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Abstract

We present an algorithm for automatic segmentation of the human pelvic bones from CT datasets that is based

on the application of a statistical shape model. The proposed method is divided into three steps: 1) The averaged

shape of the pelvis model is initially placed within the CT data using the Generalized Hough Transform, 2) the

statistical shape model is then adapted to the image data by a transformation and variation of its shape modes,

and 3) a final free-form deformation step based on optimal graph searching is applied to overcome the restrictive

character of the statistical shape representation.

We thoroughly evaluated the method on 50 manually segmented CT datasets by performing a leave-one-out study.

The Generalized Hough Transform proved to be a reliable method for an automatic initial placement of the shape

model within the CT data. Compared to the manual gold standard segmentations, our automatic segmentation

approach produced an average surface distance of 1.2± 0.3mm after the adaptation of the statistical shape

model, which could be reduced to 0.7±0.3mm using a final free-form deformation step. Together with an average

segmentation time of less than 5 minutes, the results of our study indicate that our method meets the requirements

of clinical routine.

Categories and Subject Descriptors (according to ACM CCS): I.4.9 [Image Processing and Computer Vision]: Ap-
plications

1. Introduction

1.1. Motivation

In recent years an increasing interest in automatic meth-
ods for segmentation of pelvic CT images can be observed.
A driving force behind this can be seen in the progression
in the field of imaging techniques [FKK00], leading to the
availability of an ever increasing amount of high-resolution
image data. Such data, which allow for high quality recon-
struction of anatomical structures, are the foundation for ad-
vanced therapy planning systems [ZZH07].

Whilst manual segmentation of image data by experts
is still considered to be the gold standard for defining the
anatomical models, reproducible results can typically only
be achieved after significant training. Furthermore, this man-
ual process is often time consuming, and thus limits the clini-
cal applicability of new approaches in therapy planning sys-

tems. The manual reconstruction of anatomical models of
the pelvic region for radiotherapy planning, for example, can
take several hours [PMK04].

In order to make use of new therapy planning systems in
both orthopedic and trauma surgery as well as in oncology it
is necessary to make individual anatomical features readily
available. Therefore it was the goal of this study to develop
a framework for fast and accurate automatic segmentation of
the pelvis, including left and right hip bone plus the sacrum.

1.2. Related Work

With the aim of providing a tool for fast fully automatic
segmentation of pelvic CT images for radiotherapy plan-
ning, Haas et al. [HCS∗08] developed a coarse to fine ap-
proach. They applied a complex combination of low level
image analysis techniques (e.g. thresholding, morphological
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operations, flood fill, etc.) for segmentation of the pelvic re-
gion. The proposed method focuses on the reconstruction of
only certain parts of the pelvic bones, the proximal femur
and surrounding soft tissue like prostate, bladder and rectum.
Though receiving positive feedback from experts, no infor-
mation is given on the reconstruction quality of the pelvis as
a single structure.

To the best of our knowledge, Ehrhardt et al. [EHPP04]
were the first to present an approach suitable for automatic
three-dimensional reconstruction of the pelvic bones. They
employed a male and a female shape atlas reconstructed
from the Visible Human datasets. The segmentation was per-
formed by non-linear registration of the anatomical atlas to
the patient’s image data, taking more than 30 minutes com-
putation time. As a quality measure they introduced the per-
centage of correctly labeled voxels compared to manual ex-
pert segmentations on six patient datasets (95.2–98.5%).

A very similar method was presented in [PKB06]. Here, a
non-rigid registration was applied to deform a prototype, in
this case a reference dataset containing femur and pelvis rep-
resented by few gray values, to patient data. Although tested
on clinical CT data, no results of a quantitative analysis have
been published and no information is given about initializa-
tion and performance of the segmentation process.

The application of a statistical shape model (SSM) for the
semi-automatic segmentation of the pelvis was described by
Lamecker et al. [LSHD04]. A SSM of the pelvis was trained
and evaluated on a set of 23 CT stacks. A gray value based
image analysis along surface normals was used to fit the
model to the image data resulting in an average segmentation
error of 1.8±0.2 mm. The segmentation results depended on
the manual initialization of the SSM within the data.

A scheme for creating and validating volumetric statistical
shape models of bones is presented in [CES∗07]. Taking the
male pelvis as an example, a statistical shape model was cre-
ated from 110 CT datasets. Evaluation with a shape model
consisting of 90 training shapes indicated an average surface
distance of 1.5 mm in approximating any given pelvis shape
using the first 15 eigenmodes. Within the proposed frame-
work the volumetric model was also used for segmentation
of new datasets by non-rigid registration, but not evaluated
by comparing it to a given ground truth.

