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Abstract. In this work we present an articulated statistical shape mo-
del (ASSM) of the human knee. The model incorporates statistical shape
variation plus explicit degrees of freedom that model physiological joint
motion. We also present a strategy for segmentation of the knee joint from
medical image data. We show the potential of the model via an evaluation
on a set of 40 clinical MRI datasets with manual expert segmentations
available.

1 Introduction

For biomechanical analysis or surgery planning it can be beneficial to reconstruct
an estimated healthy joint anatomy from medical image data in the presence of
strong pathological changes or implants. For total knee arthroplasty, for instance,
knowledge about the morphology of the joint before osteoarthritis may impact
the choice of implant. Since the respective image data is typically not available,
the need for an estimation from the pathological case arises. Secondly, an accu-
rate reconstruction of the actual patient-specific joint anatomy is often needed.

Statistical shape models (SSMs) [1] are a powerful tool for reconstructing
both estimated healthy as well as actual patient-specific anatomies. Multiple
SSMs of different bones may be applied successfully for the reconstruction of
joints [2]. However, such an approach does not model knowledge about joint
posture or correlated morphology of the involved bones, and consequently lacks
robustness. Robustness is crucial for the reconstruction of the estimated healthy
anatomy, as the pathological or implanted region in the image data, which usu-
ally provides significant information about the joint morphology, is deliberately
ignored here. In case of poor contrast in the joint region, robustness also plays
an important role for the reconstruction of actual patient-specific anatomies.

One may model joint flexibility implicitly by capturing joint motion statis-
tically [3,4]. This approach is beneficial only if relative transformations between
individual objects are a statistical property of anatomy, which is, e.g., not the
case for knee bending. Instead, we follow the approach presented for the hip
joint in [5] and propose an articulated SSM (ASSM) of the knee, where we
model knee joint posture explicitly as a combination of characteristic transfor-
mations [6]. With an evaluation on 40 MRI datasets, we show that our knee
ASSM outperforms reconstruction based on separate SSMs.
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2 Materials and Methods

2.1 Model of the Knee Joint

Our knee joint model consists of the femur (thighbone) and the tibia (shinbone),
represented by triangular surface meshes. As proposed in [6] we model the joint
motion by (1) a rotation around the epicondylar axis, which is defined by the
lateral and medial epicondyles of the femur that are represented as vertices of
the femur mesh, and (2) a translation in direction of the intersection of the tibial
plateau and the epicondylar axis’ normal plane (see Fig. 1(a)). Accordingly, the
transformation K of the tibia relative to the femur can be written as

K (a,t) = Rotation(repi, depi, @) o Translation(dpiatean; t)

where Rotation denotes the rotation around the epicondylar axis with origin
Tepi and direction depi by an angle o, and T'ranslation represents a translation
in direction of dpiateau by a distance t.

In addition to the global transformation 7y of the knee bone compound the
model incorporates a local transformation K for the tibia to keep track of varying
joint postures. That is, the overall transformation of the femur is 7, and the
overall transformation of the tibia equals 7, o K. K = I represents a reference
bending. To adjust the knee posture to a particular o and ¢ under motion of the
tibia, one has to set K < K(«,t). In order to adjust the joint under motion of
the femur, one may apply T, + Ty o K~ !(a,t) and K « K(a,t).

2.2 Adjusting Transformations by Alignment of Bones

We employ the root mean square distance of all vertices v; of a given model in-
stance to corresponding vertices vyet,i of a reference mesh to measure alignment:

D(Ty,K) = Z T4 ov; — 'Uref,i”2 + Z [Ty o Kow; — 'Uref,i”2
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Fig. 1. Knee joint motion is modeled by rotation R.p; around the epicondylar axis and
translation Tyrans (a). Instances of the knee ASSM: Shape and joint state I (b), shape
IT and joint state I (c), shape I and joint state II (d), and shape and joint state II (e).
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where Itemur and Iijpia are the sets of vertex indices of the femur and tibia,
respectively. Hence, to align a model instance to a reference mesh in terms of
transformation, one must optimize D(Ty, K') with respect to T, and K.

We propose an iterative scheme to optimize T, and K by repeated align-
ment of the object compound, the femur, and the tibia until AD falls below a
user-defined stopping criterion. Here, one iteration is composed of a sequence of
alignment steps: One may, e.g., align the whole compound, then align the tibia
by joint adjustment while keeping the femur fixed, and then align the femur by
joint adjustment while keeping the tibia fixed (sequence CTF), align the whole
compound with regard to femur vertices only, and then align the tibia by joint
adjustment (sequence CpT), or vice versa (sequence CpF).

