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Abstract— In this paper we propose a framework for fully
automatic, robust and accurate segmentation of the human
pelvis and proximal femur in CT data. We propose a composite
statistical shape model of femur and pelvis with a flexible
hip joint, for which we extend the common definition of
statistical shape models as well as the common strategy for their
adaptation. We do not analyze the joint flexibility statistically,
but model it explicitly by rotational parameters describing the
bent in a ball-and-socket joint. A leave-one-out evaluation on
50 CT volumes shows that image driven adaptation of our com-
posite shape model robustly produces accurate segmentations
of both proximal femur and pelvis. As a second contribution,
we evaluate a fine grain multi-object segmentation method
based on graph optimization. It relies on accurate initializations
of femur and pelvis, which our composite shape model can
generate. Simultaneous optimization of both femur and pelvis
yields more accurate results than separate optimizations of
each structure. Shape model adaptation and graph based
optimization are embedded in a fully automatic framework.

I. I NTRODUCTION

For patient-specific biomechanical simulations, e.g. of
the human lower limb, an accurate reconstruction of the
bony anatomy from medical image data is required. This
particularly applies to joint regions, as simulation results
heavily depend on the anatomy of joints [1]. In CT data, bony
tissue usually shows a high intensity contrast to surrounding
soft tissues and may be segmented by simple thresholding.
However, in joint regions, thresholding is often not sufficient
for separating adjacent individual bones. Due to large slice
thickness or pathological changes of bones, the joint space
may be hard to detect even for human observers.

In this paper, our objective is a fully automatic, robust,
accurate and consistent (i.e. non-overlapping) segmentation
of both femur and pelvis from CT data. In [2] we achieved
robust segmentations of the pelvis alone based on a statistical
shape model (SSM) and graph optimization. However, inac-
curacies occured in the acetabulum, as no prior knowlege
about the femur was exploited. Segmenting the femoral
head without prior knowledge about the pelvis is even more
difficult, as shown in Sec. VI. An idea to overcome this
problem is to use prior knowledge about the shape and pose
relations between femur and pelvis. In [3] we presented a
method for simultaneous segmentation of adjacent objects.
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This method is capable of producing accurate and consistent
segmentations. However, it relies on good initializationsof
the adjacent objects. To solve this essential initialization task,
we propose a composite statistical shape model of femur and
pelvis with flexible hip joint.

A. Related Work.

1) Articulated Shape Models:Articulated statistical shape
models were probably first suggested by Heap and al. [4].
They build a point distribution model as in [5], with the
extension that training point sets may represent some subsets
of points as polar coordinates with respect to certain pivot
points. The resulting point distribution model captures rota-
tional flexibility as far as it is contained in the training data.
This is not possible with a purely cartesian point distribution
model because of its linearity. Al-Shaher et al. [6] apply an
articulated shape model as described in [4] for 2D human
shape modelling and suggest a method for adapting their
model to 2D landmark point data.

Articulated shape models for medical image analysis were
more recently proposed by Klinder et al. [7] and Boisvert
et al. [8]. Klinder et al. [7] perform a statistical analysis
of rigid transformations between local vertebra coordinate
systems to build an articulated spine model. The resulting
statistical transformation model then captures spine flexion
as contained in the training data. It is applied for rough
spine segmentation in CT data, which is refined by an
adaptation of multible vertebra surface models with a feature
function that penalizes overlap of ajcacent vertebrae. Boisvert
et al. [8] suggest a similar approach to build a statistical
transformation model for capturing and analyzing the shape
variability contained in a training set of scoliotic spines. They
apply their model for reconstruction of the 3D spine from
2D landmarks in few radiographs.

2) Segmentation of Articulated Joints:Schmid et al. [9]
propose a combination of physically-based deformable mod-
els and prior shape knowledge (single object SSMs and
markov random field modeling of local deformations) for
segmentation of femur and hip bones from low resolution
MRI datasets. They achieve an average reconstruction error
of 1.4± 1.1mm on six datasets. The bone shapes are initial-
ized via manually defined landmarks. No prior knowledge
about shape or pose relations between femur and hip bones
is exploited. Zoorofi et al. [10] evaluate and compare the
suitability of a series of low level techniques to segment
the femoral head and acetabulum. For each technique, they
identify the percentage of “good” segmentations achieved for
a set of 60 ct images based on success- and error measures.