1.3. Contribution

This work presents an algorithm for fully automatic segmen-
tation of the pelvic bones from CT data. We suggest a com-
bination of the Generalized Hough Transform, segmentation
based on a statistical shape model and a free form segmen-
tation step based on optimal graph searching to combine the
potentials of each single technique. An extensive evaluation
on 50 CT datasets, all segmented in a fully automatic fash-
ion, revealed a high segmentation quality with only minimal
deviations from manual reference segmentations created by

experienced users. To the best of our knowledge our results
as presented in Section 5.2 outperform (in terms of error
metrics) segmentation results of related segmentation meth-
ods for which an evaluation was published (see Section 1.2).

2. Image Data

For our study 50 CT scans were available from a clinical
study that aimed to determine the longer-term clinical out-
come after unilateral total hip arthroplasty, thus including
an implant on either the left or right acetabulum. The data
base is composed of half female and half male pelvises. With
a voxel size of about 0.9x0.9x5mm3 all CT stacks approxi-
mately have the same resolution.

The CT datasets were manually labeled by human sub-
jects, well trained in pelvic anatomy and medical image
segmentation. These segmentations include the entire pelvis
with all three adjoining bones, namely the left and right hip
bone as well as the sacrum including the coccyx (tail bone).
Each hip bone consists of the ischium, the ilium and the
pubis. At the prosthesis side the implant itself was not in-
cluded in the segmentation. In order to allow for an indepen-
dent evaluation of the native and the implanted hip bone, all
datasets with the implant on the right were mirrored before
processing. The analyses were then performed with datasets
that all had the native hip joint on he right and the implant
on the left side.

3. 3D Statistical Shape Model of the Pelvic Bones

The statistical shape models used in this work (see Section 5)
were created from 50 pelvic CT datasets as mentioned in
Section 2. Hence the training set meets the recommendation
of [CES∗07], according to which 40 to 50 training shapes
are the minimum to capture intrinsic shape variations of
the pelvis. Following the method introduced in [LSHD04],
polygonal meshes, created from manual segmentations of
each dataset, represent the training set. Based on signifi-
cant anatomical and geometrical features a consistent sub-
division into patches, i.e. regions of the mesh with the topol-
ogy of a disc, was performed over all training shapes (see
Figure 1). Based on these patches, point to point correspon-
dences were established for all training shapes. As a result of
this process all training shapes can be represented in a com-
mon vector space R

3m, with m being the number of sample
points used to discretize the shapes (vertices of the surfaces).
After alignment of each training surface to one reference sur-
face, Principle Component Analysis (PCA) on this training
set yields a linear model

S(b,T ) = T (v+∑
k

bkpk) (1)

where v ∈ R
3m represents the mean shape, pk ∈ R

3m the
modes of shape variation (eigenmodes), bk ∈ R the shape
weights and T an affine transformation. For each shape mode
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k the range of the shape weight bk is restricted to the min-
imum and maximum values reached by all training shapes.
Any instance of a consistent surface mesh of the pelvic bones
comprised in the statistical analysis, i.e. any training shape,
may now be represented by such a linear combination. Due
to the nature of the applied method the number of shape
modes k equals the number of training shapes minus one.

The employed SSMs are non-manifold surface meshes
containing two inner surfaces separating the sacrum from
the adjoining hip bones. The mesh consists of 29619 vertices
and 59403 triangles, divided into 21 patches.

Figure 1: Mean shape v of the statistical shape model cre-

ated from 50 pelvises. The different shades indicate the patch

structure used for correspondence finding.

4. Segmentation Framework

With the focus on fully automatic segmentation our method
follows a global to local approach divided into three phases:
pose initialization to estimate position, orientation and scale
of the pelvis in arbitrary image data, statistical shape adap-

tation to provide a good local initialization for the final free-

form segmentation phase, which is used to overcome the re-
strictive character of statistical shape models and allows for a
segmentation of shapes not captured by the SSM. A detailed
description of each step is given in the following sections.

