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Abstract. Importance sampling is a widely used technique to reduce the variance of the Monte Carlo

method. It uses the idea of change of measure to design efficient Monte Carlo estimators. In this work, we study

the importance sampling method in the framework of diffusion process and consider the change of measures which

can be realized by adding a control force to the original dynamics. For certain exponential-type expectations,

the corresponding control force of the optimal change of measure leads to a zero-variance estimator that is

related to the solution of a Hamilton-Jacobi-Bellmann equation. We first show that, for a general suboptimal

control force, the variance of the resulting estimator is bounded by the L∞ distance between the suboptimal

and the optimal control force. We consider three situations in which we can approximate this optimal control

force, thus obtaining efficient estimators with small variance. Numerical examples show the effectiveness of these

approximation strategies. The asymptotic optimality of the change of measure approach is proved.
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AMS subject classifications.

1 Introduction Monte Carlo methods are widely established numerical methods among

scientists from different disciplines, such as biology, chemistry, physics or engineering (e.g., see

[22] and the references therein). They have quite a long history and receives wide applications

since the invention of the computer. Nowadays, both the developments and applications of vari-

eties of the standard Monte Carlo method are still attractive to researchers who are confronted

with solving high-dimensional practical problems for which deterministic or direct methods be-

come infeasibly expensive. These varieties includes MCMC methods [20, 7], Hybrid Monte Carlo

methods [12, 30], Sequential Monte Carlo methods [26, 11], etc. Most of them have been suc-

cessfully applied to solving different high-dimensional problems [25].

For standard Monte Carlo methods, variance reduction is the key issue to obtain efficient

estimations. Although the variances of N samples have the same O(N−
1
2 ) scaling order for all

different unbiased estimators, the prefactor constants are related to the variances of the esti-

mators and play an important role in the performance of any Monte Carlo methods. Several

variance reduction techniques exist in order to decrease the prefactor and thus increase the

accuracy or efficiency of the estimators. In this paper, we will focus on one kind of such tech-

niques, the importance sampling method, which is widely used in applications. The basic idea

of this method is that, instead of sampling from the original probability distribution, samples

are generated from another probability distribution, under which the “important” regions in

state space are more frequently sampled. To further illustrate it, consider the situation when a

certain region in state space is much more “important” than other parts for computing an ex-

pectation value, while its probability measure is very small. In this case, due to the rareness of

this region’s measure, standard Monte Carlo method will probably fail to sample it sufficiently,

which therefore indicates large variance. The importance sampling method, on the other hand,

can provide smaller variance and more accurate estimations by sampling the state space using a
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different probability distribution under which the probability measure of the “important” region

is enlarged. Obviously, the selection of this alternative probability distribution is crucial in order

to design efficient Monte Carlo estimators and how to choose this probability distribution is the

main topic for researchers and practitioners who study or use the importance sampling method.

See [6, 17, 2, 14, 13, 34] and references therein.

In this paper, we will focus on the path sampling problem in diffusion processes. More

specifically, given certain diffusion process which are described by stochastic differential equations

(SDEs), it is known that it defines a probability measure over all the path ensembles, and our

aim is to compute the average of some path functional with respect to this induced measure. In

this setting, we want to apply the importance sampling method and thus modify the original

diffusion process by adding a control force term to it and generate path ensembles from this

modified dynamics. This will lead to a change of measure to which the Girsanov theorem [28] of

SDE theory applies. We further confine ourselves to certain exponential type of path functionals

which will be explicitly given below. For this type of path functional, the optimal change of

measure exists and, when importance sampling is used, the estimator’s variance becomes zero.

Furthermore, the path average can be connected to certain optimal control problem for the

diffusion process by adopting logarithmic transformation, and the optimal change of measure is

related to a Hamilton-Jacobi-Bellmann (HJB) equation, which, however, is hard to solve when

the state space is high-dimensional.

While generally it is impractical to find the optimal control force efficiently, there is hope

that approximations to it, to which we will refer as “desired” control forces can be computed that

will result in small variance estimators. The main purpose of this paper is to consider situations

when such desired control forces can be efficiently designed without solving the high-dimensional

HJB equation. To achieve this, we first study the estimator’s variance when an arbitrary control

force is applied and conclude that, roughly said, the closer this control force to the optimal one,

the smaller the variance is. This indicates that designing small variance estimators is equivalent

to approximating the HJB equation. From this point of view, we study the asymptotic equations

obtained by taking the zero temperature limit and/or time-scale separation limit of the original

HJB equation. If these resulting equations can be solved efficiently, we obtain desired control

forces and can design small variance estimators based on them. Although, ideally, solving this

asymptotic equations already gives us the asymptotic expectation value we want to compute, we

emphasize the necessity of our approach because of the following reasons. First, it is not easy to

verify whether the original dynamics is in the zero-temperature or time-separation limit regime.

Secondly, even if it is, we don’t know how close it is to the true expectation value by solving

the asymptotic equations alone. On the contrary, our approach provides reliable results and has

good performance even when the system is not in the limit regime (see Section 4). Furthermore,

since sampling will be performed using the estimators, the asymptotic equations can be solved

on a much coarser grid and thus the computation of the control forces is cheap.