Yin et al. [11] apply multi-object graph cuts for knee-joint
bone and cartilage segmentation, starting from rough initial
segmentations which they generate by adapting single-object
statistical shape models of the knee bones. Based on an
evaluation on 17 MR datasets, they report that94% of the
automatic segmentations required further manual border or
surface editing on less than10% of the surface. Liu et
al. [12] propose an interactive, graph cuts based framework
to separate foot bones in threshold segmentations of CT data.
The make use of a weighted graph constructed from a binary
volume. They achieve segmentation errors less than1.5% in
terms of Dice’s coefficient.

B. Contribution

As a methodological contribution, we extend the definition
of SSMs [5] by rotation parameters describing the flexion in
the hip joint. In contrast to related work on Articulated Shape
Models [4], [6], [7], [8], we model the flexionexplicitly and
not via a statistical analysis of joint posture or articulation
in a training set. This seems reasonable for the hip joint: It
can be approximated by an ideal ball-and-socket joint, so its
behaviour is known and can be explicitly modeled without
analyzing a training set. We perform statistical analysis on
a set of aligned training shapes to capture just theshape
variation, undisturbed byjoint posture variation. We extend
the common approach for adapting SSMs to image data [5]
to cope with the additional parameters, and we show how to
generate such a model.

Our second contribution is a detailed leave-one-out eval-
uation on 50 CT datasets. Particularly for the femoral head,
our composite model outperforms a single femur SSM. A
framework that combines the adaptation of the composite
model with successive graph based multi object optimization
[3] solves our initial objective, as it produces robust, accurate
and consistent segmentations of both femur and pelvis,
without any manual interaction.

The paper is organized as follows: We describe the SSM
extension in Sec. II and III. Sec. IV describes the image data
this work is based on and its usage for building the articulated
shape model of femur and pelvis. In Sec. V we describe our
fully automatic segmentation framework. Evaluation results
are given in Sec. VI and discussed in Sec. VII. Sec. VIII
concludes and debates ideas on future work.

II. A N SSM WITH ARTICULATED BALL -AND-SOCKET

JOINT

Our work is motivated by the idea thatjoint flexibility
is not the same asshape variation. This implies that joint
flexibility should not be modelled implicitly via the modes
of shape variation of an SSM, but explicitly with separate
parameters. In this Section, we describe a composite model
that consists of two objects P and Q and a rotation center c of
a ball-and-socket joint in which the objects are linked. The
modes of shape variation cover the whole object compound.
We first give the common definition of SSMs, and then
extend it to capture articulated joint flexibility by introducing
additional degrees of freedom. Then we describe how to

generate such a model from a training set of unaligned
shapes.

A. Model Definition

A statistical shape model (SSM) is commonly [5] com-
puted by performing principal component analysis (PCA) on
a training set of aligned shapessi ∈ R

3m, i = 1 . . . n, where
eachsi is defined by a set ofm points in space. PCA on the
training set of shapes yields a linear model of the form

S(b) = s +

n−1
∑

k=1

bkpk (1)

wheres ∈ R
3m represents the mean shape vector,pk ∈ R

3m

the modes of shape variation (eigenmodes),bk ∈ R the
shape weights, andb = (b1, .., bn−1)

T the shape weight
vector. Any consistent shape comprised in the statistical
analysis, i.e. any training shape, can now be represented
by an instanceS(b) of the SSM. We denote the position
of point/vertexj ∈ {1 . . .m} in an instanceS(b) (i.e. its
(3j − 2)th, (3j − 1)th and 3jth component) as~vj(b). A
transformationT ∈ R

4m×4m is commonly included in the
model to describe transformed shapes.T is composed of an
affine transformationt ∈ R

4×4 (usually rigid with scale) and
zero matrices0 ∈ R

4×4,

T =











t 0 · · · 0

0 t · · · 0
...

...
. . .

