section 5. Finally, numerical
experiments are performed at three different ODE systems with different properties in
Section 6, illustrating the different convergence properties of the constructed methods.

2 A linear algebra view on SDC convergence

First we will recollect spectral deferred correction methods in two variants, mainly to intro-
duce a consistent notation. The first one is based on a direct defect equation formulation,
close in spirit to the “classical” defect correction methods, and the second one relies on
the equivalent Picard equation as introduced in [9]. Subsequently, we will interprete SDC
methods as fixed point iterations for solving linear collocation equations and investigate
their convergence properties.

2.1 Spectral deferred correction methods

We consider approximate solutions of the initial value problem

ẏ(t) = f(y(t), t), y(0) = y0 (2.1)

on the interval [0, τ ].
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Spectral differentiation: DSDC. With an approximate polynomial solution y0 ∈ Pn at hand,
the error δ = y − y0 satisfies the defect equation

δ̇(t) = f(y(t), t)− ẏ0(t) = f(y0(t) + δ(t), t)− ẏ0(t), δ(0) = 0, (2.2)

which can be approximately solved by integration with a simple time stepping scheme on
a time grid 0 = t0 < t1 < · · · < tn ≤ τ . Popular choices are equidistant nodes, or Gauß
and Radau points. Let τi = ti − ti−1 for i = 1, . . . , n. Using the implicit Euler scheme, one
obtains for δi ≈ δ(ti) and y0i = y0(ti)

δi = δi−1 + τi
(
f(y0i + δi, ti)− ẏ0i

)
, i = 1, . . . , n, (2.3)

starting at δ0 = 0. Linearization around y0, i.e. substituting f(y0i + δi, ti) by f(y0i , ti) +
f ′(y0i , ti)δi yields the linearly implict scheme

(I − τif ′(y0i , ti))δi = δi−1 + τi
(
f(y0i , ti)− ẏ0i

)
, i = 1, . . . , n. (2.4)

The derivatives ẏ0i can be obtained as a linear combination of the values y0i ,

ẏ0i = τ−1
n∑
j=1

Dd
ij(y

0
j − y0), i = 1, . . . , n,

where the coefficients Dd
ij = L′j(ti) of the spectral differentiation matrix Dd ∈ Rn×n are

given in terms of the Lagrange polynomials Lj ∈ Pn with respect to the normalized time
grid 0, t1/τ, . . . , tn/τ .

A usually better approximation of the solution is then y1 ∈ Pn given by

y1(t) = y0(t) +

n∑
i=1

δiLi(t/τ), i.e. y1i = y0i + δi. (2.5)

Of course, this correction scheme can be iterated. If this fixed-point iteration converges, the
limit value y∗ ∈ Pn satisfies the collocation conditions

ẏ∗(ti) = f(y∗(ti), ti) for i = 1, . . . , n, y∗(0) = y0, (2.6)

and is therefore the solution of an implicit Runge-Kutta method of collocation type.

Note that the numerical differentiation realized byDd is ill-conditioned, which, according
to [9], is one of the reasons why the DSDC approaches are unpopular and should not be
used for large n. It is included here to highlight the structural symmetry of differential and
quadrature-based SDC methods in this and the next section.
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Spectral quadrature: QSDC. The defect equation (2.2) is easily tranformed into the equiv-
alent Picard equation

δ(t) =

∫ t

s=0

(f(y0(s) + δ(s), s)− ẏ0(s)) ds. (2.7)

Following the derivation in [14], we obtain

δ(ti) = δ(ti−1) +

∫ ti

s=ti−1

(f(y0(s) + δ(s), s)− f(y0(s), s)) ds

+

∫ ti

s=ti−1

f(y0(s), s) ds− (y0i − y0i−1), i = 1, . . . , n.

Approximating the first integral by a simple numerical quadrature, e.g., right-looking rect-
angular rule, and the second one by the canonical quadrature rule on the nodes t1, . . . , tn,
exact for polynomials of degree at most n− 1, one obtains

δi = δi−1 + τi
(
f(y0i + δi, ti)− f(y0i , ti)

)
+ τi

n∑
j=1

Sqijf(y0j , tj)− (y0i − y0i−1), (2.8)

again starting at δ0 = 0. Linearization around y0 yields the linearly implicit scheme

(I − τif ′(y0i , ti))δi = δi−1 + τi

n∑
j=1

Sqijf(y0j , tj)− (y0i − y0i−1). (2.9)

An improved approximation is obtained as before by (2.5). As is apparent from (2.8), any
fixed point satisfies the collocation conditions (2.6) as long as the quadrature Sq is exact
for polynomials of degree up to n− 1, which is the case for

Sqij =
τ

τi

∫ ti/τ

t=ti−1/τ

L̂j(t) dt, i, j = 1, . . . , n,

in terms of the Lagrange polynomials L̂j ∈ Pn−1 on the normalized grid t1/τ, . . . , tn/τ .

The quadrature based formulation has been introduced in [9], and named “spectral
deferred correction” method.

Remark 2.1 In favor of a simpler presentation in terms of Lagrange interpolation, the setting
is deliberately restricted to collocation limit schemes where the left interval end point t0 is
not included. This is the case, e.g., for Radau and Gauss points. Aiming at stiff problems
with real spectrum, L-stable Radau collocation is the structurally most appropriate choice,
such that the restriction is no significant limitation. Collocation schemes including t0 can
be treated similarly, using Hermite interpolation.
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2.2 SDC on Dahlquist’s equation

Many properties of time stepping schemes are already visible when applied to the simple,
linear test equation

ẏ = λy, y(0) = 1. (2.10)

In the following, we will apply the SDC methods to (2.10) and start developments from
there. The implicit Euler DSDC variants (2.3) and (2.4) both read

δi − δi−1 − τiλδi = τi

λy0i − τ−1 n∑
j=1

Dd
ij(y

0
j − 1)

 .

