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Abstract. The exact localization of the mandibular nerve with respect
to the bone is important for applications in dental implantology and
maxillofacial surgery. Cone beam computed tomography (CBCT), often
also called digital volume tomography (DVT), is increasingly utilized in
maxillofacial or dental imaging. Compared to conventional CT, however,
soft tissue discrimination is worse due to a reduced dose. Thus, small
structures like the alveolar nerves are even harder recognizable within
the image data. We show that it is nonetheless possible to accurately
reconstruct the 3D bone surface and the course of the nerve in a fully
automatic fashion, with a method that is based on a combined statistical
shape model of the nerve and the bone and a Dijkstra-based optimization
procedure. Our method has been validated on 106 clinical datasets: the
average reconstruction error for the bone is 0.5± 0.1 mm, and the nerve
can be detected with an average error of 1.0± 0.6 mm.

1 Motivation and Contributions

Three-dimensional (3D) imaging has become an important technology for diag-
nosis and planning in dentistry and maxillofacial surgery [1]. Cone beam com-
puted tomography (CBCT) yields an alternative to conventional CT because of
its affordable costs as well as its reduced dose per examination. Thus, CBCT
is likely to become a preferred imaging technique for dental practices. One ma-
jor application for CBCT is dental implantology. Here, a primary concern is an
optimal and stable placement of implants within the jaw bone without any im-
pairment of the facial nerves. As a side effect of the low dose, however, the signal
to noise ratio is not that high as with CT and soft tissue structures cannot be
discriminated clearly. In addition the field of view (FoV) is small compared to
conventional CT. This renders the exact localization of the mandibular nerve
canal within the alveolar bone highly challenging.

Stein et al. [2] present a Dijkstra and balloon inflation based method for
interactively segmenting the nerve canal in CT data, yet report only qualitatively
good accordance on five datasets. Hanssen et al. [3] suggest a level-set approach
for interactive 3D segmentation of the nerve canals in CBCT data, but do not



present any quantitative validation. Rueda et al. [4] propose a semi-automatic
system to perform 2D segmentation of the lower cortical and trabecular bone as
well as to detect the nerve canal and center in specific 2D slices of conventional
CT data. Their method is based on an active appearance model, and requires
manual initialization. It yields an accuracy of 1.6 mm for the cortical bone, and
3.4 mm for the dental nerve on 215 single 2D slices in the CT data. More recently,
Yau et al. [5] proposed a semi-automatic method to segment the nerve canal from
conventional CT data. It requires the user to manually specify a seed point for
a subsequent automatic adaptive region-growing approach in consecutive slices
of the CT data. However, no quantitative validation was performed.

In contrast to existing work, our method is based on (1) 3D segmentation of
the complete mandibular bone surface and (2) localization of the 3D course of
the mandibular nerve, both in a fully automatic manner. Instead of relying on
conventional CT data, our method operates on CBCT data, an imaging modal-
ity increasingly used in clinical routine. Our approach yields an accuracy that
significantly surpasses the 2D results of Rueda et al. [4]. It is based on a com-
bined statistical shape model (SSM) of the bone surface and the course of the
nerve, which extends the work of Zachow et al. [6]. In order to match the SSM
to CBCT data we extend the work of Lamecker et al. [7] in two major ways:
(1) We use a modified version of the algorithm presented in Seim et al. [8] to
segment the mandibular bone surface. Here, we adapt image feature extraction
to the characteristics of mandibular CBCT data. (2) We improve an initial re-
construction of the nerves’ position derived from the SSM using a Dijkstra-based
tracing algorithm tailored to the specific characteristics of CBCT data.