...
0 0 · · · t











(2)

Assuming (without a change of notation) that vertex po-
sitions ~vj(b) are represented in homogeneous coordinates
∈ R

4, the model becomesS(b, T ) = T (S(b)).
Assume vertex numberc with position ~vc(b) represents

the joint center of a composite modelS(b), all vertices~vj(b)
with j < c represent the first object (P), and all vertices with
j > c represent the second object (Q). Then we extend the
model by a matrixR ∈ R

4m×4m that describes the relative
transformation of object Q with respect to object P.R is
composed of a matrixr ∈ R

4×4 that defines a rotation
around~vc(b), an identity matrixE4c and zero matrices,

R =



















E4c 04c,4(m−c)

04(m−c),4c











r 0 · · · 0

0 r · · · 0
...

...
. . .

...
0 0 · · · r





























r = Transl (~vc (b)) ◦ Rot(α, β, γ) ◦ Transl(−~vc(b))
(3)

with the parametersα, β, γ describing the rotation in terms
of Euler angles. Note thatR depends on the weight vectorb

via the rotation center~vc(b) as well as on the Euler angles
α, β, γ. In the following, we denote the Euler angles asθ :=
(α, β, γ). The model then becomes

S(b, T, θ) = (T ◦ R(θ, ~vc(b))) (S(b)). (4)



We call such a modelJoint Statistical Shape Model(JSSM).

B. Model Generation

Given a set of (unaligned) training shapessi ∈ R
3m, i ∈

{1 . . . n} with corresponding vertices, each containing ver-
ticespi ∈ R

3(c−1) of an object P and verticesqi ∈ R
3(m−c)

of an object Q as well as a joint center~vi ∈ R3. Commonly,
an affine transformationTi (rigid or rigid with scale) is
computed for each training vector that optimally aligns it
to a reference vector (e.g. the first training vector),Ti =
argminT ‖T (si) − s1‖

2. This would not make sense in our
case, as the relative transformations of the objects Q with
respect to “their” objects P do not necessarily correspond
(i.e. the individual objects Q are generally not all flexed
“in the same way” in the joint center). Instead, as a first
step of alignation, we align the verticespi of object P
only, by computing a transformationTi ∈ R

4m×4m for
each training vector such that just its components of P
are aligned with reference components of P, namelyTi =
argminT ‖T (pi) − p1‖

2. This results in new training vectors
Ti(si). A transformationRi ∈ R

4m×4m is then computed
for eachTi(si) that aligns the orientation of its components
of Q to the orientation of reference components of Q.
Therefore, we compute a transformation (rigid with scale)
Ai = argminA ‖A(Ti(qi)) − q1‖

2. We omit the scale factor
from Ai, resulting in a rigid transformationBi, and add a
translationCi such that the joint centerTi(~vi) is a fixed
point of Ri := Ci ◦ Bi, i.e. Ri(Ti(~vi)) = Ti(~vi). Without
change of notation we assume thatTi andRi are replenished
with identity and zero matrices as in Eq. 2 and 3. Now we
perform PCA over the set of training vectors(Ri ◦ Ti)(si)
to generate the mean shapes andn − 1 shape vectorspk.

III. A DAPTING A JSSMTO A TARGET SHAPE

In this Section, we propose an approach for fitting a JSSM
to a target shape. This is essential for image driven iterative
model adaptation, where the model is fitted to a temporary
mesh in each step. For a description of adaptation strategies
for single shape models, see e.g. [5]. Transformation and
shape parameters are usually adapted separately. Our JSSM
fitting approach copes with the additional degrees of freedom
in the articular joint in both transformation and shape adap-
tation. For an instanceS(b, E4m, 0) of a shape model, we
denote object P’s vertices (i.e. the first4(c−1) components)
asp(b), object Q’s vertices asq(b) and the joint center as
~vc(b). Vertices of a modelS(b, T, θ) with transformations
are denoted asp(b, T, θ) or alike. As for the target shape
s∗ ∈ R

4m, we denote object P’s vertices asp∗, object Q’s
vertices asq∗, and joint center as~v∗c .