Multiplication by τ/τi yields

τ

τi
(δi − δi−1)− τλδi = τλy0i −

n∑
j=1

Dd
ij(y

0
j − 1),

or, in matrix form with δ = (δ1, . . . , δn)T ,

(D̂E − zI)δ = −(Dd − zI)y0 +Dd1, (2.11)

with z = τλ and lower bidiagonal approximate differentiation matrix

(D̂E)ij =
τ

τi
(δi,j − δi,j−1), i, j = 1, . . . , n,

where δi,j is the Kronecker-δ, realized by the implicit Euler method. The QSDC vari-
ants (2.8) and (2.9) both read

δi − δi−1 − τiλδi = τi

n∑
j=1

Sqijλy
0
j − (y0i − y0i−1).

Again, multiplication by τ/τi yields

τ

τi
(δi − δi−1)− zδi = z

n∑
j=1

Sqijy
0
j −

τ

τi
(y0i − y0i−1),

or, in matrix form,
(D̂E − zI)δ = −(D̂E − zSq)y0 + D̂E1. (2.12)

Comparing (2.11) and (2.12) reveals that both SDC variants differ only in the matrices
building up the right hand sides from values of y0. In joint notation, they can be written as

(D̂ − zŜ)δ = −(D − zS)y0 +D1 (2.13)

with D̂, Ŝ,D, S as given in Tab. 2.1. Note that the spectral differentiation and integration
matrices D,S appearing in the right hand side are “exact” up to the collocation error,
whereas D̂, Ŝ represent the lower order implicit Euler basic scheme and take the role of
approximate differentiation and integration matrices, respectively. The convergence of the
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method D̂ Ŝ D S

DSDC D̂E I Dd I

QSDC D̂E I D̂E Sq

Table 2.1 Spectral differentiation and integration matrices arising in implicit Euler based DSDC and
QSDC methods (2.13).

corresponding fixed point iteration

yk+1 = yk + (D̂ − zŜ)−1
(
−(D − zS)yk + y0D1

)
(2.14)

towards the collocation solution depends only on the properties of the iteration matrix

G(z) = I − (D̂ − zŜ)−1(D − zS). (2.15)

Its properties have been studied in some detail in [14] for the QSDC case.
As the motivating interest is in reaction-diffusion equations exhibiting a real spectrum

of the Jacobian with dominant large negative eigenvalues, we restrict our attention to 0 >
z ∈ R. The two limit cases z → 0 and z → −∞ are important for convergence of non-stiff
and very stiff components, respectively. The case z = O(1) is important for spectra spread
out over the whole negative real line, and is considered in Section 4.

Case z → 0. This case is the limit of τ → 0 for a fixed λ and thus determines the non-stiff
convergence of the integrator. The rule of thumb is that with a first-order basic scheme,
each SDC sweep increases the order by one until the convergence order of the collocation
discretization is reached (higher order basic schemes have been considered for increasing the
order by more than one in each sweep, see [12,13,18,22]). This implies that the contraction
factor of the SDC iteration isO(−z), which requires a vanishing spectral radius ρ(G(0)) = 0.
This is automatically satisfied in the quadrature-based SDC formulation due to D̂ = D,
but in general not by the differentiation-based, see Fig. 2.1. This is a striking point in favor
of QSDC for non-stiff problems.

It has since long been known, however, that on equidistant grids, the differential variant
exhibits good contraction properties as well [11]: ρ(G(0)) = 0 holds due to G(0) being
nilpotent. This implies that, at least asymptotically, one order per sweep is gained.

Case z → −∞. This case is the limit of |λ| � τ−1 for moderate step sizes τ . It is usually en-
countered in differential-algebraic equations, in problems with a pronounced scale separation
between non-stiff and highly stiff components, and penalty treatment of constraints, e.g.,
Dirichlet boundaries in parabolic PDE problems. Here we haveG(z)→ I−Ŝ−1S =: G(−∞).
A rapid convergence of the SDC iteration, in particular the aim of L-stability or at least a
vanishing stability function R(∞) = 0 independently of y0, requires ρ(G(−∞)) = 0, which
is automatically satisfied by the differentiation-based SDC formulation due to Ŝ = S, but
in general not by the quadrature-based. In fact, stagnation of QSDC iterations has been
observed for differential-algebraic problems [15]. This is a striking point in favor of DSDC
for stiff problems. In linear autonomous problems, this is of somewhat less importance as
transient components are nevertheless damped out, only much slower than they should. In
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Fig. 2.1 Asymptotic contraction factor ρ(G(z)) of implicit Euler SDC iterations on equidistant and Radau
points for Dahlquist’s equation versus z. Left: DSDC. Right: QSDC.

nonlinear or non-autonomous problems, these transient errors in stiff components can spill
over into non-stiff components and result in an order reduction.

Note that when the provisional solution y0 is computed by an L-stable scheme, QSDC
methods not including t0 as collocation point can be L-stable despite ρ(G(−∞)) > 0 [17].
This is essentially the same as starting with constant y0 = y0 and performing one DSDC
sweep before starting the QSDC iteration. As the DSDC iteration matrix satisfies ρ(G(−∞))
by construction, very stiff error components are immediately eliminated.