2 Image Data

CBCT scanners aim for a compromise between image quality and dose, and
hence produce images of lesser quality than conventional CT. For our study
106 datasets of complete mandibles were availible from a PACS at the Univer-
sity Hospital of Cologne, Germany, all of which acquired with a Sirona Galileos
CBCT at the maxillofacial surgery department (patients of age 16 to 71, 56
female, 50 male). CBCT imaging is performed routinely in cases of suspected
orbital floor fractures, mandibular condyle evaluation, wisdom teeth removal,
abscesses, etc. Images are taken in seated position with a scan duration of about
15 seconds. All images consist of 5123 voxels with an isotropic voxel size of
0.3 mm. The FoV is approx. 15 cm3. The X-ray source is operated at 85 kV with
a tube current of 5-7 mA. Fig. 1, right, depicts typical slices through such data.
In each dataset the bone as well as the nerve canal were interactively labelled
by an experienced dentist using the Amira software.

3 Statistical Shape Model

The SSM is generated on the basis of the CBCT datasets described in Sec. 2. For
each mandibular bone a surface model is generated from the labellings, while for



Fig. 1. Volume rendering (left) and coronal slices (right) of CBCT data. Arrows indi-
cate the location of the nerve canal.

(a) (b) (c)

Fig. 2. SSM of mandible bone and nerves: mean shape (b), 1st mode of variation (a/c).

each pair of nerve canals piecewise linear center lines are computed using a skele-
tonization algorithm [9]. To create the point distribution model underlying the
SSM, correspondence must be established between both the bone surfaces and
the nerve lines. We use the method of consistent patch decomposition and param-
eterization to create surface correspondences, see [7] for details. The mandibular
surface model is divided into eight patches (Fig. 2) that are bounded by charac-
teristic feature lines, detectable on every mandible. The teeth are not considered
in the SSM due to an individually varying dentition state. For the nerves, we
consistently resampled the center lines of the segmented nerve canals with a fixed
number of points equally spaced starting at the mental foramen. After resam-
pling all 106 mandibular shapes with a common reference mesh (triangulation
for bone surface, piecewise linear segments for nerve) and aligning them in a
common frame of reference, Principal Component Analysis (PCA) is performed.
The SSM is then represented as a bi-linear function S(b, T ) = T (v +

∑
k bk · pk)

of the weights bk of the PCA-eigenmodes pk, and a global affine transformation
T of the coordinates. v is the average shape vector, whose dimension is three
times the number of bone (8561) and nerve (200) points.

4 SSM-Based Reconstruction of Bone and Nerve

The SSM based method for reconstruction of the mandibular bone and nerves in
CBCT data is composed of a preprocessing of the image data with a 3D median
filter, a position initialization and a subsequent image driven adaptation of the
SSM described in Sec. 3. We adapted an approach for pelvis segmentation [8] to



the task of mandible segmentation. Note that only the mandible bone is adapted
to image features, while the mandibular nerves are derived from the SSM.

Initialization. The pose initialization of the mandible SSM in CBCT data,
that is based on the Generalized Hough Transform (GHT), closely follows a
global approach for 3D object detection introduced by Khoshelham [10].

Image Driven SSM Adaptation. Segmentation using the SSM is the task
of iteratively finding transformation and shape parameters (b, T ) such that the
shape S(b, T ) approximates the unknown target shape R∗ as good as possible.
Let Ri = S(bi, T i) denote the segmentation in iteration i: A displacement vector
field ∆Ri is computed that assigns a vector ∆rj to each vertex j of Ri. ∆Ri

describes the desired deformation of the model towards R∗ in the underlying
image data I. Then, both transformation parameters T and shape parameters b
are adapted to the target shape (Ri + ∆Ri), as originally proposed by Cootes
et al. [11]. The following paragraph explains how ∆Ri is generated.

Image Features. The displacement vector field ∆R for surface R is com-
puted by analyzing 1D intensity profiles in the image data I : R3 → R: For each
vertex j of R, I is sampled over a length L along the surface normal uj at vertex
position vj . A cost function cj : Pj → R+

0 is computed on the set of sampling
points Pj = {vn

j := vj + ( n−1
Nj−1 − 0.5) · L · uj : 1 ≤ n ≤ Nj}. The displacement

vector at vertex j is then defined as ∆rj = v∗j − vj , with v∗j = argminvn
j
cj(vn

j ).
Dropping the indices for clarity, we define the cost at a sampling point c(v) =

(2i+1)
(
−g

dI(v) +2 |N−n|
N

)
if I(v)∈ [t+iw, t+(i+1)w] ∧ dI(v)<−g, i=0, 1, 2

7
(
−g

dI(v) + 2 |N−n|
N

)
if I(v) ∈ [t, t+ 3w] and − g < dI(v) < −0.5 · g

30 + 2 |N−n|
N else.