A. Transformation Adaptation

Given a shape instanceS(b, E4m, 0), we determine a new
transformationTnew and rotationθnew , while the shape pa-
rameters remain constant. We computeTnew by alignment of
only object P’s points:Tnew = argminT ‖p(b, T, 0) − p∗‖

2.
Then we computeθnew by rotational alignment ofq(b)

to inversely transformed target points around the joint cen-
ter ~vc(b): θnew = argminθ

∥

∥q(b, E4m, θ) − T−1
new(q∗)

∥

∥

2
.

Note that global transformation and local rotation are op-
timized separately here. Thus the combination of parameters
(Tnew, θnew) does not necessarily minimize the distance of
the adapted model to the target shape.

B. Shape Adaptation

Given a model instanceS(b, T, θ). While transformation
and rotation angles stay constant here, we want to determine
adapted shape parametersbnew . Therefore we compute the
shape parameters that optimally fit the untransformed model
vertices to the inversely transformed target vertices:

bnew = argmin
b

‖S(b, E4m, 0) − Inv(p∗, ~v∗c ,q∗)‖
2 (5)

with
Inv =

(

R−1(θ, T−1(~v∗c )) ◦ T−1
)

(6)

Note that the shape adaptation also changes the rotation
matrix R of the shape model:Rnew = R(θ, ~vc(bnew)).
Also the inverse rotation matrixR−1(θ, T−1(~v∗c )) is gen-
erally not the inverse of the rotation matrix before adaption,
R(θ, ~vc(b)). In effect,~bnew does not necessarily minimize
the distance ofS(b, T, θ) to theuntransformedtarget vertices
(p∗, ~v∗c ,q∗).

IV. A JSSM OF PELVIS AND FEMUR WITH FLEXIBLE HIP

JOINT

In this Section we describe the generation of an application
specific model. The training shapes are reconstructed from
tomographic image data. The individual bent of the hip
joint has to be eliminated from each training shape before
performing PCA on the training set of shapes. As for the
image data, datasets containing both the complete pelvis and
femur were not available for this study. This is a common
situation, as in most clinical cases only one object of interest
is recorded, which then contains only part of the adjacent
objects. It is not desirable to include in the model only the
part which is captured by all datasets. This is because we
want to use our shape model to segment new, unseen image
data that may capture a wider part of this object.

A. Image Data

For model generation we dispose of 50 pelvis CT datasets
(set P). With a voxel size of about0.9 × 0.9 × 5 mm
all datasets approximately have the same resolution. They
all display the patient specific pelvis, the femoral head,
and various amounts of the femoral body. At maximum,
about half the femoral body is displayed. The pelvis, the
right proximal femur, and the center of the right hip joint
were manually labelled by a human observer (gold standard
labels). For the pelvis, three labels were defined, one for each
hip bone and one for the sacrum. For more details on set P,
see [2]. Additionally we make use of 30 femur CT datasets
(set F) with a slice resolution of about0.5 × 0.5 mm and
slice distances of0.5 to 1.5 mm. All datasets display the
whole femur, but only part of the pelvis. The right femur
was manually labelled by human observers.



B. Training Shapes

From set P, triangular pelvis surfaces with corresponding
mesh topologies were established from the gold standard
labels as described in [2]. Among other anatomically rel-
evant structures on the pelvis surfaces, the acetabulum was
identified manually and forms a separate patch. Analogously,
triangular femur surfaces with corresponding mesh topolo-
gies were established from the labels of set F. Here, the
femoral head was identified manually and forms a separate
patch. From the femur surfaces, we generated an SSM of
the complete femur. This model was then fitted to the partial
femur labels contained in set P. Thus we get approximate
patient specific femur surfaces for P with corresponding
mesh topologies. Their distal ends are purely extrapolatedby
the model. However, this way we can cope with the varying
amount of he femoral body displayed in the CT datasets of
P. Now, together with the manually marked joint centers,
we have 50 unaligned training vectorss1, . . . , sn composed
of 29619 pelvis vertices, one joint center and8461 femur
vertices. We align the training vectors as proposed in Sec.
II-B, and perform PCA on the resulting vectors.