Our work is inspired by the works [13, 34], in which rare event simulation was studied, using

approximations of the optimal bias on the basis of large deviation arguments. In [13], the authors

considered multiscale diffusions with a specific form and the desired control force was found by

studying the lower bound of the rate functional in the context of large deviation theory. In [34],

the authors proposed to compute the desired control force by solving a deterministic optimal

control problem. Comparing to these works, we consider a more general situation and provide a
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unified point of view in designing efficient importance sampling strategies.

This paper is organized as follows. In Section 2, after describing the exponential expecta-

tions studied in this work, we give a general introduction of the importance sampling method in

the diffusion process setting. We study the variance of Monte Carlo estimators corresponding to

general control forces and give an upper bound for it. In Section 3, we consider three situations

in which we can find such desired control forces by approximating the HJB equation. In Sec-

tion 4, numerical examples are studied to demonstrate the performance of these approximation

strategies. The asymptotic optimality of these control forces are proved in Appendix A.

2 Setup and main result We consider the conditional expectation [13, 34]

I = E
(

exp
(
− β

∫ T

t

h(zs) ds
) ∣∣∣ zt = z

)
(2.1)

where β > 0, time interval [t, T ] is fixed. zs ∈ Rn follows the dynamics

dzs = b(zs)ds+ β−1/2σ(zs)dws, t ≤ s ≤ T

zt = z
(2.2)

ws is a standard n−dimensional Wiener process. It is known that (2.2) induces a probability

measure P over the path ensembles zs, t ≤ s ≤ T starting from z. To apply the importance

sampling method, we introduce

dw̄s = β1/2us ds+ dws, (2.3)

where us will be referred to as the control force. Then it follows from Girsanov theorem that w̄s

is a standard Wiener process under P̄, where the Radon-Nikodym derivative is

dP̄

dP
= Zt = exp

(
− β1/2

∫ T

t

us dws −
β

2

∫ T

t

|us|2ds
)
. (2.4)

In the following, we will omit the conditioning on the initial value at time t . Let Ē denote the

expectation under probability measure P̄, then we have

I = E
(

exp
(
− β

∫ T

t

h(zs) ds
))

= Ē
(

exp
(
− β

∫ T

t

h(zus ) ds
)
Z−1t

)
, (2.5)

with variance

VaruI =
[
Ē
(

exp
(
− 2β

∫ T

t

h(zus ) ds
)

(Zt)
−2
)
− I2

]
. (2.6)

Now (2.2) has the representation

dzus = b(zus )ds− σ(zus )us ds+ β−1/2σ(zus )dw̄s , t ≤ s ≤ T

zut = z.
(2.7)

The relative standard deviation

ρu(I) =

√
VaruI

I
(2.8)
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is often used to quantify the efficiency of the Monte Carlo method. Now consider the calculation

of (2.5) by a Monte Carlo sampling in path space. Suppose N trajectories {zu,is , t ≤ s ≤ T} of

(2.7) have been generated, where i = 1, 2, · · · , N . Using Monte Carlo method, we obtain the

unbiased estimator

IN =
1

N

N∑
i=1

(
exp

(
− β

∫ T

t

h(zu,is ) ds
)

(Zu,it )−1
)
, (2.9)

and its asymptotic variance (for large N) is

VaruIN '
VaruI

N
=

1

N

[
Ē
(

exp
(
− 2β

∫ T

t

h(zus ) ds
)

(Zt)
−2
)
− I2

]
. (2.10)

Notice that Zt = 1 when us ≡ 0, and we recover the standard Monte Carlo method. The

advantage of introducing the control force us is that we may choose us to decrease the variance

of the estimator (2.9). From (2.6) (2.10), this means to choose us such that the expectation

Ē
(

exp
(
− 2β

∫ T

t

h(zus ) ds
)

(Zt)
−2
)

(2.11)

is as close as possible to I2.

2.1 Dual optimal control problem To proceed, we make use of the important dual

relation [8, 9]

log E
(

exp
(
− β

∫ T

t

h(zs) ds
))

= −β inf
u∈A

Ē
{∫ T

t

h(zus ) ds+
1

2

∫ T

t

|us|2ds
}
. (2.12)

The infimum on the right-hand side of (2.12) is taken over a space A of admissible Markovian

feedback controls of the form us = c(s, zs), with a suitable function c : [t, T ]×Rn → Rn. We call

ûs the minimizer of (2.12), the optimal control force. Let ŵs, Ẑt, P̂ be defined as in (2.3) (2.4)

by substituting us with ûs, and let ẑs satisfy (2.7) when ûs is applied. Using Jensen’s inequality

one can show that (2.12) implies

exp
(
− β

∫ T

t

h(ẑs) ds
)
Ẑ−1t = I, P̂− a.s. (2.13)

Combining this with (2.10), it means that, with ûs, the change of measure is optimal in the sense

that it gives zero-variance Monte Carlo estimator.