Here, t and w define an intensity threshold and window width, and g a threshold
for gradient magnitude. dI(v) denotes the directional derivative of I along u.

5 Dijkstra-Based Optimization of Nerve Reconstruction

SSM-adaptation as described in Sec. 4 yields an accurate reconstruction of the
mandible bone, as well as approximate nerve reconstructions. The SSM-based
nerve reconstructions are not based on any image features, but are merely derived
by the SSM. We use them as initialization for a Dijkstra-based optimization
method. The SSM-based bone reconstruction is also utilized by excluding the
area outside the reconstructed bone from the search space for the nerve. The
key idea of our method is to build a graph through which the path with minimal
cost from source to target is basically the “darkest tunnel” through the image
data, while regions where a dark tunnel is surrounded by a brighter border are
of particular interest. To achieve this, a graph with weighted edges is built based
on the approximate nerve reconstruction as described in the following. Note that
all indices used for graph description start at 1, unless stated otherwise.

Graph nodes: For each point pk at index k of the piecewise linear initial
nerve representation, equidistantly distributed points in the normal plane at pk



Fig. 3. Dijkstra Optimization. (left) Normal planes along initial nerve reconstruction.
(middle) Graph nodes on a normal plane. (right) Sampling cylinder at a graph node.

serve as graph nodes. Fig. 3 shows some exemplary normal planes (left) and a
normal plane with graph nodes (middle). The normal plane at pk is spanned
by two directions perpendicular to the line tangent tk, namely yk = tk × xdata,
where xdata is the x-axis of the image data coordinate system, and xk = yk×tk.
A graph node is described by k and its indices i, j on the normal plane. Let Ni,
Nj be the number of nodes and X, Y the lengths for which the normal plane is
considered in xk- and yk- direction, respectively. The position of node (k, i, j) is
then pk,i,j = pk + ( i−1

Ni−1 − 0.5) · X · xk + ( j−1
Nj−1 − 0.5) · Y · yk. In addition to

these nodes, two “artificial” nodes serve as source and target of the graph.
Graph edges: The graph contains directional edges from each node (k, i, j)

to all nodes (k + 1, i + di, j + dj) with di, dj ∈ {−1, 0, 1}, as well as directional
edges from the source to all nodes with k = 1, and from all nodes with k = N
to the target, where N is the number of points on the nerve representation.

Edge weights: For any edge starting at node (k, i, j), a scalar cost function
c, evaluated at position pk,i,j , serves as edge weight. For edges starting at the
source node, the edge weights are 0. The cost c(pk,i,j) is computed from inten-
sities sampled inside a cylinder with center pk,i,j , orientation tk, some length
H and radius R. Fig. 3 (right) shows an exemplary cylinder with its sampling
points. A sampling point is described by a length index h, a radius index r, and
an angle index a. Let Nh be the number of sampling points in length direction,
Nr the number of sampling points along a radius, and Na the number of an-
gles for which radii are sampled. Then the position of sampling point (h, r, a)
is p0 + h−1

Nh−1 ·H · tk + r−1
Nr−1 · R · ra with ra being a normalized radius vector,

rotated by an angle a−1
Na−1 ∗2π around tk, and p0 = pk,i,j −0.5 ·H · tk. Note that

for r = 1, no angle index is necessary to describe the sample point.
To determine the cost c(pk,i,j), the unfiltered image intensities at the cylinder

sampling points are evaluated as follows: The mean “inner” intensity mi and
standard deviation si is computed from all sampling points with r no bigger
than an “inner radius index” ri. For each angle index a, the mean “border”
intensity mba and standard deviation sba is computed from all sampling points
with r > ri and r no bigger than a “border radius index” rb. Furthermore,
the mean “outside” intensity moa is computed for each angle index a from all
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Fig. 4. Surface reconstruction with statistical shape model. (a) Color encodes distance
to gold standard surface. from left to right: good, average and bad case. (b) Average
surface distance error metrics.

sampling points with r > rb. The number cf of angle indices is counted for
which mba − 0.1 · sba > mi + si and mba − 0.1 · sba > moa. Then the cost is
c(pk,i,j) = mi−50 ·cf . If a graph node position pk,i,j lies outside the mandibular
bone as reconstructed by the SSM, the cost is set to infinity.