4.1. Pose Initialization by 3D Generalized Hough

Transform

The Hough Transform is a well known gradient based,
global method for robust detection of parametric objects in
image data. This makes it an ideal tool for spatial initializa-
tions of more local methods, like our segmentation steps. An
overview is given in [IK88]. For real world objects, however,
it is often impossible to find a parametric description. Bal-
lard [Bal81] proposed a method to overcome this limitation
called the Generalized Hough Transform (GHT). The pose
initialization of the pelvis from CT Data presented in our
work closely follows the GHT based approach for 3D object
detection introduced by Khoshelham [Kho07].

Instead of an analytic shape description a triangulated sur-
face mesh is used as template shape. At each vertex ci of

the template shape, the surface normal ~ni is extracted and
its orientation angles φi and ψi are computed (see Figure 2).
Additionally a 2-D look-up table (or R-table) is generated,
that stores a vector~vi for every ci, indexed by φi and ψi. The
vector~vi describes the position of ci relative to a pre-defined
reference point r in object space, e.g. the center of gravity of
the template shape.

Figure 2: A surface point’s relative position~vi stored in the

R-table indexed by its normal vector’s orientation angles.

To recognize an object, for every edge voxel at position e

in image space a look-up in the R-table is performed depend-
ing on the orientation angles of the image gradient at e. Now,
each vertex ci of the template shape with similar normal
orientation, i.e. the respective entry position in the R-table,
votes for a position pi = e + vi in image space. The maxi-
mum entry in the thus generated accumulator corresponds to
the reference position with the most votes, i.e. the position
where the reference point r is most probably located. By re-
peating this process with adjusted R-tables for a rotated and
scaled template shape, an affine Transformation T 0 can be
extracted to initialize the SSM segmentation.

The robustness of the GHT strongly depends on the qual-
ity of the template shape. The statistical shape model allows
for an extraction of the mean shape v, promising to give the
most general representation of the pelvis’ shape, and thus
being the best possible template shape. Another disadvan-
tage of the method is its performance. GHT can be consid-
ered very slow, since it is a brute-force method. We chose to
make two assumptions on the data to reduce the computa-
tional cost without losing generality: 1) Limiting the range
of scale and rotation (Hscale,Hrot ), since the patient can be
considered z-axis aligned, and 2) Using only bone gradients,
for which we can roughly estimate a characteristic intensity
threshold (Hthresh).

4.2. Adaptation of the Statistical Shape Model

By the use of an SSM, prior knowledge about the typical
shape of the pelvis is incorporated into the segmentation
process to constrain it where the image information is not
reliable. Any segmentation resulting from SSM adaptation
is an instance of the shape model and therefore should have
a more or less plausible shape.
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Segmentation using the SSM (1) is the task of finding the
set of position and shape parameters such that S(b,T ) ap-
proximates the (unknown) shape R ∈ R

3m to be segmented
as good as possible. We denote the resulting segmentation
R∗ = S(b∗,T∗). However, the location and shape of R is only
encoded implicitly in the image data I : R

3→ R. Therefore
the computation of R∗ proceeds iteratively. Let Ri = S(bi,T i)
denote the segmentation in iteration i:

1. R0 := S(0,T 0). The computation of T 0 is described in
Section 4.1.

2. Compute a displacement vector field ∆Ri ∈ R
3m defined

on the current segmentation Ri, i.e. a vector ∆rk ∈ R
3 is

assigned to each vertex k ∈ N of the surface Ri. It de-
scribes the desired deformation of the model towards the
(unknown) surface R in the underlying image data I.

3. Project the displacements onto the SSM by solving the
optimization problem (bi+1,T i+1) = argminb,T |(R

i +

∆Ri)−S(b,T )|2.
4. Update i← i + 1 and return to step (2) if convergence

has not been achieved, i.e. if |S(bi,T i)−S(bi+1,T i+1)|>
3m · ε; else return b∗ = bi and T∗ = T i.

The resulting segmentation R∗ generally does not equal
the optimal solution argminb,T |R− S(b,T )|2. It is not clear
how well R∗ approximates R. This depends on the quality of
the shape model, the nature of the iterative approach and on
the computation of ∆Ri.

