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Abstract— In this paper we propose a framework for fully
automatic, robust and accurate segmentation of the human
pelvis and proximal femur in CT data. We propose a composite
statistical shape model of femur and pelvis with a flexible
hip joint, for which we extend the common definition of
statistical shape models as well as the common strategy fdneir
adaptation. We do not analyze the joint flexibility statistically,
but model it explicitly by rotational parameters describing the
bent in a ball-and-socket joint. A leave-one-out evaluatio on
50 CT volumes shows that image driven adaptation of our com-
posite shape model robustly produces accurate segmentati®
of both proximal femur and pelvis. As a second contribution,
we evaluate a fine grain multi-object segmentation method
based on graph optimization. It relies on accurate initialzations
of femur and pelvis, which our composite shape model can
generate. Simultaneous optimization of both femur and pelig
yields more accurate results than separate optimizations fo
each structure. Shape model adaptation and graph based
optimization are embedded in a fully automatic framework.

I. INTRODUCTION

This method is capable of producing accurate and consistent
segmentations. However, it relies on good initializatiofs

the adjacent objects. To solve this essential initialoratask,

we propose a composite statistical shape model of femur and
pelvis with flexible hip joint.

A. Related Work.

1) Articulated Shape Model&Atrticulated statistical shape
models were probably first suggested by Heap and al. [4].
They build a point distribution model as in [5], with the
extension that training point sets may represent some twibse
of points as polar coordinates with respect to certain pivot
points. The resulting point distribution model captureg+o
tional flexibility as far as it is contained in the trainingtda
This is not possible with a purely cartesian point distridut
model because of its linearity. Al-Shaher et al. [6] apply an
articulated shape model as described in [4] for 2D human
shape modelling and suggest a method for adapting their
model to 2D landmark point data.

For patient-specific biomechanical simulations, e.g. of Articulated shape models for medical image analysis were
the human lower limb, an accurate reconstruction of thgyore recently proposed by Klinder et al. [7] and Boisvert
bony anatomy from medical image data is required. Thigt al. [8]. Klinder et al. [7] perform a statistical analysis
particularly applies to joint regions, as simulation résul of rigid transformations between local vertebra coordinat

heavily depend on the anatomy of joints [1]. In CT data, bongystems to build an articulated spine model. The resulting
tissue usually shows a high intensity contrast to surraundi statistical transformation model then captures spine dhexi
soft tissues and may be segmented by simple thresholding contained in the training data. It is applied for rough
However, in joint regions, thresholding is often not suéfiti  spine segmentation in CT data, which is refined by an
for separating adjacent individual bones. Due to largeeslicadaptation of multible vertebra surface models with a fieatu
thickness or pathological changes of bones, the joint spafighction that penalizes overlap of ajcacent vertebraes\Bat
may be hard to detect even for human observers. et al. [8] suggest a similar approach to build a statistical
In this paper, our objective is a fully automatic, robustiransformation model for capturing and analyzing the shape
accurate and consistent (i.e. non-overlapping) segmentat variability contained in a training set of scoliotic spingsey
of both femur and pelvis from CT data. In [2] we achievedhpply their model for reconstruction of the 3D spine from
robust segmentations of the pelvis alone based on a statisti2D landmarks in few radiographs.
shape model (SSM) and graph optimization. However, inac- 2) Segmentation of Articulated Joint§chmid et al. [9]
curacies occured in the acetabulum, as no prior knowleggopose a combination of physically-based deformable mod-
about the femur was exploited. Segmenting the femorals and prior shape knowledge (single object SSMs and
head without prior knowledge about the pelvis is even morgarkov random field modeling of local deformations) for
difficult, as shown in Sec. VI. An idea to overcome thissegmentation of femur and hip bones from low resolution
problem is to use prior knowledge about the shape and posfR| datasets. They achieve an average reconstruction error
relations between femur and pelvis. In [3] we presented @ 1.4+ 1.1mm on six datasets. The bone shapes are initial-
method for simultaneous segmentation of adjacent objectged via manually defined landmarks. No prior knowledge
about shape or pose relations between femur and hip bones
Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germarly. Kainmueller is exploited. Zoorofi et al. [10] evaluate and compare the
ist funded by DFG Coll. Research Center SFB760. H. Lameckéurided ~ suitability of a series of low level techniques to segment
by DFG Research Center Matheon in Berlin. Thanks to HeikanSei the femoral head and acetabulum. For each technique, they
(z1B) for providing the shape models of femur and tibia. Tksrto identify the percentage of “good” segmentations achieved f