V. SEGMENTATION FRAMEWORK

Our fully automatic framework for pelvis and femur
segmentation in CT data is composed of the following steps:
Initialization, image driven JSSM or SSM adaptation, and
graph based optimization of single or coupled objects. This
Section describes all steps as well as the overall segmenta-
tion algorithm with various parametrizations as used in our
experiments (see Sec. VI).

A. Initialization

The pose initialization of the pelvis in CT data as con-
tained in our framework closely follows a global approach
for 3D object detection introduced by Khoshelham [13].
It is based on the Generalized Hough Transform (GHT).
For a detailed description, see [2]. When using the single
femur SSM, as for pose initialization in (pelvis-) CT data,
we can reuse the transformation that results from pelvis
initialization, as the femur SSM is located in an anatomically
consistent way with respect to the pelvis SSM.

B. Image Driven JSSM Adaptation

Segmentation using the JSSM (4) is the task of finding
transformation and shape parameters such thatS(b, T, θ)
approximates the unknown target shapeR∗ ∈ R

3m as
good as possible. The computation proceeds iteratively. Let
Ri = S(bi, T i, θi) denote the segmentation in iterationi:
A displacementvector field∆Ri ∈ R

3m is computed that
assigns a vector∆rj ∈ R to each vertexj ∈ N of Ri. It
describes the desired deformation of the model towardsR∗

in the underlying image dataI. Then, transformation and
rotation parameters(T, θ) and shape parametersb of the
JSSM are alternately adapted to the target shape(Ri +∆Ri)
as described in Sec. III. For details on single object SSM
adaptation, see [2]. The following paragraph explains how
the displacement vector field∆Ri is generated.

C. Image Analysis

The displacement vector field∆R for surfaceR is com-
puted by analyzing 1Dintensity profilesin the image data
I : R

3 → R: For each vertexj of R, I is sampled over a
lengthL along the surface normaluj at vertex positionvj .
A cost functioncj : Pj → R

+
0 is computed on the set of

sampling pointsPj = {vn
j := vj +( n−1

Nj−1 − 0.5) ·L ·uj |n =

1, . . . , Nj}. The displacement vector at vertexj is then
defined as∆rj = v∗j − vj , with v∗j = argminvn

j
cj(v

n
j ). In

the following we drop the indexj for clarity. Our framework
employs three cost functions: A “standard” cost function
cS, a “conservative” cost functioncC and an “ignore” cost
function cI. We definecS(vn) =















(2i+1)
(

−g
dI(vn) +2 |m−n|

N

)

if (8)

7
(

−g
dI(vn) + 2 |m−n|

N

)

if (9)

30 + 2 |m−n|
N

else,

(7)

with conditions

I(vn)∈ [t+iw, t+(i+1)w]∧ dI(vn)<−g, i=0, 1, 2 (8)

I(vn) ∈ [t, t + 3w] anddI(vn) < −0.5 · g . (9)

Here, t defines an intensity threshold,w an intensity
window width, andg a threshold for gradient magnitude.
dI(vn) denotes the directional derivative ofI alongu, and
m ∈

{

1, N+1
2 , N

}

is a “preferred sample index”, i.e. sample
points closer tovm get slightly lower costs. We definecI
as cI(vn) = 0 if n = N+1

2 , and cI(vn) = 10 otherwise.
cC is defined ascC(vn) = cS(vn) if there are two distinct
intervals of sample points withcS(vn) < 30, and at least
one sample point inbetween withdI(vn) > gmin, and
cC(vn) = cI(vn) otherwise. Thus, features are ignored if
only one downward gradient (from bone to background) is
found along the profile. This makes sense for the femoral
head: A downward gradient is often not present at the femur
surface, but only inside the pelvis.

D. Graph Based Multi-object Optimization

In JSSM adaptation, the minimum cost sample point on a
profile serves as a desired (locally optimal) new position for
the respective vertex. However, graph cut algorithms allow
for a global optimization of the sum of costs for each vertex
displacement while respecting hard constraints on surface
smoothness and optionally on the distance between multiple
surfaces. For the latter, multiple surfaces must be coupled
with shared intensity profilesat individual vertices. For more
details on graph construction see [14]. In [3], we proposed a
construction algorithm for shared intensity profiles on pairs
of adjacent triangular surface meshesP andQ that yields a
bijective mapping betweencoupled patcheson both meshes.
In the process, the connectivity of parts of the original
mehses is modified. For more details, see [3].