Again, QSDC exhibits an improved convergence on equidistant grids, where ρ(G(−∞)) =
0 holds, see Fig. 2.1.

Remark 2.2 The compact matrix notation used in this section for scalar ODEs can be
directly extended to ODE systems by using Kronecker products, see, e.g., [5].

3 Nilpotent DIRK sweeps by LU decomposition

Usually, SDC methods are designed by choosing a simple basic integration scheme (often
explicit, or linearly or fully implicit Euler) for the defect equations (2.2) or (2.7), which
realizes an SDC iteration with lower triangular approximate differentiation and integration
matrices D̂ = D̂E and Ŝ = I.

The linear algebra perspective offers a different approach: We can choose the matrices D̂
and Ŝ first, and afterwards interprete the resulting SDC sweep as a time stepping scheme.
Staying in the DSDC (Ŝ = S) and QSDC (D̂ = D) frameworks for their remarkable
limit-behavour discussed before, we are free to choose either D̂ or Ŝ. A lower triangular
shape of the approximate matrices D̂ and Ŝ, with nonvanishing diagonal entries for implicit
schemes, will retain the sweep structure of the SDC iteration and hence allow an efficient
implementation with only one system solve in each step of the sweep. The SDC sweep now
reads (

D̂ii − zŜii
)
δki = −

i−1∑
j=1

(D̂ij − zŜij)δkj −
n∑
j=1

(
Dij(y

k
j − y0)− zSijykj

)
, (3.1)
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Fig. 3.1 Asymptotic contraction factor ρ(G(z)) of Euler- and LU-based SDC iterations on n Radau IIa
points for Dahlquist’s equation versus z. Left: DSDC. Right: QSDC.

which is but a minor modification of the simple linearly implicit Euler sweep. In other
words, an SDC sweep is no longer a sequence of simple basic schemes, but one step of a
diagonally implicit Runge-Kutta method.

Now assume that G(z) = I − Â−1A for some z ∈ [−∞, 0], and we want to enforce fast
asymptotic convergence, i.e. ρ(G(z)) = 0. One way to achieve this is to select Â based on
an LU decomposition of A.

Lemma 3.1 Let G = I − Â−1A and AT = LU with lower triangular L with diagonal
entries all 1 and U being upper tiangular. Then Â = UT implies ρ(G) = 0.

Proof We have G = I − U−TUTLT = I − LT , which is a strictly upper triangular matrix
and hence nilpotent.

For the QSDC method with ρ(G(0)) = 0 already satisfied, we will enforce ρ(G(∞)) = 0
and choose Ŝ = UT with ST = LU . The good convergence properties for z = 0 will not
be affected in any way, as Ŝ plays no role in the limit case. Analogously, for the DSDC
method, we will enforce ρ(G(0)) = 0 and choose D̂ = UT with DT = LU . Again, the
good convergence properties for z → −∞ will not be affected. The improvement over the
standard approach on non-equidistant grids shown in Fig. 3.1 is quite pronounced. For
QSDC methods, the contraction factors are an almost uniform improvement even over the
case of equidistant collocation nodes. Nevertheless, for DSDC the convergence order does
not increase by one for each sweep, but only asymptotically every n sweeps.

Theorem 3.1 Assume that DT = LU and D̂ = UT in the DSDC method. Then, for G(z)
from (2.15), there are constants c < ∞ and γ > 0 such that ρ(G(z)) ≤ c|z|1/n for all
|z| ≤ γ.

Proof Due to Ŝ = S = I in DSDC, the iteration matrix is

G(z) = I − (UT − zI)−1(UTLT − zI)
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with

(UT − zI)−1 =

(
I +

∞∑
k=1

(zU−T )k

)
U−T

if |z| ≤ γ := min( 1
2‖U

−T ‖−1, 1). Thus,

G(z) = I −

(
I +

∞∑
k=1

(zU−T )k

)
(LT − zU−T )

= I − LT︸ ︷︷ ︸
=:N

+z

(
U−T − U−T

∞∑
k=0

(zU−T )k(LT − zU−T )

)
︸ ︷︷ ︸

=:A

holds with N being nilpotent of order n and A bounded independently of |z| ≤ γ due to
‖zU−T ‖ ≤ 1/2. As ρ(G(z)) = limk→∞ ‖G(z)k‖1/k, we consider

G(z)k = (N + zA)k,

which is a sum of 2k products of factors N and zA. Grouping the terms by the number of
factors zA, we obtain

(
k
i

)
terms consisting of i factors zA and k − i factors N each. For

i ≥ k/n these terms are bounded by

|z|i‖A‖i‖N‖k−i ≤ |z|k/n max{‖A‖, ‖N‖}k

due to |z| ≤ 1. Otherwise there is at least one sequence of n factors of N , such that the
term vanishes. With c = 2 max{‖A‖, ‖N‖} we obtain the estimate

‖G(z)k‖1/k ≤
(

2k|z|k/n c
k

2k

)1/k

= c|z|1/n,

which completes the proof.

The analogous result ρ(G(z)) = O(|z|−1/n) for z → −∞ holds for QSDC methods.

Remark 3.1 An LU decomposition of D or S, respectively, need not exist without pivoting.
While pivoting can in principle considered here as well, the corresponding permutations
would modify the sweep structure, that no longer runs simply forward in time. In favour of
a traditional SDC sweep structure, we omit pivoting here.