Charité Center for Musculoskeletal Surgery for providithe pelvis model. )
{kai nnuel l er, | amecker, zachow, hege}@ib. de a set of 60 ct images based on success- and error measures.
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Yin et al. [11] apply multi-object graph cuts for knee-jointgenerate such a model from a training set of unaligned
bone and cartilage segmentation, starting from roughainiti shapes.

segmgntatlons which they generate by adapting smgle:—bbJeA_ Model Definition
statistical shape models of the knee bones. Based on ‘an

evaluation on 17 MR datasets, they report thét; of the A statistical shape model (SSM) is commonly [5] com-
automatic segmentations required further manual border Brted by performing principal component analysis (PCA) on
surface editing on less that0% of the surface. Liu et @ training set of aligned shapese R*™", i = 1...n, where

al. [12] propose an interactive, graph cuts based framewofi@chs; is defined by a set of: points in space. PCA on the
to separate foot bones in threshold segmentations of CT dal@ining set of shapes yields a linear model of the form
The make use of a weighted graph constructed from a binary n—1

volume. They achieve segmentation errors less tha in S(b) =85+ Z br Pk Q)
terms of Dice’s coefficient. k=1

3 3m 3m
B. Contribution wheres € R°™ represents the mean shape vegtare R

) o .. the modes of shape variation (eigenmodég),c R the
As a methodological contribution, we extend the deﬁmuoghape weights, and = (by,...b,_1)T the shape weight

of SSMs [5] by rotation parameters describing the flexion igector Any consistent shape comprised in the statistical
the hip joint. In contrast to related work on Articulated $ba analysis, i.e. any training shape, can now be represented
Models [4], [6], [7], [8], we model the flexiomxplicitly and 41 instanceS(b) of the SSM. We denote the position
not via a statistical analysis of joint posture or articiolat ¢ pointivertexj € {1...m} in an instanceS(b) (i.e. its

in a training set. This seems reasonable for the hip joint: B, 2)th, (35 — 1)th and 3jth component) agi;(b). A
can be approximated by an ideal ball-and-socket joint, 80 ifransformations” € R4*4™ is commonly includéd in the

behaviour is known and can be explicitly modeled withouf,gqe| to describe transformed shapgsis composed of an
analyzing a training set. We perform statistical analysis 0tfine transformation ¢ R4*4 (usually rigid with scale) and
a set of aligned training shapes to capture just shape zero matrice® € R4x4

variation, undisturbed byoint posture variation We extend
the common approach for adapting SSMs to image data [5]
to cope with the additional parameters, and we show how to
generate such a model. Do .o

Our second contribution is a detailed leave-one-out eval- 00 --- ¢
uation on 50 CT datasets. Particularly for the femoral head,

our composite model outperforms a single femur SSM. A’> 5 (b din h di
framework that combines the adaptation of the composifions v;(b) are represented in homogeneous coordinates
c R*, the model becomeS(b,T) = T(S(b)).

model with successive graph based multi object optiminatio ’ \PAT
Assume vertex number with position 7.(b) represents

[3] solves our initial objective, as it produces robust,.aete > ¢ ) b). all icos (b
and consistent segmentations of both femur and peri@,eJOInt center of a composite modg(b), all verticesv; (b)

without any manual interaction with j < ¢ represent the first object (P), and all vertices with