6 Results

We evaluated the SSM based reconstruction as well as the Dijkstra based opti-
mization (OPT) described in Sec. 4 and 5 on the 106 CBCT datasets described
in Sec. 2. For each dataset, before performing SSM based reconstruction, the
respective training shape was removed from the mandible SSM described in
Sec. 3, i.e. the evaluation was conducted in a leave-one-out manner. The respec-
tive training shape that has been left out serves as gold standard reconstruction
for both bone and nerves.

From experiment, we set our method’s parameters as follows: SSM adapta-
tion: consider 80 shape modes. Image features: L = 6 mm, t = 350, w = 180,
g = 150/mm. Optimization, graph nodes: X = 12 mm, Y = 7 mm, Ni = 121,
Nj =71, cylinder: L=3 mm, R=2.1 mm, Nl =11, Nr =8, Na =12, ri =4, rb =6.

The average errors for the mandible surface reconstructions as compared to
the respective gold standard surfaces are: mean, root mean square (rms) and
maximum surface distance: 0.5± 0.1 mm, 0.8± 0.2 mm, and 6.2± 2.3 mm, see
also Fig. 4(b). Fig. 4(a) shows exemplary reconstructions and their distances to
the respective gold standard surface. Apart from errors around the teeth, the
largest errors occur at the mental protuberance and the condyles, due to the
increasing noise towards the fringe of the field of view. The average mean curve
distances for the SSM based nerve reconstructions are 1.7±0.7 mm (right nerve),
and 2.0± 0.8 mm (left nerve).

For the optimized nerve reconstructions, the average mean curve distances
to the respective gold standard nerve are 1.0± 0.6 mm (right nerve), and 1.2±
0.9 mm (left nerve). The average fraction of the optimized reconstruction that
lies within the gold standard nerve canal is 80 ± 24% (right nerve), and 74 ±
27% (left nerve), see also Fig. 6(b). Fig. 5 shows an exemplary optimized nerve



Fig. 5. Reconstruction by optimization, exemplary case for a bad reconstruction. White
line: gold standard nerve. Red line: reconstructed nerve. Error measures for this case:
Mean distance to gold standard nerve: right 1.5 mm, left 2.1 mm. Fraction that lies
within the gold standard nerve canal: right 45%, left 30%.

(a) (b)

Fig. 6. (a) Average reconstruction error (SSM and OPT) along the nerve from posterior
to anterior end (1..100). (b) Nerve fraction within gold standard nerve canal.

reconstruction with high reconstruction error. Fig. 6(a) shows the average curve
distance of SSM based and optimized nerve reconstructions per point along
the curve. This illustrates that the optimization method is able to reduce the
reconstruction error significantly in a region in the middle of each nerve, while
the reduction is not that obvious towards the ends of each nerve.

7 Conclusions and Future Work

We presented an accurate and robust method to automatically reconstruct a
geometric 3D model of the mandible including the course of the alveolar nerve
from CBCT data. There is still room for improvement of the nerve reconstruc-
tion, especially concerning the ends of the nerve canal. In this work we chose a
conceptually simple approach for nerve detection, yet other methods for tracing
tubular structures may be considered, e.g. as described for vessel detection, see
for instance [12, 13] and references therein.

In future work, the statistical shape model shall be extended to distinguish
cortical and trabecular bone as well. Furthermore, a mid-term goal is to find a



way to incorporate the teeth, too. This is more challenging since the number of
teeth may vary between patients, especially in clinical cases, and it is not quite
clear how to incorporate topological changes into the model.
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