The object compound is aligned via rigid and scale transformations. For a
description of well-established methods, see [1]. To align femur and tibia by
means of knee joint adjustment, one has to find

argr?in |:Dfemur(a7 t) = Z ||Tg © K_l(a7 t) OV — Uref,i ||2:| ’
a,t

1€ Ifemur

argmin [Dtibia(a, t) = Z |1Ty o K(cv,t) ov; — /l)ref7i||2:|
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for femur and tibia, respectively. A simple and efficient way to solve these prob-
lems is by iterative optimization with respect to o and ¢ separately, since the
respective partial derivatives of Dfemur(@, t) and Dypia(cv, t) as well as their roots
can be computed analytically. Optimization is stopped when AD falls below a
user-defined convergence criterion.

2.3 ASSM Generation

We generated the articulated knee model from 40 training shapes made available
by [7]. In contrast to the generation of SSMs of single objects, the preparation of
training shapes for an ASSM requires alignment via transformations according
to the joint model. To this end, we use the method described in Sec. 2.2, after we
have determined vertex correspondences on the set of training shapes as in [2].
We then generate the ASSM by applying principal component analysis on the
aligned and corresponding training meshes. An example of varying joint posture
and shape is shown in Fig. 1(b-e).

2.4 Segmentation Framework

Commonly, an iterative segmentation process repeats the following steps to ad-
just an SSM to image data:

1. Analyze the normal intensity profiles of the current SSM instance within the
image data. Here, we employ the strategy presented in [2].

2. Displace vertices of the instance to positions that better fit the image data,
resulting in a triangular mesh that is in general not an instance of the SSM.
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3. Adjust the overall transformation of the instance to fit the displaced mesh.
4. Adjust shape parameters of the instance to fit the displaced mesh.

In order to cope with the relative joint transformation we extend step 3 to adjust
not only the overall transformation of the compound shape, but also the relative
transformation within the joint, as proposed in Sec. 2.2. Note that in general the
shape adjustment in step 4 changes the transformation axes of the model, which
results in a slight change of the relative transformation. This effect is currently
only compensated for by the iterative nature of the approach.

3 Results

To evaluate the model with regard to different alignment sequences as suggested
in Sec. 2.2, we initially built three different ASSMs: For each ASSM, the training
shapes were aligned according to one of the three sequences CTF, CgT and CpT.
We conducted a leave-one-out study for each model, using the respective “left-
out” training shape in its wnaligned form as target. There are no significant
differences among the three ASSMs in terms of average reconstruction accuracy.
However, employing alignment sequence CTF results in the fastest convergence.
We employed the respective ASSM for all further experiments.

To evaluate the reconstruction capability of the knee ASSM, we conducted a
leave-one-out study on 40 clinical MRI datasets that were used for model gen-
eration. To simulate the task of estimating healthy anatomy in the presence of
pathologies, we manually labeled a region of interest around the joint gap (see
Fig. 2): In this region image features are not considered during model adapta-
tion, i.e., the joint anatomy is purely extrapolated from the model. We compare
the results to reconstructions obtained with single-object SSMs as in [2]. The
results are presented in Tab. 1. We measured the accuracy by comparison to
given manual expert segmentations in terms of Dice’s coefficient (DICE), rela-
tive volume difference (RVD), average surface distance (AD), and average root
mean square surface distance (RMS).

Fig. 2. Exemplary results for three different individuals. Black contour: Separate SSMs.
White contour: ASSM. White rectangle: Region where result contours are purely ex-
trapolated from the respective model.
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Table 1. Average accuracy measures for ASSM and single-object SSM segmentation.

DICE RVD AD RMS
Femur (ASSM)  0.94 (£0.02)  0.05 (£0.03)  1.12 (£0.28)  1.52 (£0.44)
Tibia (ASSM) 0.89 (£0.05)  0.06 (£0.05)  2.01 (£0.91)  2.65 (+1.22)
Femur (Single) 0.94 (£0.02)  0.05 (£0.04)  1.16 (£0.37)  1.59 (+0.60)
Tibia (Single) 0.86 (£0.10)  0.12 (£0.12) 2,61 (£2.08)  3.52 (+2.77)

4 Discussion

The comparison between ASSM and two separate SSMs shows that both meth-
ods perform similar for the femur, whereas the reconstruction quality of the tibia
was significantly improved by use of the ASSM (cf. Fig. 2). The similar results
for the femur might be attributed to its distinguished shape outside the extrap-
olated joint region: This seems to determine the extrapolated region sufficiently
also for a femur SSM. In contrast, the shape of the tibia is less distinguished
outside the extrapolated region. While the tibia SSM suffers from this ambigu-
ity, the ASSM deals with it via the knowledge about the relative positioning
of the tibia encoded in the joint model. Furthermore, part of the anterior tibia
is ignored during adaptation by design of the profile analysis strategy (see [2]),
which adds to the above mentioned effect, but may also explain worse results for
the tibia as compared to the femur for both methods. In summary, ASSMs are
a promising tool for an accurate reconstruction of anatomical structures from
poorly contrasted, incomplete or pathological medical image data.
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