The displacement vector field ∆Ri is computed on the ba-
sis of the image data I. Therefore, an intensity model for
the encoding of R in I must be established. A cost func-
tion ck is computed for each vertex k of the surface by an-
alyzing a 1D intensity profile at vertex position xk along
the (unit) surface normal u. This profile is sampled equidis-
tantly over a length L at the set of points: Pk = {xn

k :=
xk +[(i−1)/(Np−1)−1/2] ·L ·u with n = 1, . . . ,Np}. The
cost function ck : Pk → R

+
0 assigns some cost to each sam-

pling point:

ck(x
n
k) =

−gmin

|∇I(xi)|
if (3), else ck(x

n
k) = 1 (2)

I(xn
k) ∈ [t1, t2] and |∇I(xn

k)|<−gmin (3)

In (3), t1 and t2 define an intensity window of interest and
gmin defines a threshold for gradient magnitude. The posi-
tion of the minimum of the cost function ck yields the dis-
placement vector ∆rk = x∗k − x, with x∗k = argminxn

k
ck(x

n
k),

xn
k ∈ P, i ∈ {1, . . . ,Np}, at vertex k of the surface.

4.3. Free-form Segmentation

As mentioned in Section 4.2, segmentation with an SSM
reduces the search space to the shape model space, which
is appropriate for producing a robust segmentation result.
Anyway, in general, new, unknown shapes are not captured
by the SSM model and therefore cannot be reproduced by
a weighted combination of eigenvalues. To overcome this

limitation, we apply a free form deformation of the surface
model, using the SSM segmentation result as initialization.

Adding displacement vectors individually to each vertex
of the surface model is not feasible in terms of robustness.
However, optimal graph searching algorithms allow for a
global minimization of the sum of costs for each vertex
displacement ∑k ck(x

∗

k ), while respecting hard constraints
on shape preservation. The hard constraints are realized by
means of graph edges that connect sample points on profiles
in such a way that a non empty minimum closed set in the
graph defines the optimal surfaces.

The shape preservation constraint (also known as smooth-
ing constraint) guarantees that new vertex positions on adja-
cent profiles are no more than s sample points away from
each other. If sample point xn

k is chosen on a profile Pk as de-
sired new position, sample point xm

l with m > n− s must be
chosen on adjacent profiles Pl . The smaller s is chosen, the
more alike are the initial surface and the surface resulting
from the optimization. For more details on graph construc-
tion see [LWCS06].

The minimum closed set problem can be transformed to
a minimum s-t-cut problem, which is solved in polynomial
time by maximum flow algorithms. An experimental com-
parison of various maximum flow algorithms can be found
in [BK04].

4.4. Overall Segmentation Algorithm

The segmentation algorithm consists of a series of steps
combining the methods presented in the sections above (see
Table 1). The following methods are applied: pose initial-
ization (GHT, see Section 4.1), shape model fitting (SSM,
see Section 4.2), and optimization via graph cuts (OPT, see
Section 4.3). For each step the parameters for its particular
method are listed in the second column labeled Details.

Step Details
1. GHT Image resampling: 5x5x5mm3,

Hscale := [0.8,1.2] , Hrot :=±10◦,
Hthresh := 100HU

2. SSM Profile length L := 50 mm,
sampling points Np := 50,
[t1, t2] := [120,320],
gmin := 50/mm,
ε := 0.1 mm,
all shape modes adapted

3. SSM L := 20 mm
4. OPT L := 10 mm, Np := 20,

Shape preservation s := 2

Table 1: Overall segmentation algorithm. Parameters re-

main the same if not stated otherwise.
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5. Results

In a leave-one-out study all of the 50 CT stacks available for
this study were segmented in a fully automatic fashion ap-
plying the algorithm presented in Section 4.4. For each data
set to be segmented a shape model was generated excluding
the respective pelvis from the training set. Thus we ensure
the independence of training and testing data. The complete
segmentation of one CT stack, i.e. data import, pose initial-
ization and segmentation, took approximately 4 : 20 minutes
on a 64-bit desktop PC (2,66GHz Core, 8GB RAM).

5.1. Evaluation Method

After each step (pose initialization, statistical shape model
adaptation and free-form deformation) the resulting surface
meshes were converted to labeled voxel representations with
the same resolution as the respective original image dataset.
The subdivision of the statistical shape allowed for a sepa-
rate conversion of each sub-structure, i.e. creating one voxel
label for the right hip bone, the left hip bone and the sacrum.
With automatic and manual segmentations having the same
structure, a quantitative evaluation on single labels as well
as any combination of these labels is possible.

For evaluation, we used the following metrics: signed
and absolute relative volume difference (SVD, AVD),
volumetric overlap error (OE), average symmetric sur-
face distance (AD), average symmetric roots mean square
surface distance (RMS) and maximum surface distance
(MD), each as described in [vGHS07]. For compu-
tation of these metrics we applied ANN, a library
for computing approximate nearest neighbors (available
at: http://www.cs.umd.edu/~mount/ANN/).