The paper is organized as follows: We describe the SSPZ)I> c represent the second object (Q). Then we extend the

extension in Sec. Il and lll. Sec. IV describes the image danOdel by a matrixi € R4mX4W_L that describes t_he rela_ttlve
this work is based on and its usage for building the artiealat transformation of object Q Witxh4 respect (o object /2.is
shape model of femur and pelvis. In Sec. V we describe O&pmpoied of a .matrl'w < R that defines a .rotatlon
fully automatic segmentation framework. Evaluation resul aroundi.(b), an identity matrixk,. and zero matrices,
are given in Sec. VI and discussed in Sec. VIl. Sec. Vi E4. O4c,4(m—c)

concludes and debates ideas on future work.

t 0 --- 0
0O t .-
T={. . . . )

ssuming (without a change of notation) that vertex po-

o --- 0

II. AN SSMWITH ARTICULATED BALL-AND-SOCKET R = g r oo 0
JOINT 04(17L—(:).4c

Our work is motivated by the idea thgdint flexibility 0 O o

PR 7"

is not the same ashape variation This implies that joint
flexibility should not be modelled implicitly via the modes
of shape variation of an SSM, but explicitly with separate
parameters. In this Section, we describe a composite mo%

I - L
. . . th the parametera describing the rotation in terms
that consists of two objects P and Q and a rotation center ¢ 8# b 0,7 g

L . . . Euler angles. Note that depends on the weight vectbr
e e e ket T te rolalon center, (1) a5 el on he Euer angles
P ) P a;, 3,~. In the following, we denote the Euler anglestas=

We first give the common definition of SSMs, and the
extend it to capture articulated joint flexibility by introding rta’ﬂ’ 7)- The model then becomes
additional degrees of freedom. Then we describe how to S(b,T,0) = (T o R(0,7.(b))) (S(b)). 4)

r = Transl (0. (b)) o Rot(a, 8,7) o Transl(—v.(b))
(3)



We call such a modeloint Statistical Shape Modé€JSSM). to inversely transformed target points around the joint-cen
ter G.(b): Onew = argming ||a(b, Eam,0) — Tk (a?)] .

B. Model Generation Note that global transformation and local rotation are op-

Given a set of (unaligned) training shapgse R3™,; ¢  timized separately here. Thus the combination of pararseter

{1...n} with corresponding vertices, each containing vertInew, fnew) does not necessarily minimize the distance of
ticesp; € R3(~1 of an object P and verticag € R3(m—<)  the adapted model to the target shape.

of an object Q as well as a joint centére R*. Commonly, B Shape Adaptation

an affine transformatiorf; (rigid or rigid with scale) is

computed for each training vector that optimally aligns it Given a model instancé (b, T, 6). While transformation
P 9 X O y aig and rotation angles stay constant here, we want to determine
to a reference vector (e.g. the first training vectdr),=

- . h ram w. Therefore w m h
argming || T(s;) — s1||>. This would not make sense in Ouradapted shape parametérs. erefore we compute the

. . . .shape parameters that optimally fit the untransformed model
case, as the relative transformations of the objects Q Wl@;e rices to the inversely transformed target vertices:

respect to “their” objects P do not necessarily correspon
(i.e. the individual objects Q are generally not all flexed bye, = argmin ||S(b, Esm,0) — Inv(p*, 75, q*)||>  (5)
“‘in the same way” in the joint center). Instead, as a first b
step of alignation, we align the verticgs; of object P With . . .
only, by computing a transformatioi; € R*™*4m for Inv= (R0, T~ 1(T})) o T7Y) (6)
each training vector such that just its components of P Npote that the shape adaptation also changes the rotation
are aligned with reference components of P, namly= magix R of the shape modelR = R(0,7.(bpew))
. 2 . . . new y Ve new .

argming ||T'(p;) — p1||”- This resijltsin new training vectors aso the inverse rotation matrik— (0, 7-(¢*)) is gen-

1 mXam . . . - .
Ti(si). A transformationfz; € R*™**™ is then computed gra|ly not the inverse of the rotation matrix before adaptio
for eachTj(s;) that aligns the orientation of its COMPONENtSp g 7 (b)). In effect, bye, does not necessarily minimize

of Q to the orientation of reference components of Qe distance of(b, T, 0) to theuntransformedarget vertices
Therefore, we compute a transformation (rigid with scale% 5, ).