On the other hand, notice that the right-hand side of (2.12) can be interpreted within the

optimal control theory of diffusion process. Let

U(t, z) = inf
u∈A

Ē
{∫ T

t

h(zus ) ds+
1

2

∫ T

t

|us|2ds
∣∣∣ zt = z

}
. (2.14)

By the dynamic programming principle, U(t, z) satisfies the following HJB equation,

∂U

∂t
+ inf
c∈Rn

{
h+

1

2
|c|2 + (b− σc) · ∇U +

σσT

2β
: ∇2U

}
= 0,

U(T, z) = 0

(2.15)

with the optimal control force ûs given by

ûs = c(s, zs) = σT (zs)∇U(s, zs). (2.16)
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Variance estimates and statement of the main result Now we can estimate (2.11),

thus also the variance (2.6) for an arbitrary us. First we suppose that the probability measure

P̄ and P̂ are equivalent. From (2.13), we conclude

exp
(
− β

∫ T

t

h(ẑs) ds
)
Ẑ−1t = I, P̄− a.s. (2.17)

From this, we get

Ē
(

exp
(
− 2β

∫ T

t

h(zus )ds
)

(Zt)
−2
)

=Ē
(

exp
(
− 2β

∫ T

t

h(zus )ds
)

(Ẑt)
−2
( Ẑt
Zt

)2)
=I2Ē

(( Ẑt
Zt

)2)
.

(2.18)

Using (2.4) we get

( Ẑt
Zt

)2
= exp

(
− 2β1/2

∫ T

t

(ûs − us)dws − β
∫ T

t

(|ûs|2 − |us|2)ds
)
. (2.19)

In order to simplify (2.18), we introduce another control force ũs and change the measure again.

Specifically, we choose ũs = 2ûs − us and define w̃t, P̃t, Z̃t as in (2.3) (2.4) by replacing us with

ũs. Let Ẽ denote the expectation w.r.t P̃. From (2.18) and (2.19), we then get

Ē
(( Ẑt

Zt

)2)
= Ẽ

(( Ẑt
Zt

)2
Z̃−1t Zt

)
= Ẽ

(
exp

(
β

∫ T

t

|ûs − us|2ds
))
. (2.20)

Applying the dual relation (2.12) once again, we obtain

log Ē
(( Ẑt

Zt

)2)
= log Ẽ

(
exp

(
β

∫ T

t

|ûs − us|2ds
))

= sup
v

Ẽv
(
β

∫ T

t

|ûs − us|2ds−
β

2

∫ T

t

|vs|2ds
)

≤ sup
v

Ẽv
(
β

∫ T

t

|ûs − us|2ds
)

(2.21)

where

dP̃v

dP̃
= exp

(
− β 1

2

∫ T

t

vs dw̃s −
β

2

∫ T

t

|vs|2ds
)

(2.22)

and Ẽv denotes the expectation with respect to the measure P̃v.

From (2.21), we may conclude that, in order to keep the variance small, we should choose

a control u which is uniformly close to the optimal one, û. Furthermore, if we have an upper

bound on ||u− û||L∞ , then it follows that

log Ē
(( Ẑt

Zt

)2)
≤ β||u− û||2L∞(T − t) , (2.23)

where by ||u−v||L∞ , sup{|u(s, z)−v(s, z)|; z ∈ Rn, s ∈ [t, T ]} we denote the norm on the space

C([t, T ]× Rn,Rn) of continuous functions from [t, T ]× Rn to Rn.
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Combining (2.6) with (2.18), we have obtained the following theorem on the upper bound

of the variance for an arbitrary control force us.

Theorem 2.1. Consider the expectation I given in (2.5) computed by importance sampling

with some control force u. Suppose that û is the optimal control force obtained from (2.15) and

(2.16) and ||u− û||L∞ is finite. Then the following upper bound for the variance of I holds

VaruI ≤ I2
(

exp
(
β||u− û||2L∞(T − t)

)
− 1
)
.

For δ = β||u− û||2L∞(T − t) ≤ 1/2 we thus have

ρu(I) ≤
√

2δ.

The main conclusion of the above derivations is that, while the optimal control force leads

to an optimal estimator of zero-variance, a suboptimal one will lead to an estimator of small

variance. In the next section, we will discuss several situations when the suboptimal control

force can be approximated based on simplifications of the dynamics.

But before closing this section, we introduce the relative standard deviation ρs(I) for the

sample variance

VarsI =
1

N

N∑
i=1

((
exp

(
− β

∫ T

t

h(zu,is ) ds
)

(Zu,it )−1
)
− IN

)2
, (2.24)

by

ρs(I) =

√
VarsI

IN
, (2.25)

which will be used in the numerical examples in Section 4. Note that these quantities also depend

on the control u, but this dependence is omitted to simplify the notations.

3 Suboptimal control forces The purpose of this section is to discuss strategies to find

desired control forces which give efficient Monte Carlo estimators (2.9). Our starting point is

based on the observations that the optimal control force û satisfies (2.16), which is related to the

solution of the HJB equation (2.15), as well as the upper bound (2.23) of the variance. Generally,

it is difficult to find the exact solution û by solving (2.15), which is a high-dimensional PDE. In

the following, we consider situations when û can be approximated by certain u, which is easily

computable from simpler equations related to (2.15).

Some notation: We introduce some function spaces and norms. Let Mn and Sn denote the

set of general and symmetric definite n×n matrices. We call Ck,lb (Ω1,Ω2), with Ω1 ⊆ [0, t)×Rn

and Ω2 = Rq,Mq or Sq, the set of functions f : Ω1 → Ω2 with bounded continuous time

derivatives up to order k and bounded continuous spatial derivatives up to order l. For Ω1 ⊆ Rn,

Cb(Ω1,Ω2) denotes the set of bounded continuous functions f : Ω1 → Ω2, while Cmb (Ω1,Ω2)

denotes the set of functions with bounded continuous spatial derivatives up to order m. For

f ∈ Cb(Ω1,Ω2), ||f ||L∞ = sup{|f(x)|, x ∈ Ω1} denotes the L∞ norm on Cb(Ω1,Ω2). When

Ω2 = R1, we simply write the above function spaces as Ck,lb (Ω1), Cb(Ω1), Cmb (Ω1).