4 Direct optimization of DIRK sweeps

The ad-hoc approach in the previous section has led to a considerable improvement on
nonuniform grids despite its simple, almost explicitly given approximation matrices. Yet
we can explore the design space of possible choices of lower triangular D̂ and Ŝ more com-
prehensively while restricting the setup to the Dahlquist test equation. We will discuss
interesting quantities as objectives for optimizing the approximation matrices in the fol-
lowing subsection. In particular, the spectral radius of G for the limit cases may be of less
interest than its norm, or some other quantity. Next, we will explore possibilities for choos-
ing design variables. In particular we need not restrict the discussion to just D̂ and Ŝ, as
we can use different approximate matrices in each sweep.
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Fig. 4.1 Spectral radius ρ(G(z)) versus z for QSDC sweeps applied to the Dahlquist equation. Left:

Radau(4) QSDC sweeps based on implicit Euler, LU-DIRK, and numerically optimized matrices D̂, Ŝ for
w ≡ 1. Right: Optimized Radau(n) sweeps for w ≡ 1 and different numbers n of collocation points.

4.1 Objectives

“Fast convergence” of SDC methods can mean quite a number of different things in practice,
such as asymptotic convergence rate, good error reduction in the first few iterates, error
reduction in the whole time interval or only at its end, and so on. Here we will formulate a
number of reasonable criteria for optimizing D̂ and Ŝ, and investigate their properties. The
optimization objectives are formulated in terms of the iteration matrix G(z) from (2.15).

Spectral radius. The spectral radius ρ(G(z)) of the iteration matrix determines the asymp-
totic convergence rate, and is therefoere relevant when performing many SDC sweeps. The
LU-based choices of D̂ and Ŝ above guarantee ρ(G(z)) = 0 for the limit cases z = 0 and
z → −∞. As is apparent from Fig. 3.1, intermediate values of z, which are bound to occur
in parabolic problems with sufficiently fine spatial grid, experience a worse error reduction.
In order to reduce those error components faster, we may choose the SDC matrices such
that the maximal contraction factor is minimized:

J(D̂, Ŝ) = max
z≤0

ρ(G(z)) (4.1)

This choice sacrifices the good properties at z = 0. As ρ(G(z)) = O(z) for z → 0 no longer
holds, we cannot expect to gain one order of convergence per SDC sweep. As opposed
to an error reduction by the factor of O(τ) we have to settle for a reduction factor of
approximately ρ(G(0)) > 0. The contraction behavior in terms of z can be adjusted by
introducing a weight function w(z) ≥ 0:

J(D̂, Ŝ) = max
z≤0

w(z)ρ(G(z))

With w(z) = 1− z−1 we enforce ρ(G(0)) = 0 again. Note that this does not yet guarantee
one order of convergence improvement per SDC sweep (compare Theorem 3.1) above.

In Fig. 4.1, resulting spectral radii are shown versus z for different numbers of Radau-
IIa collocation points and constant weight function w ≡ 1. Optimization of D̂ and Ŝ were



Faster SDC convergence on non-equidistant grids by DIRK sweeps? 11

‖G(z)‖2

z

‖G(z)‖2

z
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.01-0.1-1-10-100-1000

Euler
LU
opt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.01-0.1-1-10-100-1000

n=2

n=3

n=4

n=5

Fig. 4.2 Norm ‖G(z)‖2 versus z for QSDC sweeps applied to the Dahlquist equation. Left: Radau(4)

QSDC sweeps based on implicit Euler, LU-DIRK, and numerically optimized matrices D̂, Ŝ for w ≡ 1.
Right: Optimized Radau(n) sweeps for w ≡ 1 and different numbers n of collocation points.

perfomed using a very simple-minded SQP scheme with numerical differentiation and using
the LU-based matrices D̂LU and ŜLU as initial values. The maximum in (4.1) has been
approximated by the lp norm ‖ · ‖64 evaluated on a logarithmic grid with 100 points on
[10−4, 104]. No global optimization has been attempted, such that the results shown are
likely to be somewhat less than optimal. Nevertheless, a reduction of the worst case spectral
radius compared to LU-based QSDC is observed, at the cost of worse contraction in the
limits z → 0 and z → −∞.

Pre-asymptotic contraction factors. Spectral deferred correction methods are particularly
attractive if they lead to efficient time stepping schemes with few SDC sweeps, in which
case not the spectral radius but the norm of G determines the error reduction. Hence a
reasonable optimization criterion would be

J(D̂, Ŝ) = max
z≤0

w(z)‖G(z)‖ (4.2)

with any appropriate matrix norm ‖ · ‖. In Fig. 4.2, the resulting error reduction factors
‖G(z)‖2 are shown versus z for weight function w ≡ 1. Again we observe a significant
improvement of LU-based SDC sweeps over standard Euler sweeps, and a further moderate
improvement by numerically optimized sweeps, again at the cost of worse contraction for
z → 0. Notice that for z → −∞, the LU-based sweeps do not lead to ‖G(z)‖2 → 0, as
G(−∞) is nilpotent of order n, but not zero.

Final time error. While local error reduction is a worthwhile goal, the overall quality of the
computed solution will hinge on the global error transport. In this conception, the relevant
property of G is the error at the end of the time interval. Whenever the last collocation
point is at the end of the interval, e.g., with Radau points, this error is determined by the
last row of G only, which would then to be minimized:

J(D̂, Ŝ) = max
z≤0

w(z)‖eTnG(z)‖ (4.3)
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Fig. 4.3 Norm ‖eTnG(z)‖2 at final time versus z for QSDC sweeps applied to the Dahlquist equation. Left:

Radau(4) QSDC sweeps based on implicit Euler, LU-DIRK, and numerically optimized matrices D̂, Ŝ for
w ≡ 1. Right: Optimized Radau(n) sweeps for w ≡ 1 and different numbers n of collocation points.