A; — argmin,, [|A(T)(q:)) — qu||%. We omit the scale factor " °’

from A;, resulting in a rigid transformatiof;, and add a V- A JSSMOF PELVIS AND FEMUR WITH FLEXIBLE HIP
translationC; such that the joint centeT;(v;) is a fixed JOINT

point of R; := C; o B;, i.e. R;(T;(7;)) = T;(v;). Without In this Section we describe the generation of an application
change of notation we assume tliatand R; are replenished specific model. The training shapes are reconstructed from
with identity and zero matrices as in Eq. 2 and 3. Now wéomographic image data. The individual bent of the hip
perform PCA over the set of training vectai®; o T;)(s;) joint has to be eliminated from each training shape before

to generate the mean shap@andn — 1 shape vectorgy. performing PCA on the training set of shapes. As for the
image data, datasets containing both the complete peldis an
[1l. ADAPTING A JSSMTO A TARGET SHAPE femur were not available for this study. This is a common

,§|ituation, as in most clinical cases only one object of gger

is recorded, which then contains only part of the adjacent

gajects. It is not desirable to include in the model only the
a

In this Section, we propose an approach for fitting a JSS
to a target shape. This is essential for image driven itarati
model adaptation, where the model is fitted to a temporal

mesh in each step. For a description of adaptation strateg .
t to use our shape model to segment new, unseen image

for single shape models, see e.g. [5]. Transformation ag;l h » ¢ this obi
shape parameters are usually adapted separately. Our JS that may capture a wider part of this object.

fitting approach copes with the additional degrees of freedoA. Image Data
in the articular joint in both transformation and shape adap o model generation we dispose of 50 pelvis CT datasets
tation. For an instancé (b, Ey4,,,0) of a shape model, we (set P). With a voxel size of aboui9 x 0.9 x 5 mm
denote object P's vertices (i.e. the filgt: — 1) components) 5 gatasets approximately have the same resolution. They
asp(b), object Q's vertices ag(b) and the joint center as | gisplay the patient specific pelvis, the femoral head,
U(b). Vertices of a model (b, T’ ¢) with transformations  4ng various amounts of the femoral body. At maximum,
are denoted ap(b,T’,0) or alike. As for the target shape 56yt half the femoral body is displayed. The pelvis, the
s* € R*™, we denote object P’s vertices @S, object Q'S yight proximal femur, and the center of the right hip joint
vertices agy”, and joint center as;. were manually labelled by a human observer (gold standard
labels). For the pelvis, three labels were defined, one fcin ea
hip bone and one for the sacrum. For more details on set P,
Given a shape instancgb, Fy4,,,,0), we determine a new see [2]. Additionally we make use of 30 femur CT datasets
transformationt’,.,, and rotationd,,..,, while the shape pa- (set F) with a slice resolution of abo0t5 x 0.5 mm and
rameters remain constant. We compiite,, by alignment of slice distances 06.5 to 1.5 mm. All datasets display the
only object P’s pointsT;,.,, = argminy ||p(b,T,0) — p*HQ. whole femur, but only part of the pelvis. The right femur
Then we computé),..,, by rotational alignment ofg(b) was manually labelled by human observers.

rt which is captured by all datasets. This is because we

A. Transformation Adaptation



B. Training Shapes C. Image Analysis

From set P, triangular pelvis surfaces with corresponding The displacement vector field R for surfaceR is com-
mesh topologies were established from the gold standagiieq py analyzing 1Dntensity profilesin the image data
labels as described in [2]. Among other anatomically rel; . g3 ", R: For each vertex of R, I is sampled over a
evant structures on the pelvis surfaces, the acetabulum WaRgth L along the surface normal, at vertex positiony;.
identified manually and forms a separate patch. Analogpusly st functionc; : P; — R{ is computed on the set of
triangular femur surfaces with corresponding mesh toPO'%'ampling points?; = {v} == v; + (A4 —0.5) - L u;ln =

gies were established from the labels of set F. Here, tﬁe N;}. The displacement vector at vertexis then
.. N1

femoral head was identified manually and forms a separaa%ﬁned asAr; = v* — v;, with v* = argmin,, ¢;(v*). In
patch. From the femur surfaces, we generated an SSM ol ! AN J vy