3.1 Small temperature limit In this subsection, we suppose dynamics (2.2) and con-

sider the situation when β � 1. We also make the following assumptions.
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Assumption 1: b ∈ C3
b (Rn,Rn), σ ∈ C3

b (Rn,Mn×n), σσT ∈ C3
b (Rn, Sn). h ∈ Cb(Rn).

Instead of (2.15), we first study the equation

∂Ũ

∂t
+ inf
c∈Rn

{
h+

1

2
|c|2 + (b− σc) · ∇Ũ

}
= 0

Ũ(T, z) = 0

(3.1)

which may be simpler to solve, and approximate û, as given by (2.16), by

û0 = σT∇Ũ . (3.2)

From (3.1) and the dynamic programming principle, we can represent Ũ as the value function

of a deterministic optimal control problem, i.e.

Ũ(t, z) = inf
u∈A

{∫ T

t

h(ξus ) ds+
1

2

∫ T

t

|us|2ds
}

(3.3)

under the deterministic dynamics

dξus = (b(ξus )− σus) ds, t ≤ s ≤ T,

ξut = z.
(3.4)

This is actually the idea used in [34] to find the desired control force and readers are referred

there for more algorithmic details and numerical examples. In this paper, we would like to

explain the effectiveness of this approximation strategy with the following theorem (the proof is

given in Appendix A)

Theorem 3.1. Under Assumption 1 and Assumption 3 (see Appendix A), we have

||∇U −∇Ũ ||L∞ ≤ Cβ−1. (3.5)

where C is a constant that depends on functions b, σ, h and also t, T . From (2.16) and (3.2), it

then follows that

||û− û0||L∞ ≤ Cβ−1. (3.6)

Theorem 2.1 then implies the following bound on the relative standard deviation:

ρu(I) ≤ Cβ− 1
2 . (3.7)

3.2 Multiscale diffusions In this subsection, we consider the case when the state vari-

able z ∈ Rn can be split into a slow variable x ∈ Rk and a fast variable y ∈ Rl, i.e. z =

(x, y), k + l = n. Specifically, we assume that the dynamics (2.2) is of the form

dxs =
1

ε
f0(x, y)ds+ f1(x, y)ds+ α1(x, y)dw1

s

dys =
1

ε2
g0(x, y)ds+

1

ε
g1(x, y)ds+

1

ε
α2(x, y)dw2

s

(3.8)

where t ≤ s ≤ T and ε > 0 describing the time scale separation. We will make the following

assumption.
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Assumption 2. ε� 1, εβ ≤ C, where C is some constant.

We denote the solution of (2.15) as U ε to emphasize its dependence on ε. The idea is

to use asymptotic analysis method [5, 29] to derive an approximation of U ε, thus obtaining a

suboptimal control force close to (2.16).

Let φε(t, x, y) = exp(−βU ε). From the dual relation (2.12), we conclude that φε is just the

expectation (2.1) we want to compute. Using the Feynman-Kac formula, we obtain

∂φε

∂t
+ Lφε − βhφε = 0

φε(T, x, y) = 1

(3.9)

where

L =
1

ε2
L0 +

1

ε
L1 + L2 (3.10)

is the infinitesimal generator of (3.8), with

L0 = g0 · ∇y +
α2α

T
2

2β
: ∇2

y

L1 = f0 · ∇x + g1 · ∇y

L2 = f1 · ∇x +
α1α

T
1

2β
: ∇2

x.

(3.11)

To find an approximation of φε, we consider the perturbative expansion φε = φ0 + εφ1 +

ε2φ2 + · · · of (3.9). The derivation of the lowest order expansion is standard (see, e.g., [29]), but

we give it for the readers’ convenience. Equating different powers of ε, we then obtain

∂φ0
∂t

+ L0φ2 + L1φ1 + L2φ0 − βhφ0 = 0, (3.12)

L0φ0 = 0, (3.13)

L0φ1 + L1φ0 = 0. (3.14)

We make the standing assumption that for fixed x, the operator L0 is non-degenerate, i.e., there

exists a unique smooth function ρx(y) ≥ 0 satisfying L∗0ρx = 0,
∫
ρx(y)dy = 1, where L∗0 is the

formal adjoint of the operator of L0 in L2. This is equivalent to assuming that if we freeze x,

the dynamics of y is ergodic with unique invariant distribution ρx(y).

With this assumption, from (3.13), we conclude that φ0 = φ0(t, x) is independent of y.

Further suppose that f0(x, y) satisfies the “centering condition”∫
f0(x, y)ρx(y)dy = 0, ∀x ∈ Rk

and that Φ(x, y) is a classical solution of the the “cell problem”

L0Φ = −f0,
∫

Φ(x, y)ρx(y)dy = 0 . (3.15)

It can be readily shown that now φ1 = Φ · ∇xφ0. Furthermore, by multiplying ρx(y) to both

sides of (3.12) and integrate with respect to y, we obtain a closed equation for φ0:

∂φ0
∂t

+ L̃φ0 − βh̃φ0 = 0 . (3.16)
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Here

L̃1 = f̃(x) · ∇x +
α̃(x)α̃(x)T

2β
: ∇2

x, h̃(x) =

∫
h(x, y)ρx(y) dy,

f̃(x) =

∫ (
∇xΦ(x, y)f0(x, y) +∇yΦ(x, y)g1(x, y) + f1(x, y)

)
ρx(y) dy,

α̃(x)α̃(x)T =

∫ [
β
(

Φ(x, y)f0(x, y)T + f0(x, y)Φ(x, y)T
)

+ α1(x, y)α1(x, y)T
]
ρx(y) dy.