Here, en denotes the n-th unit vector in Rn. For different collocation points, e.g., Gauß
points, a suitable linear combination of the rows of G has to be used instead.

In Fig. 4.3, the resulting error reduction factors ‖eTnG(z)‖2 are shown versus z for
weight function w ≡ 1. A similar pattern as for the spectral radius emerges: LU-DIRK
leads to a dramatic improvement over Euler-based SDC. In particular, for z → −∞ the
reduction factor approaches zero, as the last line of G(−∞) is exactly zero due to its strictly
upper triangular shape. Compared to that, a modest worst case improvement is achieved
by numerical optimization, again sacrificing the good properties in the limit cases z → 0
and z → −∞.

Sweep blocks. Already for the purpose of time error estimation, at least two SDC sweeps
will be performed. If we intend to apply a certain number of m sweeps, the relevant error
reduction is given by G(z)m instead of G(z), which may lead to different optimal values of
D̂ and Ŝ. Hence we may want to look at the average reduction factors

J(D̂, Ŝ) = max
z≤0

w(z)‖G(z)m‖1/m or J(D̂, Ŝ) = max
z≤0

w(z)‖eTnG(z)m‖1/m

instead of (4.2) and (4.3), respectively.

The results shown in Fig. 4.4 show a significant improvement versus the single-sweep
optimization for the norm objective (4.2), but a moderate deterioration for the final time
objective (4.3). Both approach the spectral radius result for increasing m, which is to be
expected due to ρ(G) = limm→∞ ‖Gm‖1/m ≤ ‖G‖. The deterioration in the final time ob-
jective is due to the fact that large errors remaining at times t1, . . . , tn−1 have an impact on
the error at tn in the next iteration and cannot be ignored. In this aspect, the objective (4.3)
is too optimistic, as submultiplicativity ‖eTnGm‖ ≤ ‖eTnG‖m usually does not hold.
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Fig. 4.4 Averaged error reduction per sweep versus z for Radau(4) QSDC sweeps with numerically opti-

mized matrices D̂, Ŝ for w ≡ 1. Left: Norm ‖G(z)m‖1/m2 . Right: Final time error ‖eTnG(z)m‖1/m2 .

4.2 Design variables.

Up to now we followed the strategy to design a single optimal SDC sweep that is to be ap-
plied a sufficient number of times. Here we will explore SDC designs with more freedom and
flexibility, all of which can be combined with any of the optimization objectives discussed
above.

Flexible sweep blocks. Always applying m SDC sweeps at a time offers the freedom to choose
different approximate matrices in each of the m sweeps, leading to optimization variables
D̂j , Ŝj , j = 1, . . . , k corresponding to iteration matrices Gj(z). The objective will then be

J(D̂1, Ŝ1, . . . D̂m, Ŝm) = max
z≤0

w(z)
∥∥∥eTn m∏

j=1

Gj(z)
∥∥∥1/m. (4.4)

As visible in Fig. 4.5, to be compared directly with Fig. 4.4, this richer design space
allows a further improvement over the optimization of single sweeps for multiple iterations.

Greedy sweeps. Applying always a fixed number m of SDC sweeps at a time may incur
inefficiencies, in particular for larger m, when one wants to control the number of iterations
such that a certain accuracy is achieved. A greedy style choice of D̂m, Ŝm allows to terminate
the SDC iteration after each sweep. The locally optimal choice of approximate matrices is
then given by

J(D̂m, Ŝm) = max
z≤0

w(z)
∥∥∥eTn m∏

j=1

Gj(z)
∥∥∥1/m,

where the optimization is performed sequentially for m = 1, . . . .
The resulting average contraction factors are shown in Fig. 4.6. As expected, the im-

provement over single-sweep optimization m = 1 is less pronounced than in the cases where
the number m of sweeps is known beforehand (Figs. 4.4 and 4.5). This is the price to pay
for the flexibility to terminate the SDC iteration at any m. Given that the reduction factor
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‖G2(z)G1(z)‖1/2 visible in Fig. 4.5 is already better than the greedy approach up to m = 8
and virtually as good as any block scheme for larger m, the greedy style of choosing D̂j , Ŝj
is probably not worthwhile.

5 Stability and accuracy domains

Even though the intended application to reaction-diffusion system fixes the focus on real λ
in the Dahlquist equation (2.10), we briefly explore the stability and accuracy properties of
different SDC variants for complex λ as well. In Fig. 5.1 we show the domains of stability for
Euler-QSDC (top) and LU-QSDC (bottom), both for simultaneously increasing number of
collocation points n and SDC iteration count k (left, k = n) and fixed number of collocation
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Fig. 4.5 Averaged error reduction per sweep versus z for m-block Radau(4) QSDC sweeps with numeri-
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Fig. 5.1 Stability domains of QSDC methods based on Euler steps (top) and LU-DIRK steps (bottom)
Left: n = k = 2, . . . , 6. Right: n = 4, k = 2, 4, 8, 16.

points n = 4 with increasing iteration count k. The stability domain is the subset of the
complex plane, where for the rational approximation R of the exponential function realized
by the QSDC method |R(z)| ≤ 1 holds. Note that the stability domain is outside the plotted
curves.

None of the QSDC methods tested is A-stable. The LU-based methods are A(α)-stable
with α ≈ 89.7, while the Euler-based methods achieve α ≈ 89.9. Of course, as the iterations
converge towards the L-stable underlying Radau collocation scheme, these angles will in-
crease towards 90 degrees. For larger positive real values of z, the SDC convergence towards
the collocation scheme appears to be rather slow or even nonexistent.