. . .the following we drop the index for clarity. our framework
the complete femur. This model was then fitted to the part'%lmploys three cost functions: A “standard” cost function

femur labels contained in set P. Thus we get approxmatc%' a “conservative” cost functionC and an “ignore” cost

patient specific femur surfaces for P with corres;pondinﬂmct.on 7 We definecS (v —
mesh topologies. Their distal ends are purely extrapolayed onet. inecS(v")

the model. However, this way we can cope with the varying 941 g olm=nl) it (g
amount of he femoral body displayed in the CT datasets of (2i+1) («H(v“) TN ) if (8)
P. Now, together with the manually marked joint centers, 7 (m + 2"”];"') if (9) )

we have 50 unaligned training vectass . . ., s,, composed
of 29619 pelvis vertices, one joint center arsd61 femur
vertices. We align the training vectors as proposed in Segiih conditions
[I-B, and perform PCA on the resulting vectors.

30 4 21m=nl else,

V. SEGMENTATION FRAMEWORK I(v") eft+iw, t+(i+)w] Adl(v") < —g,i=0,1,2 (8)

Our fully automatic framework for pelvis and femur
segmentation in CT data is composed of the following steps: I(v") € [t,t+3w] anddI(v") < -05-g.  (9)
Initialization, image driven JSSM or SSM adaptation, and
graph based optimization of single or coupled objects. This Here, ¢ defines an intensity thresholdy an intensity
Section describes all steps as well as the overall segmentgndow width, andg a threshold for gradient magnitude.
tion algorithm with various parametrizations as used in out/(v") denotes the directional derivative éfalongu, and

experiments (see Sec. VI). m € {1, N} is a “preferred sample index”, i.e. sample
o points closer tov,, get slightly lower costs. We define/
A. Initialization ascl(v®) = 0 if n = &t andcl(v™) = 10 otherwise.

The pose initialization of the pelvis in CT data as coneC is defined asC(v™) = ¢S(v™) if there are two distinct
tained in our framework closely follows a global approachintervals of sample points withS(v™) < 30, and at least
for 3D object detection introduced by Khoshelham [13]one sample point inbetween withl(v™) > gmin, and
It is based on the Generalized Hough Transform (GHT):C(v™) = cI(v") otherwise. Thus, features are ignored if
For a detailed description, see [2]. When using the singlenly one downward gradient (from bone to background) is
femur SSM, as for pose initialization in (pelvis-) CT datafound along the profile. This makes sense for the femoral
we can reuse the transformation that results from pelvizead: A downward gradient is often not present at the femur
initialization, as the femur SSM is located in an anatoniycal surface, but only inside the pelvis.
consistent way with respect to the pelvis SSM.

B. Image Driven JSSM Adaptation D. Graph Based Multi-object Optimization

Segmentation using the JSSM (4) is the task of finding In JISSM adaptation, the minimum cost sample point on a
transformation and shape parameters such &t 7,0) profile serves as a desired (locally optimal) new positian fo
approximates the unknown target shafg < R®>™ as the respective vertex. However, graph cut algorithms allow
good as possible. The computation proceeds iteratively. Ler a global optimization of the sum of costs for each vertex
R' = S(b', T 0%) denote the segmentation in iteration displacement while respecting hard constraints on surface
A displacementector field AR € R3™ is computed that smoothness and optionally on the distance between multiple
assigns a vectoAr; € R to each vertexj € N of R'. It surfaces. For the latter, multiple surfaces must be coupled
describes the desired deformation of the model towditls with shared intensity profileat individual vertices. For more
in the underlying image datd. Then, transformation and details on graph construction see [14]. In [3], we proposed a
rotation parameter$?’,0) and shape parametels of the construction algorithm for shared intensity profiles onrpai
JSSM are alternately adapted to the target sti&de- AR?)  of adjacent triangular surface meshesand @ that yields a
as described in Sec. lll. For details on single object SSMijective mapping betweecoupled patcheen both meshes.
adaptation, see [2]. The following paragraph explains hown the process, the connectivity of parts of the original
the displacement vector field R is generated. mehses is modified. For more details, see [3].