(3.17)

which corresponds to the reduced dynamics

dxs = f̃(xs)ds+ β−1/2α̃(xs)dws, t ≤ s ≤ T

xt = x.
(3.18)

From the Feynman-Kac formula and (3.16), we know that

φ0(t, x) = E
(

exp
(
− β

∫ T

t

h̃(xs) ds
) ∣∣∣ xt = x

)
. (3.19)

Apply the expansion of φε to U ε = −β−1 log φ = U0 + U1ε+ o(ε), it follows

U ε = −β−1 log(φ0 + εφ1 + o(ε)) = −β−1 log φ0 − β−1
φ1
φ0
ε+ o(ε). (3.20)

Therefore U0 = −β−1 log φ0. Combining (3.19) and the dual relation (2.12), we have

U0(t, x) = inf
u∈A

Ē
{∫ T

t

h̃(xus ) ds+
1

2

∫ T

t

|us|2ds
}
, (3.21)

where xus satisfies

dxus = f̃(xus )ds− α̃(xus )usds+ β−1/2α̃(xus )dws, t ≤ s ≤ T

xut = x
(3.22)

Applying the expansion to (2.16), we find the expansion of the optimal control force û =

(û1, û2) with

û1 = αT1∇xU0 +O(ε) = −β−1α
T
1∇xφ0
φ0

+O(ε),

û2 = αT2∇yU1 +O(ε) = −β−1α
T
2∇φ1
φ0

+O(ε).

(3.23)

Thus, in the case of multiscale diffusions, one possible strategy for finding the desired control force

is to first compute U0 from (3.21) or (3.19), which corresponds to a low-dimensional stochastic

optimal control problem, and approximate û by

û0 = (αT1∇xU0, α
T
2∇yU1). (3.24)

Here we would like to comment on the asymptotic formula (3.23), for which the rigorous

proof is beyond the scope the current paper. Roughly speaking (3.23) is the asymptotic expansion

of the gradient of the solution to the above homogenization problem. Adopting the proof of

Theorem 3.1 as in the Appendix, using the maximum principle, will give a uniform upper bound

with a constant C that depends on ε, which defeats the purpose of Theorem 2.1. A rigorous
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convergence proof of (3.23) requires the use of what is known in the literature as “corrector

results” or “gradient estimates”, involving technical PDE analysis. The interested readers is

referred to [3, 4, 21, 27, 5] for further references. Here we simply assume that (3.23) holds with

an error that is uniformly of order ε and summarize the above results as follows.

Theorem 3.2. Under mild assumptions (see, e.g., , [21]),

||∇U ε −∇U0||L∞ ≤ Cε, (3.25)

where C is some constant independent of ε. From (3.23), (2.16), we have

||û− û0||L∞ ≤ Cε (3.26)

Then, using Assumption 2 and Theorem 2.1, it follows that

ρu(I) ≤ Cε 1
2 . (3.27)

Remark 1. The case when f0 ≡ g1 ≡ 0 in (3.8) corresponds to the “averaging” problem

[29]. In this case, we can assume φε = φ0 + εφ1 + o(ε) and proceed similarly as above. The

equation of φ0 is still given by (3.16), with

f̃(x) =

∫
f1(x, y)ρx(y) dy,

α̃(x)α̃(x)T =

∫
α1(x, y)α1(x, y)T ρx(y) dy.

(3.28)

(3.21) is unchanged and the optimal control force û can be approximated by

û0 = (αT1∇xU0, 0). (3.29)

A corrector estimate is not needed in this case, neither the solution of a cell problem, as the

zeroth-order expansion already yields the desired uniform approximation (cf. [29, Sec. 20.4]).

3.3 Multiscale diffusions in zero temperature limit We focus on the “averaging”

problem in Remark 1 and use the same notations there. We further assume that β � 1. More

precisely we consider an approximation, in which we first send ε → 0 and then go to the zero-

temperature limit, i.e. send β →∞. The order in which the limits are taken is motivated by the

observation that in the zero-temperature limit the fast dynamics may not be ergodic anymore

(cf. Assumption 2), which would exclude many systems of practical relevance and would require

completely different mathematical techniques. In many applications, e.g. molecular dynamics

or climate modelling in which simplified models are sought that preserve the large deviation

properties of the system this order is quite natural [31, 1, 18].

Proceeding in this way and utilizing the dynamic programming principle and (3.21), we

know that the leading term of U ε satisfies

∂U0

∂t
+ inf
c∈Rn

{
h̃+

1

2
|c|2 + (f̃ − α̃c) · ∇U0 +

α̃α̃T

2β
: ∇2U0

}
= 0,

U0(T, x) = 0.