Accuracy domains for the same methods are shown in Fig. 5.2. The accuracy domain
for ε = 10−4 is the subset of the complex plane for which |R(z) − ez| ≤ ε, which is inside
the plotted curves.

No significant difference between the Euler- and LU-based QSDC schemes is apparent
here. The slight differences can be attributed to the somewhat slower convergence of the
Euler-based SDC iterations, as they resemble longer a sequence of Euler steps and approach
the properties of the underlying Radau collocation method later.

Stability and accuracy domains of directly optimized QSDC methods are shown in
Figs. 5.3 and 5.4, using the flexible sweep block design for a block size m = 2 with spectral
radius objective or final time error objective (4.4), respectively. Even though these methods
are of first order only if a limited number of iterations is performed, the accuracy domains

-8 -7 -6 -5 -4 -3 -2 -1  0  1

-2

-1

 0

 1

 2

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5

-2

-1

 0

 1

 2

Fig. 5.2 Accuracy domains of QSDC methods based on Euler steps (top) and LU-DIRK steps (bottom)
for an error of 10−4. Left: n = k = 2, . . . , 6. Right: n = 4, k = 2, 4, 8, 16.
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Fig. 5.3 Stability domains of QSDC methods optimized for spectral radius (top) and error at terminal
time (bottom) Left: n = k = 2, . . . , 6. Right: n = 4, k = 2, 4, 8, 16. Compare with Fig. 5.1.

for ε = 10−4 tend to be somewhat larger than for the Euler and LU variants. This holds
in particular for the final time error objective, since the accuracy domain quantifies the
error at the final time of the SDC step only. We may notice that the accuracy domains are
particularly large for an even number of iterations, which corresponds to the iteration block
size used for optimizing the QSDC matrices.

Both variants are A(α)-stable with α ≈ 89.1 for the spectral radius objective and α ≈
89.8 for the final time error objective.

We may expect the linear algebra construction of QSDC matrices Ŝ, though done here
for the negative real axis only, to work fairly well also for general systems.

6 Numerical examples

Up to now we have designed SDC methods to work in some sense optimal on the Dahlquist
equation, in the expectation that their good properties translate to more complex systems
of nonlinear or nonautonomous ODEs, DAEs, and PDEs. In this section, we will apply those
SDC methods to a couple of examples, comparing and interpreting the results. In particular
we will check the conjectures that ‖eTnG(z)‖ is more relevant for the global error transport
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Fig. 5.4 Accuracy domains of QSDC methods optimized for spectral radius (top) and error at terminal
time (bottom) for an error of 10−4. Left: n = k = 2, . . . , 6. Right: n = 4, k = 2, 4, 8, 16. Compare with
Fig. 5.2.
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than the other error reduction measures, and that ‖G(z)‖ or ‖G(z)k‖ is more relevant for
integrators using a small number of sweeps than ρ(G(z)).

Extending the DIRK sweep structure from the Dahlquist test equation (3.1) to general
ODEs is straightforward. The DIRK sweep based on lower triangular approximate differ-
entiation and integration matrices D̂ and Ŝ reads

(
D̂ii − τf ′(yki , ti)Ŝii

)
δki

= −
i−1∑
j=1

(D̂ij − τf ′(ykj , tj)Ŝij)δkj −
n∑
j=1

(
Dij(y

k
j − y0)− τSijf(ykj , tj)

)
.

Equally straightforward is the concatenation of several SDC steps of size τ each to cover a
fixed integration interval [0, T ], such that the convergence behaviour for different step sizes
τ can be examined. For simplicity, no adaptive step size selection is performed.

6.1 Prothero-Robinson example

We consider the nonautonomous generalization of Dahlquist’s test equation due to [20],

ẏ = λ(y − g(t)) + ġ(t), y(0) = g(0), (6.1)

with g = sin on the time interval [0, 1]. The exact solution is sin(t). We consider a “mildly
stiff” setting with λ = −103, that shows a transition towards non-stiff behavior for reason-
ably small step size τ .

Understanding SDC convergence. Compared to the limiting collocation method, SDC meth-
ods with a fixed number k of sweeps show a more complex convergence behavior, see Fig. 6.1.
From a theoretical point of view, the deviation between the SDC solution yτ and the exact
solution y in the mildly stiff example should exhibit a “hump” when plotted versus the step
size τ , as the LU based SDC contraction rate given by the spectral radius of G is larger
for z = τλ in the range [−10,−1] than in the limit cases z → 0 and z → −∞ (see Fig. 3.1
and [11]). In particular, the rule of thumb “one order per sweep” is only reached asymp-
totically for very small time steps, as then z = τλ has crossed the hump and only then
the contraction factor ρ(G(z)) approaches zero. In this regime, a k-sweep QSDC method
can even show a convergence rate k that exceeds the order of the underlying collocation
scheme. This convergence behavior is actually observed in numerical computations and can
be expected to arise in Euler sweep SDC methods on equidistant grids as well.

It is apparent from Fig. 6.1 and the considerations above that the notion of “order” is
insufficient to describe the error behavior of SDC methods properly in the practically rele-
vant pre-asymptotic step size and accuracy regions. In particular the numerical estimation
of convergence order can yield quite arbitrary results depending on the chosen step sizes,
and is therefore to be interpreted with utmost care.
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Comparison of objectives and designs. Next we will compare different types of DIRK schemes.
As the convergence of LU based QSDC is impeded by the “hump” around z ≈ −2, we try to
have a “flat” contraction factor and therefore choose the weight function w ≡ 1. Comparing
Fig. 6.2 left with Fig. 6.1 right one can indeed observe both the absence of a “hump” and
the worse behaviour for τ → 0, as the SDC contraction factor is no longer O(|z|). Overall,
the error is somewhat smaller than with LU based SDC sweeps.