Step on Model| Details SFM1 SFM2 SPM JSSM
1. GHT | all | asin[2] ad md | ad md|ad md | ad md
2. SMA | all | Profile length L := 50mm, sampling points E 31 83|22 57 not in 1.7 45
N := 50, intensity parameters := 120, w := 14 37|10 28 model 06 15
200, gradient thresholdy := 50/mm. Adapt A not in not in 15 55|14 54
only transform. parameters. model model 05 20|05 19
F | Cost functioncl or ¢S with m = ~FL for
femoral head¢S with m = N otherwiQSe. TABLE Il
P S with m = % for acetabulumyn = N SSMAND JSSMADAPTATION RESULTS FOR FEMORAL HEAD(F) AND
otherwise. ACETABULUM (A). ALL ENTRIES IN MM. BOLD: AVERAGE MEASURE
C | cSwithm = 2L for acetabulum and femora] OVER 50 DATASETS. BELOW: STANDARD DEVIATION.
head,m = N otQherW|se.
3. SMA | all | L :=20mm. Alternating update of transformg-
tion parameters and the fir80 shape parame
ters, (b1, L. bgo).
4.SMA | all | L := 10mm. Consider all shape parametérs structure is defined as a set of vertex numbers on the gold
U 'j[j Upi?)te- - standard meshes. Thus we could compute the distance from
. := 10mm or 20mm. . . . .
6. OPT | al = 10mm or20mm, N, == 20 or 10. Shape these vertices to the respectlve_ automatic segmentatiote. N
preservinglmm. thatad andmd are assymmetric measures.
F | cC orcf with m = % for femoral head, A second focus of the evaluation is to measure the
gg;ccogg for coupled femur patches resulting  gyerall accuracy of the pelvis reconstruction. This way our
¢ | «C for femoral head. Min/max distance con- results can be compared with previous and related work.
straint Omm/Smm. We performed an evaluation of left and right hip bone,
TABLE | sacrum, and the complete pelvis as in [2]. We compute the

VARIANTS OF THE OVERALL SEGMENTATION ALGORITHM. FROM TOP volumetric overlap errorQE), average symmetric surface
TO BOTTOM, PARAMETERS DO NOT CHANGE IF NOT NOTED oTHERWIsg  distance AD), average symmetric roots mean square surface
distance RMS) and maximum surface distancEID), each

E. Overall Segmentation Algorithm as described in [15].

The segmentation algorithm consists of a series of stefls Results for Shape Model Adaptation.

combining the methods presented above, see Table I. Thewe carried out two experiments with the single femur
following methods are applied: pose initializatio®BHT), SSM, namelySFM1 with the standard cost functios for
SSM or JSSM adaptationSMA), coupling with shared the femoral head, an8FM2 with cost functionc! for the
displacement directionsCOU) and optimization via graph femoral head. Experimen&PM andJSSM were performed
cuts OPT). For each step the particular parameters are listegiith the single pelvis SSM and the JSSM, respectively, both
in theDetailscolumn. Details that are the same for all modelsyith cost function:S. Table Il lists the average error metrics
are labelled asll in the second column, details for a singlefor the femoral head and acetabulum. For experind&S&M,

femur model as-, for a single pelvis model a8, and for a  the average error metrics for the pelvic bones are given in
combined or coupled model wit8. Table IV.