Step on Model Details
1. GHT all as in [2]
2. SMA all Profile length L := 50mm, sampling points

N := 50, intensity parameterst := 120, w :=
200, gradient thresholdg := 50/mm. Adapt
only transform. parameters.

F Cost functioncI or cS with m = N+1

2
for

femoral head,cS with m = N otherwise.
P cS with m = N+1

2
for acetabulum,m = N

otherwise.
C cS with m = N+1

2
for acetabulum and femoral

head,m = N otherwise.
3. SMA all L := 20mm. Alternating update of transforma-

tion parameters and the first30 shape parame-
ters,(b1, . . . b30).

4. SMA all L := 10mm. Consider all shape parameters~b
in update.

5. COU C L := 10mm or 20mm.
6. OPT all L := 10mm or20mm, Np := 20 or 40. Shape

preserving1mm.
F cC or cS

k
with m = N+1

2
for femoral head,

or cC only for coupled femur patches resulting
from COU.

C cC for femoral head. Min/max distance con-
straint0mm/8mm.

TABLE I

VARIANTS OF THE OVERALL SEGMENTATION ALGORITHM. FROM TOP

TO BOTTOM, PARAMETERS DO NOT CHANGE IF NOT NOTED OTHERWISE.

E. Overall Segmentation Algorithm

The segmentation algorithm consists of a series of steps
combining the methods presented above, see Table I. The
following methods are applied: pose initialization (GHT),
SSM or JSSM adaptation (SMA), coupling with shared
displacement directions (COU) and optimization via graph
cuts (OPT). For each step the particular parameters are listed
in theDetailscolumn. Details that are the same for all models
are labelled asall in the second column, details for a single
femur model asF, for a single pelvis model asP, and for a
combined or coupled model withC.

VI. RESULTS

We segmented the 50 pelvis CT datasets of set P (see
Sec. IV) with the different variants of the fully automatic
algorithm as defined in Table I. For the segmentation of
dataseti, we removed the respective training surfacesi from
the pelvis SSM or JSSM. The complete segmentation of one
CT stack took about4 : 20 to 6 : 00 minutes on a desktop
PC (2,66GHz Core, 8GB RAM), depending on the shape
model (femur, pelvis or composite model) and the type of
optimization.

A. Evaluation Method.

The main focus of our evaluation is to determine how
accurate the automatic segmentations are in the area of the
right hip joint. We particularly focus on the accuracy of
JSSM adaptions as compared to single SSM adaptations,
and analogously on the accuracy of coupled optimization
as compared to single object optimizations. As accuracy
measures we computed the average surface distance (ad) and
maximum surface distance (md) of the right acetabulum and
femoral head from the respective gold standard surface. Each

SFM1 SFM2 SPM JSSM
ad md ad md ad md ad md

F 3.1 8.3 2.2 5.7 not in 1.7 4.5
1.4 3.7 1.0 2.8 model 0.6 1.5

A not in not in 1.5 5.5 1.4 5.4
model model 0.5 2.0 0.5 1.9

TABLE II

SSMAND JSSMADAPTATION RESULTS FOR FEMORAL HEAD(F) AND

ACETABULUM (A). A LL ENTRIES IN MM . BOLD: AVERAGE MEASURE

OVER 50 DATASETS. BELOW: STANDARD DEVIATION .

structure is defined as a set of vertex numbers on the gold
standard meshes. Thus we could compute the distance from
these vertices to the respective automatic segmentation. Note
that ad andmd are assymmetric measures.

A second focus of the evaluation is to measure the
overall accuracy of the pelvis reconstruction. This way our
results can be compared with previous and related work.
We performed an evaluation of left and right hip bone,
sacrum, and the complete pelvis as in [2]. We compute the
volumetric overlap error (OE), average symmetric surface
distance (AD), average symmetric roots mean square surface
distance (RMS) and maximum surface distance (MD), each
as described in [15].