Limiting the presentation to an intermediate value of k = 5 sweeps on Radau(3) nodes,
we compare different sweep types. In Fig. 6.2 right the effect of increasing m in optimizing
for ‖G(·)m‖L∞[−∞,0] is shown. A significant improvement of up to two orders of magnitude
is achieved moving from m = 1 to m = 4 and above in a wide range of z < −1. Taking
more than one sweep iteration into account when optimizing DIRK sweeps appears to be
quite beneficial.

Next we compare different sweep constructions, namely standard implicit Euler, LU
based sweeps, and directly optimized DIRK sweeps according to the criteria (4.1), (4.2),
and (4.3), respectively, in Fig. 6.3. The most striking improvement is that of DIRK sweeps
over standard implicit Euler sweeps, which are inefficient for stiff problems. Only for z >
−1, i.e. for non-stiff problems, the Euler sweep is competitive. We can observe that all
optimization criteria give a moderate overall improvement over the LU based SDC sweeps.
The rather large variation in the error curves are probably due to “accidentally accurate”
results, which can occur quite frequently because of the low dimension of the ODE (6.1).

From all the error plots it is clear that no single SDC method with fixed number of sweeps
is an efficient method over the whole range of step sizes. Instead, an adaptive selection of
the number of sweeps is indispensable for robust efficiency and time error estimation.

|yτ (1)− y(1)|
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Fig. 6.1 Error of LU-based QSDC methods on the Prothero-Robinson equation (6.1). Left: Error as a sum
of collocation time discretization error and SDC iteration error. Right: Actual observed error-work behavior
on Radau(3) for k = 1, 3, 5, 7, 9 sweeps and different time step sizes: final time error |yτ (1)− y(1)| vs. total
number N = k/τ of sweeps. Limiting lines are N−1 and N−3.
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Fig. 6.2 Final time error vs. total number N of sweeps on Radau(3) of QSDC methods on the Prothero-
Robinson equation (6.1). Left: k = 1, 3, 5, 7, 9 DIRK sweeps optimized for ‖G(·)4‖L∞[−∞,0]. Limiting lines

are N−1 and N−3. Right: k = 5 DIRK sweeps optimized for ‖G(·)m‖L∞[−∞,0], m = 1, . . . , 5.

6.2 Vienna equation

A more challenging example is the autonomous nonlinear system for y = [y1, y2]T

ẏ1 = −y2 + λy1(‖y‖22 − 1)

ẏ2 = y1 + 3λy2(‖y‖22 − 1)
(6.2)

with initial value y(0) = [1, 0]T , λ = −105, exact solution [cos t, sin t]T , and final time
T = 3 studied in [3]. The system exhibits one stiff and one non-stiff component, which
continuously change their direction. The varying eigenvectors of the Jacobian make this
problem considerably harder to solve than the previous one, in particular using the linearly
implicit Euler method as a basic scheme. In fact, a significant error reduction is observed
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Fig. 6.3 Final time error vs. total number N of sweeps on Radau(3) of QSDC methods. Left: Prothero-
Robinson equation (6.1) with Euler, LU based, and directly optimized DIRK sweeps for ‖ρ(G(·))‖L∞[−∞,0],

‖G(·)4‖L∞[−∞,0], and ‖eT3 G(·)4‖L∞[−∞,0]. k = 5 sweeps. Right: Vienna equation (6.2) with standard Euler
and LU based sweeps for k = 1 and k = 6 sweeps.
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with either method only for step sizes τ < 10−2. A fully implicit Euler basic scheme gives
better results [3, Table 6], but even then Newton’s method for computing the implicit Euler
steps is reported to diverge for step sizes larger than 0.05. To overcome this problem, a
separation of the components by a QR factorization within SDC has been suggested in [3]
but will not be pursued here.

In Fig. 6.3, right, the error at T is shown versus the total number of sweeps for Euler-
and LU-based QSDC. The late onset of linearly implict Euler error reduction requires to
use small time steps for which the Radau(3) collocation error is already in the order of
10−13. The total error is dominated by the SDC iteration error. The Jacobian has two real
eigenvalues, one close to zero, the other one in the order of λ = −105. With time steps
larger than 10−4 and |z| > 10, the Euler QSDC suffers from its large contraction factor,
whereas LU-based QSDC converges rather quickly towards the Radau(3) solution.

6.3 Nonautonomous heat equation

The linear but nonautonomous heat equation

u̇ = ∆u+ xe−t, x ∈ ]0, 1[, u(0) = u(1) = 0, (6.3)

from [19] is considered on t ∈ [0, 0.1]. The “saw-tooth” shaped source term xe−t introduces
a long tail of high-frequency modes in every time step, such that essentially the whole
negative real axis covered by the spectrum of the Jacobian is excited. Hence one expects a
significant order reduction as the eigenvalues cross the hump of LU based SDC for τ → 0.
In fact, the Rosenbrock scheme GRK4T [16] shows an effective order of 3.25 instead of the
nominal consistency order 5 for similar reasons [8, Chap. 9]. An equidistant finite difference
discretization of size h leads to discrete eigenvalues roughly covering the range [−h−2, 0].
Unless the usual stability constraint τ < ch2 for parabolic problems is satisfied, meaning
that all eigenvalues have crossed the critical range around one, the SDC time stepping
schemes can be expected to behave as for the continuous problem. Consequently, a spatial
discretization with h = 10−2 is chosen for time step sizes τ > 10−4.