VI. RESULTS C. Results for Graph Based Optimization.

We segmented the 50 pelvis CT datasets of set P (seeFor the femur, we carried out four single object optimiza-
Sec. IV) with the different variants of the fully automatiction experiments, all of which starting from the femur résul
algorithm as defined in Table I. For the segmentation aff JISSM, namelySF1 with 10mm profiles and cost function
dataset, we removed the respective training surfagcérom ¢S for the femoral headSF2 with 10mm profiles and cost
the pelvis SSM or JSSM. The complete segmentation of orienction ¢C' for the femoral headSFC1 and SFC2 with
CT stack took about : 20 to 6 : 00 minutes on a desktop 10mm profiles and 20mm profiles, respectively, and cost
PC (2,66GHz Core, 8GB RAM), depending on the shapfunction ¢C for the coupled femur patches. For the pelvis,
model (femur, pelvis or composite model) and the type dafvo single object optimization experiments were carriet] ou

optimization. both with cost functiort.S and 20mm profiles, namelyP1,
] starting from the results d?SSM, and SP2, starting from
A. Evaluation Method. the pelvis results 0§SSM.

The main focus of our evaluation is to determine how Two multi object optimization experiments were per-
accurate the automatic segmentations are in the area of foemed on the coupled femur and pelvis resultsJ8SM,
right hip joint. We particularly focus on the accuracy ofboth with cost functioncC' for the coupled femur patches,
JSSM adaptions as compared to single SSM adaptatiomamelyC1 with 10mm profiles an€C2 with 20mm profiles.
and analogously on the accuracy of coupled optimization Table Il lists the average error metrics for the femoral
as compared to single object optimizations. As accuradyead and acetabulum. F&2, Table IV lists the average
measures we computed the average surface distadyard error metrics for the pelvic bones. Note that the meteads
maximum surface distancen) of the right acetabulum and andAD, and alsand andMD, cannot be directly compared,
femoral head from the respective gold standard surfacén Eaas their computation methods differ fundamentally. Howeve



SF1 SF2 SFC1 SFC2 SP1 SP2 C1 Cc2
ad md ad md ad md ad md ad md ad md ad md ad md
F 15 50|14 45|13 44|17 58 not in not in 12 42] 11 43
07 21|06 18|06 18|10 21 model model 05 16| 05 14
A not in not in not in not in 09 48|09 47|09 47|08 47
model model model model 05 2405 24|05 21|05 22
TABLE Il

SINGLE AND COUPLED OPTIMIZATION RESULTS FOR FEMORAL HEAD(F) AND ACETABULUM (A). ALL ENTRIES IN MM. BOLD: AVERAGE ON 50
DATASETS. BELOW: STANDARD DEVIATION.

JSSM c2
OE AD | RMS | WD OE AD | RMS | WD
[%] [mm] [%] [mm]

Al | 19.93.0) | 1.00.3) | 2.000.6) | 16.445) || 12.73.1) | 0.60.2) | 1.60.6) | 15.45.0)
RHB | 18.02.3) | 0.70.1) | 1.30.2) | 8.52.1) || 9.72.0) | 0.30.1) | 0.80.2) | 7.61.9)
LHB | 22.83.8) | 1.03.8) | 1.80.4) | 11.42.2) || 14.93.7) | 0.60.2) | 1.50.4) | 11.42.4)

S | 2355.4) | 1.60.6) | 2.71.2) | 14.64.9) || 18.55.9) | 1.1(0.6) | 2.41.2) | 14.95.4)

TABLE IV
EVALUATION RESULTS ON PELVIS: JSSMADAPTATION AND COUPLED OPTIMIZATION. OVERALL PELVIS (ALL), RIGHT HIP BONE(RHB), LEFT HIP
BONE (LHB), AND SACRUM (H). EACH MEASURE WITH STANDARD DEVIATION IN BRACKETS.