B. Results for Shape Model Adaptation.

We carried out two experiments with the single femur
SSM, namelySFM1 with the standard cost functioncS for
the femoral head, andSFM2 with cost functioncI for the
femoral head. ExperimentsSPM andJSSM were performed
with the single pelvis SSM and the JSSM, respectively, both
with cost functioncS. Table II lists the average error metrics
for the femoral head and acetabulum. For experimentJSSM,
the average error metrics for the pelvic bones are given in
Table IV.

C. Results for Graph Based Optimization.

For the femur, we carried out four single object optimiza-
tion experiments, all of which starting from the femur results
of JSSM, namelySF1 with 10mm profiles and cost function
cS for the femoral head,SF2 with 10mm profiles and cost
function cC for the femoral head,SFC1 and SFC2 with
10mm profiles and 20mm profiles, respectively, and cost
function cC for the coupled femur patches. For the pelvis,
two single object optimization experiments were carried out,
both with cost functioncS and 20mm profiles, namelySP1,
starting from the results ofPSSM, andSP2, starting from
the pelvis results ofJSSM.

Two multi object optimization experiments were per-
formed on the coupled femur and pelvis results ofJSSM,
both with cost functioncC for the coupled femur patches,
namelyC1 with 10mm profiles andC2 with 20mm profiles.

Table III lists the average error metrics for the femoral
head and acetabulum. ForC2, Table IV lists the average
error metrics for the pelvic bones. Note that the metricsad
andAD, and alsomd andMD, cannot be directly compared,
as their computation methods differ fundamentally. However,



SF1 SF2 SFC1 SFC2 SP1 SP2 C1 C2
ad md ad md ad md ad md ad md ad md ad md ad md

F 1.5 5.0 1.4 4.5 1.3 4.4 1.7 5.8 not in not in 1.2 4.2 1.1 4.3
0.7 2.1 0.6 1.8 0.6 1.8 1.0 2.1 model model 0.5 1.6 0.5 1.4

A not in not in not in not in 0.9 4.8 0.9 4.7 0.9 4.7 0.8 4.7
model model model model 0.5 2.4 0.5 2.4 0.5 2.1 0.5 2.2

TABLE III

SINGLE AND COUPLED OPTIMIZATION RESULTS FOR FEMORAL HEAD(F) AND ACETABULUM (A). A LL ENTRIES IN MM . BOLD: AVERAGE ON 50

DATASETS. BELOW: STANDARD DEVIATION .

JSSM
OE AD RMS MD
[%] [mm]

All 19.9(3.0) 1.0(0.3) 2.0(0.6) 15.4(4.5)
RHB 18.0(2.3) 0.7(0.1) 1.3(0.2) 8.5(2.1)
LHB 22.8(3.8) 1.0(3.8) 1.8(0.4) 11.4(2.2)

S 23.5(5.4) 1.6(0.6) 2.7(1.2) 14.6(4.9)

C2
OE AD RMS MD
[%] [mm]

12.7(3.1) 0.6(0.2) 1.6(0.6) 15.7(5.0)
9.7(2.0) 0.3(0.1) 0.8(0.2) 7.6(1.9)

14.8(3.7) 0.6(0.2) 1.5(0.4) 11.4(2.4)
18.5(5.9) 1.1(0.6) 2.4(1.2) 14.9(5.4)

TABLE IV

EVALUATION RESULTS ON PELVIS: JSSMADAPTATION AND COUPLED OPTIMIZATION. OVERALL PELVIS (ALL ), RIGHT HIP BONE (RHB), LEFT HIP

BONE (LHB), AND SACRUM (H). EACH MEASURE WITH STANDARD DEVIATION IN BRACKETS.

as a reference example, we computed both ad and AD for
the overall pelvis surfaces fromC2. The averages aread
0.8 ± 0.2 mm andAD 0.6 ± 0.2 mm.