(3.30)
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Fig. 4.1: Potentials. (a) V1(x) in Example 4.1. (b) V ε(x) in Example 4.2.

where f̃ , α̃ are given in (3.28). Using the idea of Subsection 3.1, we may further approximate

(3.30) by considering

∂Ũ0

∂t
+ inf
c∈Rn

{
h̃+

1

2
|c|2 + (f̃ − α̃c) · ∇Ũ0

}
= 0,

Ũ0(T, x) = 0.

(3.31)

Correspondingly, we can interpret Ũ0 as the following low-dimensional deterministic optimal

control problem

Ũ0(t, x) = inf
u∈A

{∫ T

t

h̃(ξus ) ds+
1

2

∫ T

t

|us|2ds
}

(3.32)

with the deterministic dynamics

dξus = (f̃(ξus )− α̃us) ds, t ≤ s ≤ T,

ξut = x.
(3.33)

The optimal control force û can now be approximated by

û0 = (αT1∇xŨ0, 0). (3.34)

In this situation, both parameters ε, β are involved in the approximation. Here we will

only focus on proposing the above algorithm and the L∞ convergence of the control force as

in previous subsections will not be given. Numerical results using the above algorithm will be

shown in the following section.

4 Numerical examples We present two simple numerical examples that illustrate how

suboptimal controls can be used to do importance sampling with nearly optimal efficiency.

4.1 Two-dimensional diffusion with stiff potential Consider the potential V = V1 +

V2, with

V1(x) =
1

2
(x2 − 1)2, V2(x, y) =

1

2
(x− y)2 (4.1)
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and the two-dimensional SDE

dxs = −∂V (xs, ys)

∂x
dt+ β−1/2dw1

s

dys = −1

ε

∂V (xs, ys)

∂y
dt+ β−1/2

1√
ε
dw2

s

x0 = −1, y0 = 0.

(4.2)

A similar dynamics has been studied in [23]. Our purpose is to calculate the expectation

I = E
(

exp
(
− β

∫ T

0

h(xs, ys)ds
) ∣∣∣ x0 = −1, y0 = 0

)
(4.3)

with h(x, y) = (x− 1)2.

Before going further, it is worthy to briefly illustrate the difficulties to compute (4.3) using

standard Monte Carlo method, especially when β is large. On one hand, the exponential inte-

grand in (4.3) is peaked where the trajectories spend large portion of time at the minimum point

of h, i.e. x = 1. On the other hand, in order to get close to x = 1, trajectories, starting from

x0 = −1, need to cross the energy barrier of V1 (Fig. 4.1(a)). The probability of these barrier-

crossing trajectories is small when β is large. Combining these two facets, we can see that these

rare trajectories play an important role when computing (4.3), and the standard Monte Carlo

method, due to insufficient sampling of these events, will be inefficient (large relative error) in

this case. In the following, we will apply the importance sampling method introduced in the

previous section to this example and show some numerical results.

Suboptimal controls using averaged equations of motion Keeping the slow variable

x in (4.2) fixed, the invariant measure of the fast variables y reads

ρx(y) ∝ e−2βV2 = e−β(x−y)
2

. (4.4)

The reduced dynamics is simply

dx̃s = −V ′1(x̃s)ds+ β−1/2dws , x̃0 = −1, (4.5)

i.e. a one-dimensional diffusion in the double well potential.

We first consider the method in Subsection 3.2. As in (3.16), the equation for φ0

∂φ0
∂t

+ L̃φ0 − βhφ0 = 0

φ0(T, x) = 1

(4.6)

has to be solved, where

L̃ = −V ′1
∂

∂x
+

1

2β

∂

∂2x
, h̃(x) = h(x) = (x− 1)2. (4.7)

This is be done by first discretizing (4.6) with respect to time t,( 1

∆t
− L̃

)
φj0 =

( 1

∆t
− βh

)
φj+1
0 , j = 0, 1, · · · , n− 1 , (4.8)
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where φj0 denotes the approximation of φ0 at time tj = j∆t, j = 0, 1, · · · , n, ∆t = T
n , and

subsequent discretization in space using a finite-volume scheme [24]. The equations must then

be solved backward in time which then yields the optimal control in accordance with (3.24):

û0 = (−β−1φ
′
0

φ0
, 0). (4.9)

After applying the control force (4.9), the dynamics (4.2) becomes

dxus = −∂V (xus , y
u
s )

∂x
dt+ β−1

φ′0(xus )

φ0(xus )
dt+ β−1/2dw̄1

s

dyus = −1

ε

∂V (xus , y
u
s )

∂y
dt+ β−1/2

1√
ε
dw̄2

s

xu0 = −1, yu0 = 0.

(4.10)

Table 4.1: T = 1.0, N = 104. Monte Carlo method with importance sampling. Column I, IN are

the mean values computed with N = 105, 104 respectively. VarsI, ρs(I) are the sample variance

and the relative standard deviation defined in (2.25) (2.24). Rc is the ratio of the trajectories

those have crossed the potential barrier.