5.2. Evaluation Results

The summarized results are given in Tables 2, 3 and 4. For
each error metric, the average (bold) and standard deviation
over all 50 test cases is shown. Results for the whole pelvis
(All), the right hip bone (RHB), the left hip bone (LHB) and
the sacrum (S) are listed in separate rows. Table 2 shows the
results after GHT initialization of the pelvis, Table 3 refers
to the results after SSM adaptation and Table 4 lists the final
results after free form segmentation. Additionally the result
statistics are presented as box-and-whisker diagrams in Fig-
ure 3, where the median (black diamond), the interquartile
range, i.e. 50% of the data (boxes), and an outlier-free min-
max range are visualized for all metrics and all phases.

Final segmentation results for the complete pelvis exhibit
an average AD of 0.7± 0.3mm, an average RMS of 1.9±
0.6mm an and an average MD of 16.5± 5mm. The average
volumetric errors are −0.5±3.9% for the SVD, 2.9±2.6%
for the AVD and 14.4± 3.4% for the OE. Figure 4 shows
three segmentation results that are exemplary for a good, an
average and a bad case in terms of their AD.

GHT SVD AVD OE AD RMS MD

[%] [%] [%] [mm] [mm] [mm]
All 0.8 12.1 49.0 3.8 5.4 24.1

std 16.2 10.7 8.3 1.3 1.8 6.5
RHB 1.0 12.6 50.6 3.4 4.7 18.6

std 16.8 10.9 8.7 1.2 1.6 4.3
LHB 1.7 14.5 53.5 3.8 5.3 20.3

std 19.2 12.5 14.0 2.2 2.7 7.1
S 0.7 12.3 48.0 4.5 5.8 19.7

std 16.4 10.8 13.6 2.1 2.4 5.9

Table 2: Evaluation results (initialization phase).

SSM SVD AVD OE AD RMS MD

[%] [%] [%] [mm] [mm] [mm]
All -3.9 5.0 21.8 1.2 2.2 16.1

std 5.3 4.2 3.6 0.3 0.6 5.4
RHB -5.1 5.7 20.8 0.9 1.5 9.2

std 4.5 3.6 2.7 0.2 0.2 1.9
LHB -4.6 6.5 24.4 1.0 1.9 11.4

std 6.4 4.5 4.1 0.2 0.3 2.0
S -0.8 8.0 25.9 1.8 3.0 15.6

std 11.5 8.3 6.0 0.7 1.2 5.7

Table 3: Evaluation results (active shape adaptation).

OPT SVD AVD OE AD RMS MD

[%] [%] [%] [mm] [mm] [mm]
All -0.5 2.9 14.4 0.7 1.9 16.5

std 3.9 2.6 3.4 0.3 0.6 5.0
RHB -3.3 3.9 11.9 0.4 1.1 9.2

std 3.6 2.9 2.7 0.1 0.3 2.0
LHB -1.2 3.7 15.6 0.6 1.5 10.8

std 5.0 3.4 3.8 0.2 0.3 2.4
S 4.8 8.4 21.1 1.4 2.8 16.0

std 10.7 8.2 6.3 0.7 1.3 5.4

Table 4: Evaluation results (free-form phase).

Segmentation qualities of the three anatomical structures,
namely left hip bone, right hip bone and sacrum, exhibit sig-
nificant differences. The right hip bone, with an average AD
of 0.4± 0.1mm for the final results, performs slightly better
than its left counterpart reaching 0.6±0.2mm (see Table 4).
Both hip bones and the whole pelvis reach an average AD
smaller or equal to the in-plane resolution of the CT data.
Compared to the hip bones, the average AD for the final
sacrum segmentations is relatively large with 1.4± 0.7mm.
Note as well that the respective average SVD is largely pos-
itive with 4.8± 10.7% as compared to the hip bones, which
means that the sacrum is over-segmented in most cases.

In all 50 cases the mean pelvic model was initialized cor-
rectly within the data using the GHT. The largest average
distance after pose initialization of only 6.3mm supports this
statement. The evolution of the error metrics over the three
segmentation phases (see Figures 3 and 5 ) shows that error
metrics are improved in each phase, with the only exception
that the average MD does not change significantly from the
result of the SSM phase to the final segmentation result.
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Figure 3: Surface distance error metrics after initialization, SSM adaptation and free-form step.