VII. D ISCUSSION

A. Shape Model Adaptation.

Concerning the femur, the JSSM yields robust segmen-
tations of the femoral head (ad 1.7 ± 0.6 mm). We could
not achieve such an accuracy with the single femur SSM,
which yielded the best result when ignoring the femoral
head in the adaptation process (ad 2.2 ± 1.0 mm). As the
femoral head is then completely extrapolated by the model,
oversegmentations as well as undersegmentations occur, see
Fig. 1(a) and 1(b). When treating the femoral head of the
single femur SSM with the standard cost function (as for the
JSSM!), it adapts to “false” image features in many cases,
as high gradients are commonly present inside the pelvis
where the bone density decreases, and also on the pelvis
surface opposite the acetabulum, see Fig. 1(c) and 1(d).
As for the pelvis, the single pelvis SSM already produces
robust segmentations of the acetabulum (ad 1.5 ± 0.5 mm).
The JSSM performs slightly better (ad 1.4 ± 0.5 mm). The
accuracies of one individual JSSM result and the respective
single-SSM result differ at maximum0.3 mm (ad). Only
minor differences are visible. However, one could interpret
the average results as a hint that in the JSSM the femoral
head deters the acetabulum from features inside the femur.

B. Optimization.

For the femur, coupled optimization is better on average
than single optimization (ad 1.1 versus1.4mm). It is also
more robust in the sense that longer intensity profiles can
be used without the risk of the femoral head’s adapting to
image features inside the pelvis. Coupled optimization with
20mm intensity profiles produces the overall best result for
the femoral head. Single optimization with 20mm intensity
profiles produces large oversegmentations, the femoral head

adapting to features inside the pelvis. Therefore we used
10mm intensity profiles for most single femur optimization
experiments. The best single optimization result was reached
with 10mm intensity profiles and the conservative strategy
for the femoral head. However, in some cases 10mm intensity
profiles do not reach any image features, see Fig. 2(a).
Furthermore even if features are reached, the conservative
strategy often ignores them, see Fig. 2(b). For coupled opti-
mization however, 20mm profiles could be used, as the femur
mesh is prevented from adapting to the inside-pelvis features
by the pelvis mesh. Apart from the constraints imposed
by coupled optimization, another advantage in experiments
C1 and C2 is that the coupled patches are defined on the
femoral head and can be treated separately, in our case
with the conservative strategy. We performedSFC1 and
SFC2 for direct comparison toC1 and C2. As for the
pelvis, coupled optimization is slightly better on average
than single optimization (ad 0.8 versus0.9mm). Although
most individual results are similar, coupled optimization
outperforms single optimization in a few cases due to the
distance constraints imposed by the shared intensity profiles,
see Fig. 2(c-e).

VIII. C ONCLUSION

We proposed a fully automatic framework for simulta-
neous segmentation of the pelvis and proximal femur from
CT data. The framework is based on a composite statistical
shape model of pelvis and femur with a flexible hip joint.
We gave a general definition of such a model, and showed
how it can be adapted to target shapes. We evaluated the
framework on 50 CT datasets. The composite statistical
shape model yields more accurate segmentation results than
single statistical shape models of pelvis and femur in the
hip joint region. Furthermore, the composite shape model
segmentation results are suitable as initializations for fine
grain multi object segmentation based on a method for
coupling adjacent mehes and graph cuts. We showed that



(a) (b) (c) (d)

Fig. 1. Black: JSSM. White: Gold standard. (a,b) Red/grey:SFM2. Ignoring the femoral head causes (a) under- and (b) overrsegmentations. (c,d)
Red/grey:SFM1. Femoral head adapts to features (c) inside and (d) on the pelvis surface.

(a) (b) (c) (d) (e)

Fig. 2. Black: coupled optimization with 20mm profiles (C2). White: Gold standard. (a,b) Red/grey: Single femur optimization (SF2). (a) 10mm profiles
too short. (b) Conservative strategy ignores features. (c-e) Red/grey: Single pelvis optimization, 20mm profiles (SP2). (c,d) Minimum and (e) maximum
distance constraints prevent mis-adaptations in coupled optimitzation.

coupled graph based optimization robustly leads to very
accurate segmentations of the hip joint region. The average
mean surface distance of the acetabulum from gold standard
segmentations is0.8mm, and1.1mm for the femoral head.
As future work we are to establish a composite model with
more than two objects and flexibility in other types of joints
than a ball and socket joint, e.g. hinge joints.
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