β ε nx ∆t I IN VarsI ρs(I) Rc

1.0

0.1

2000

1.0× 10−7 5.36× 10−2 5.38× 10−2 2.9× 10−4 0.32 6.9× 10−1

0.01 1.0× 10−8 4.88× 10−2 4.88× 10−2 3.1× 10−5 0.11 6.7× 10−1

0.001 1.0× 10−8 4.84× 10−2 4.83× 10−2 3.0× 10−6 0.04 6.8× 10−1

5.0

0.1

5000

1.0× 10−7 3.70× 10−7 3.65× 10−7 2.2× 10−13 1.26 7.6× 10−1

0.01 1.0× 10−7 1.84× 10−7 1.85× 10−7 4.7× 10−15 0.37 7.3× 10−1

0.001 1.0× 10−8 1.71× 10−7 1.70× 10−7 3.8× 10−16 0.11 7.3× 10−1

10.0

0.1

8000

1.0× 10−7 1.65× 10−13 1.70× 10−13 1.9× 10−25 2.56 8.6× 10−1

0.01 5.0× 10−8 3.76× 10−14 3.80× 10−14 5.1× 10−28 0.59 8.4× 10−1

0.001 1.0× 10−8 3.24× 10−14 3.24× 10−14 3.3× 10−29 0.18 8.4× 10−1

Results We will use the suboptimal dynamics (4.10) to compute the expectation (4.3)

following (2.9). Table 4.1 shows the numerical results of the Monte Carlo method with the

above importance sampling strategies, while Table 4.2 are the results using standard Monte

Carlo method. We set T = 1 and N = 104 trajectories are generated in each case. To avoid

the discretization bias, very small time step-sizes (∆t) are used; nx denotes the mesh size used

when solving (4.8). In Table 4.1, the column with label “I” presents results using large N = 105

and are considered as the “true mean value”. Among the trajectories, we monitor the one for

which xs > 0 for certain 0 ≤ s ≤ T and Rc denotes the ratio of these trajectories, which can be

considered as an indicator of the ratio of barrier-crossing events sampled. Now we make some

comparisons of the results of Table 4.1 and Table 4.2. For β = 1, both methods give acceptable

mean values, while the sample variance is smaller when importance sampling is used. In the case

of standard Monte Carlo method, only about 0.2% of trajectories cross the barrier when β = 5,

and this becomes worse when β = 10, i.e. no barrier-crossing trajectories are sampled. This

is expected as these trajectories become more and more rare as β increases. In fact, the mean
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Table 4.2: T = 1.0, N = 104. Standard Monte Carlo method. The column labels have the same

meaning as in Table 4.1.

β ε ∆t IN VarsI ρs(I) Rc

1.0

0.1 1.0× 10−7 5.31× 10−2 6.7× 10−3 1.54 2.6× 10−1

0.01 1.0× 10−8 4.76× 10−2 5.5× 10−3 1.56 2.6× 10−1

0.001 1.0× 10−8 4.86× 10−2 5.7× 10−3 1.55 2.6× 10−1

5.0

0.1 1.0× 10−7 2.62× 10−7 2.6× 10−11 19.46 2.4× 10−3

0.01 1.0× 10−7 2.90× 10−7 2.8× 10−10 57.70 1.7× 10−3

0.001 1.0× 10−8 2.80× 10−7 2.1× 10−10 51.75 1.7× 10−3

10.0

0.1 1.0× 10−7 8.14× 10−15 6.6× 10−26 31.56 0

0.01 5.0× 10−8 1.31× 10−15 2.7× 10−27 39.66 0

0.001 1.0× 10−8 6.20× 10−16 6.0× 10−28 39.51 0

Table 4.3: T = 1.0, N = 104. Monte Carlo method with importance sampling by solving the

deterministic optimal control problem (4.11)(4.12), with a coarse grid 2000× 1000.

β ε ∆t IN VarsI ρs(I) Rc

1.0

0.1 1.0× 10−7 5.41× 10−2 1.4× 10−3 0.69 8.3× 10−1

0.01 1.0× 10−8 4.84× 10−2 7.1× 10−4 0.55 8.0× 10−1

0.001 1.0× 10−8 4.83× 10−2 6.5× 10−4 0.53 8.1× 10−1

5.0

0.1 1.0× 10−7 3.25× 10−7 2.1× 10−13 1.41 8.5× 10−1

0.01 1.0× 10−7 1.92× 10−7 1.7× 10−14 0.68 8.3× 10−1

0.001 1.0× 10−8 1.70× 10−7 8.0× 10−15 0.53 8.7× 10−1

10.0

0.1 1.0× 10−7 1.54× 10−13 1.5× 10−25 2.51 9.0× 10−1

0.01 5.0× 10−8 3.82× 10−14 7.9× 10−28 0.74 9.0× 10−1

0.001 1.0× 10−8 3.23× 10−14 1.6× 10−28 0.39 9.0× 10−1

values when β = 10 are not correct even in magnitude (comparing to the “true mean value”).

On the contrary, in the case of importance sampling, the ratio of barrier-crossing trajectories

are 70% ∼ 80%, thus are well sampled. The mean values remain stable when several runs are

carried out, indicating that the estimate is indeed unbiased and converged.

We should mention that the importance sampling estimators perform well even when ε =

0.1, i.e. when the time-scale separation of the dynamics is not at all in the limiting regime. In this

case, the asymptotic of expectation value does not provide us the correct results (especially when

β = 5, 10) and the Monte Carlo method is obvious needed. Comparing the relative standard

deviation ρs(I) in Table 4.1 with Table 4.2, we see the importance sampling estimator is still

much more efficient than its standard counterpart. For each β, the controls used to apply the

importance sampling methods are shown in Fig. 4.2. The blue regions in these figures shows

that the control force will help the state to cross the energy barrier. We observe that, when β

becomes larger (β = 5, 10), the solutions become closer to the limiting case (β = +∞).
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Fig. 4.2: The first three figures show the control forces computed from (4.9) for different β, using

the method of Subsection 3.2. The rightmost figure (β = +∞) shows the control force in (4.13),

which is computed by solving the deterministic optimal control problem (4.11) (4.12).