In Fig. 6.4 left we observe that for a small number k of sweeps, the standard implicit
Euler QSDC method converges quite rapidly, and results in a time stepping scheme of
effective estimated order 2.3. The fast error reduction during the first few sweeps is due
to the elimination of dominant low-frequent error modes with small |z|. From about four
sweeps on, these modes are sufficiently reduced for the high-frequent error modes with
small initial amplitude to dominate the total error. Consequently, the large spectral radius
of Euler QSDC effectively prevents significant further progress.

In contrast, the convergence of LU based QSDC is steady due to the spectral radius
being significantly smaller than one. The price to pay is a somewhat larger error for smaller
sweep numbers k ≤ 4. Ultimately, all QSDC methods with D̂ = D and fixed k achieve an
effective converge order of 2.3.

In Fig. 6.4 right, we explore the impact of the weight function w in the final time
objective (4.3), which turned out to give the best results among the different optimization
criteria in this example. As the excitation modes due to the nonautonomous source term
are of amplitude (−z)−1/2, we choose this power of z as weight function w in case A,
and for comparison w = 1 as case B. In case A, the weight function singularity implies
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Fig. 6.4 Final time error vs. total number N of sweeps taken by QSDC methods for the nonautonomous
heat equation (6.3) on Radau(5). Left: LU and Euler sweeps k = 1, 3, 5, 7, 9. Limiting lines are N−1 and
N−2.3. Right: Euler and DIRK sweeps optimized for (4.3) at k = 3, 6, 9 sweeps. A is with weight function
w = (−z)−1/2, B with w = 1.

‖eTnG(·)m‖1/mL∞[−∞,0] → 0 for z → 0, such that the order should increase with sweep count

k. This is actually achieved again up to the effective order 2.3, with a slight improvement
compared to the LU based sweeps. In case B, the contraction factor does not vanish for
z → 0, such that errors in low-frequent modes are retained to some extent. As those are
not damped out quickly by (6.3), they add up, and a step size reduction does not lead
to an error reduction. The convergence order with respect to time step size τ is therefore
0. Nevertheless, a somewhat faster SDC iteration convergence can be achieved, such that
for an appropriate combination of sweep number k and step size τ , even better results are
obtained.

This raises the question which combinations of sweep number k and step size τ are
most efficient in terms of accuracy (measured as final time error ε) per work (total number
N = 0.1k/τ of sweeps). Obviously, there cannot be a single optimal combination, since
different accuracy requirements will lead to different choices. To examine this, we vary
both τ ∈ [10−3, 0.1] and k ∈ {1, . . . , 35}, and look at the Pareto front of efficient (k, τ)
combinations. Borrowing terminology from multicriteria optimization, a point (N, ε) is said
to dominate a different point (N ′, ε′), if N ≤ N ′ and ε ≤ ε′. For an SDC method (here to
be interpreted as a scheme where every parameter except for the the sweep number k and
the step size τ is fixed a priori), the Pareto front is the boundary of the dominated set, i.e.
all points (N, ε) for which a combination (k, τ) exists such that the resulting SDC effort
Nk,τ and error εk, tau dominate (N, k).

In Fig. 6.5, left, those Pareto fronts are shown. The significant gain of improved DIRK
sweeps over Euler sweeps is again apparent, as are the smaller differences between the
DIRK sweeps. Optimizing the sweep for criterion (4.3) with weight function w = 1 appears
to perform best in this example. This is due to the smaller number of sweeps it requires for
a certain error reduction, which can be observed also in Fig. 6.5, right, where the Pareto-
optimal number of sweeps is shown versus the number of time steps 0.1/τ = N/k. Obviously,
the stage order 7 of the underlying Radau(5) collocation method can be recovered, with
only a logarithmic efficiency loss, if a sufficiently large number of SDC sweeps is performed.
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Fig. 6.5 Left: Pareto fronts of final time error vs. total number N = 0.1kopt/τ of sweeps taken by QSDC
methods for the nonautonomous heat equation (6.3) on Radau(5). k = 1, . . . , 12 sweeps are used. Limiting
lines are N−2.5 and N−6. Right: most efficient number kopt ∈ {1, . . . , 35} of sweeps in each step for given
number r = 0.1/τ of time steps.

Conclusion

The focus on SDC contraction makes it comparatively easy to construct efficient SDC sweeps
by simple linear algebra means, either by the generic LU approach or direct numerical opti-
mization. The thus constructed schemes often outperform standard Euler based sweeps by
a significant factor. In particular they are able to recover the better convergence properties
for stiff problems that are observed on equidistant grids also on non-equidistant grids such
as Radau-IIa. The selection of a subset of the complex plane over which to optimize the
SDC contraction allows to tailor the schemes to particular problem classes, such as the stiff
reaction-diffusion equations considered here. The drawback is, of course, that the resulting
schemes are no more general-purpose methods, and probably give worse results on problems
they are not designed for.

Optimizing for flexible sweep blocks of size m = 2 according to the average norm ob-
jective maxz w(z)‖

∏m
j=1Gj(z)‖1/m‖ with w ≡ 1 for problems with many stiff error compo-

nents or w(z) = 1/|z| for mildly stiff problems appears to be the most promising approach.
The convergence behavior of those methods can be quite complex. The notion of “order”

in time step size τ is clearly insufficient to describe the error-work relationship in a mean-
ingful way, which makes an adaptive choice of both, step size and sweep number, highly
desirable.
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