as a reference example, we computed both ad and AD fadapting to features inside the pelvis. Therefore we used
the overall pelvis surfaces fro@2. The averages arad 10mm intensity profiles for most single femur optimization
0.8 £ 0.2 mm andAD 0.6 + 0.2 mm. experiments. The best single optimization result was redch
with 10mm intensity profiles and the conservative strategy
for the femoral head. However, in some cases 10mm intensity
A. Shape Model Adaptation. profiles do not reach any image features, see Fig. 2(a).
Concerning the femur, the JSSM vyields robust segme,lf_urthermore even if features are reached, the conservative
tations of the femoral headad 1.7 + 0.6 mm). We could strategy often ignores them, see Fig. 2(b). For coupled opti
not achieve such an accuracy with the single femur SS,\mization however, 20mm profiles could be used, as the femur
which yielded the best result when ignoring the femorainesh is prevented from adapting to the inside-pelvis featur
head in the adaptation process (2.2 & 1.0 mm). As the DY the pelvis mesh. Apart from the constraints imposed
femoral head is then completely extrapolated by the moddly coupled optimization, another advantage in experiments
oversegmentations as well as undersegmentations oceur, §¢¢ @nd C2 is that the coupled patches are defined on the
Fig. 1(a) and 1(b). When treating the femoral head of th@moral head and can be treated separately, in our case
single femur SSM with the standard cost function (as for th@ith the conservative strategy. We perform8&C1 and
JSSM!), it adapts to “false” image features in many case§FC2 for direct comparison toC1 and C2. As for the
as high gradients are commonly present inside the perP@'V'S’_ coupled_ o_ptlmlzanon is slightly better on average
where the bone density decreases, and also on the pelif}§n single optimizationad 0.8 versus0.9mm). Although
surface opposite the acetabulum, see Fig. 1(c) and 1(@)1_ost |nd|V|du§1I resultsf are .S|m_|lar, coupled optimization
As for the pelvis, the single pelvis SSM already produceQUtperforms single optimization in a few cases due to the
robust segmentations of the acetabuliad (.5 & 0.5 mm). dlstan_ce constraints imposed by the shared intensity psofil
The JSSM performs slightly bettead 1.4 = 0.5 mm). The S€e Fig. 2(c-e).
accuracies of one individual JSSM result and the respective
single-SSM result differ at maximur.3 mm (ad). Only
minor differences are visible. However, one could interpre We proposed a fully automatic framework for simulta-
the average results as a hint that in the JSSM the femoraous segmentation of the pelvis and proximal femur from
head deters the acetabulum from features inside the femu&T data. The framework is based on a composite statistical
o shape model of pelvis and femur with a flexible hip joint.
B. Optimization. We gave a general definition of such a model, and showed
For the femur, coupled optimization is better on averagkow it can be adapted to target shapes. We evaluated the
than single optimizationad 1.1 versusl.4mm). It is also framework on 50 CT datasets. The composite statistical
more robust in the sense that longer intensity profiles cashape model yields more accurate segmentation results than
be used without the risk of the femoral head’s adapting tsingle statistical shape models of pelvis and femur in the
image features inside the pelvis. Coupled optimizatiowithip joint region. Furthermore, the composite shape model
20mm intensity profiles produces the overall best result faegmentation results are suitable as initializations foe fi
the femoral head. Single optimization with 20mm intensitygrain multi object segmentation based on a method for
profiles produces large oversegmentations, the femora heeoupling adjacent mehes and graph cuts. We showed that

VIl. DISCUSSION

VIII. CONCLUSION



(b) (d)

Fig. 1. Black: JSSM. White: Gold standard. (a,b) Red/gre$FM2. Ignoring the femoral head causes (a) under- and (b) owgmsetations. (c,d)
Red/grey:SFM1. Femoral head adapts to features (c) inside and (d) on tivésirface.

(b)

(d)

Fig. 2. Black: coupled optimization with 20mm profileS2). White: Gold standard. (a,b) Red/grey: Single femur oftation (SF2). (a) 10mm profiles
too short. (b) Conservative strategy ignores featureg) (Red/grey: Single pelvis optimization, 20mm profil&Pe). (c,d) Minimum and (e) maximum
distance constraints prevent mis-adaptations in couptgigniization.
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