Figure 4: From left to right, transversal, coronal and 3D-view of a good case (top, AD 0.5mm), an average case (middle, AD

0.7mm) and difficult case (bottom, AD 1.2mm). The outlines identify the manual (dark) and automatic segmentations (light).

The 3D views show the automatic segmentation, with the segmentation error encoded by intensity.

5.3. Discussion

The GHT proved to be a robust method to estimate the pose
and size of the pelvis in CT datasets. The fact, that a single
mean template shape is sufficient to reliably initialize the

pelvis despite its varying anatomy, can be attributed to the
uniqueness of the shape within the human anatomy and its
distinctive image features.

The automatic segmentation still has some deficiencies.
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Figure 5: Volumetric error metrics after initialization, SSM

adaptation and free-form step.

Figure 6: Three difficult cases of the native acetabulum. In

contrast to the gold standard (dark contour) the automatic

segmentation leaks into the femoral head (light contour).

Two main reason for the difference in segmentation quality
of right and left hip bone have been identified (see Figure 4):
1) The automatic segmentation is likely to be pulled towards
the outer contour of the implant due to the image features,
whereas the manual segmentation left out the implant. This
results in a larger error at the implanted acetabulum. 2) An-
other problem in the acetabulum region, concerning patho-
logical and healthy side, is a leaking of the segmentation
into the femoral head, due to the lack of image features (see
Figure 6). However, the shape preserving constraint of the
free-form step confines leaking.

The comparatively large error metrics for the sacrum are
caused by an over-segmentation of the lower lumbar vertebra
due to the low resolution and the lack of meaningful image
information in this area (see Figure 7) also indicated by the
sacrum’s positive average SVD value, as listed in Table 4.
Since the sacrum is the smallest of the three structures in
terms of surface area and volume these errors have a rather
small impact on the overall result.

The stagnation of the maximum distance values from the
SSM adaptation to the free-form step may be caused by the
chosen profile length L = 10mm for the free form step. This
idea is supported by the fact that the MD values after SSM
adaptation are in a range of 10 to 20mm, which is more than
double the length of a profile on one side of a surface vertex.

Figure 7: Distance of automatic to reference segmentation

reveals largest errors at the proximal end of the sacrum.

6. Conclusion and Future Work

An algorithm was presented for fully automatic segmenta-
tion of the pelvic bones from CT data, combining the po-
tentials of the Generalized Hough Transform, segmentation
based on a statistical shape model and a free form segmen-
tation step based on optimal graph searching. An extensive
evaluation of the proposed algorithm on 50 CT datasets re-
vealed a high segmentation quality. Deviations from man-
ual reference segmentations created by experienced users are
below the in-plane resolution of the CT data.

Although providing very good spatial initializations for
the SSM adaptation, a further exploitation of the GHT is
recommended for future studies. At the moment only the
affine transformation of the SSM is initialized. The use of
different template shapes, each representing one of the prin-
cipal modes of variation, may be used to transfer the shape
weights of the template shape to the statistical shape model.
By doing so, we expect a further reduction of the time of
convergence for the adaptation of the statistical shape model.

With the adaptation of the statistical shape model we did
outperform the results from past studies applying an SSM
of the pelvis in terms of accuracy when used for segmenta-
tion [LSHD04] or the representation of shapes that are not
contained in the model [CES∗07]. According to the error
metrics this step provides a fairly good initialization for the
last free-form deformation step. However, an improvement,
i.e. an extension of the training set and creation of different
shape classes (e.g. male/female), may further improve the
outcome of this step. This requires a sufficiently large set of
training shapes for each shape class.

After local initialization by a SSM a free-form defor-
mation was applied for the final segmentation of the bony
surface. Although performing very well in most areas of
the pelvis, we could identify regions were the proposed
method still needs improvement, namely the acetabula and
the sacrum. Incorporating the lower lumbar vertebra into the
SSM may easily reduce the error for the sacrum. However,
the acetabula need more attention and are already subject
to current work, where multiple surfaces are coupled with
shared intensity profiles for segmentation (e.g. femoral head
and acetabulum) [KLZH08]. This approach is likely to fur-
ther improve the automatic segmentation results especially
in challenging situations such as low-resolution image data
or strong cartilage wear (see Figure 6).
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Future studies should include an evaluation of the inter-
user variability for multiple manual segmentations. This
would help compare our error metrics of the automatic seg-
mentation to those yielded by human subjects and gain addi-
tional knowledge about the ground truth. We expect, at least
for the hip bones, an inter-user variance similar to the results
presented in this work.
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