Suboptimal controls using averaged equation and zero-temperature limit We also

carried out the importance sampling method illustrated in Subsection 3.3. Combining (4.5) and

(3.32) (3.33), we solve the deterministic optimal control problem

Ũ0(t, x) = inf
u∈A

{∫ T

t

h(ξus )ds+
1

2

∫ T

t

|us|2ds
}

(4.11)

with the deterministic dynamics

dξus = (−V ′1(ξus )− us)ds, t ≤ s ≤ T,

ξut = x.
(4.12)

and use the control

û0 = (∇xŨ0, 0) (4.13)

to apply the importance sampling method. The optimal control problem can be solved using

the optimization method of [34]. But instead of solving it “on the fly”, here it is solved for each

x, t on a coarse grid (2000 × 1000) using parallel computing before sampling, and then is used

to compute the control force û0 (see the rightmost figure in Fig. 4.2). The results are shown

in Table 4.3. We see that comparable results are obtained as in the Table 4.1, especially when

β = 5, 10. We should mention that our numerical method for solve (4.11) is far from efficient,

as the computational effort spent was more than it would have been for solving the the original

sampling problem. However, we do not see this as a criterion for exclusion, because fast methods

for solving deterministic control problems, such as (4.11), are available, e.g. direct methods [16]

or methods based on the Pontryagin Maximum Principle [35].
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4.2 Motion in a multiscale potential In this subsection, we consider a one-dimensional

diffusion with periodic coefficients [13, 29]:

dxs = −∇V ε(xs)ds+ β−1/2dws, t ≤ s ≤ T,

xt = x ,
(4.14)

where ε > 0, V ε(x) = V (x) + p(x/ε) , p(x) is a λ-periodic function. When ε� 1, the potential

function V ε is the sum of a smooth potential function V and a highly oscillating perturbation

p(x/ε), that is superimposed on the smooth potential landscape; see Figure 4.1(b).

Derivation of the corrector We start by condering the general situation and consider

the expectation

φ(t, x) = E
(

exp
(
− β

∫ T

t

h(xs, xs/ε) ds
) ∣∣∣ xt = x

)
.

Set U = −β−1 log φ, by dual relation (2.12), U is associated with the optimal control problem

U(t, x) = inf
u∈A

E
(∫ T

t

[
h(xus , x

u
s/ε) +

1

2
|us|2

]
ds
∣∣∣ xut = x

)
,

under dynamics

dxus = −1

ε
∇p(xus/ε)ds−∇V (xus )ds− usds+ β−1/2dws. (4.15)

To connect it with the homogenization problem studied in Subsection 3.2, we introduce the

auxiliary variable y = x/ε and set z = (x, y), by which (4.14) can be written as the redunant

system of equations

dxs = −1

ε
∇p(ys)ds−∇V (xs)ds+ β−1/2dws,

dys = − 1

ε2
∇p(ys)ds−

1

ε
∇V (xs)ds+

β−1/2

ε
dws,

xt = x, yt =
x

ε
.

(4.16)

Notice that the same noise and the same control are applied to both variables.

Now consider the expectation

φ̃(t, x, y) = E
(

exp
(
− β

∫ T

t

h(xs, ys) ds
∣∣∣ xt = x, yt = y

)
.

and the associated optimal control problem

Ũ(t, x, y) = inf
u∈A

E
(∫ T

t

[
h(xus , y

u
s ) +

1

2
|us|2

]
ds
∣∣∣ xut = x, yut = y

)
,

with dynamics

dxus = −1

ε
∇p(yus )ds−∇V (xus )ds− usds+ β−1/2dws

dyus = − 1

ε2
∇p(yus )ds− 1

ε
∇V (xus )ds− 1

ε
usds+

β−1/2

ε
dws.

16



We can again take advantage of the dual relation Ũ(t, x, y) = −β log φ̃(t, x, y), with the

identification U(t, x) = Ũ(t, x, x/ε). Applying the results of the previous section, we can compute

the leading term of Ũ(t, x, y) which satisfies the optimal control problem

U0(t, x) = inf
u∈A

E
(∫ T

t

[
h̃(xus ) +

1

2
|us|2

]
ds
∣∣∣ xut = x

)
under the dynamics

dxus = −K∇V (xus )ds−
√
Kusds+

√
Kβ−1/2dws, (4.17)

where

K =

∫
(I +∇yΦ(y))(I +∇yΦ(y))T ρ(y)dy, (4.18)

h̃ is given in (3.17), ρ(y) is the invariant measure of fast variable y and Φ(y) solves the cell

equation. By the specific form of the infinitesimal generator (3.10)–(3.11), we find that ρ(y) ∝
exp(−2βp(y)). Moreover φ1(t, x, y) is λ-periodic in y and, by (3.14), satisfies

L0φ1 = −L1φ0 = ∇p · ∇xφ0.

Solution of the cell problem In one dimension, the cell problem L0Φ(y) = p′ can be

solved analytically,

Φ(y) = −y +
λ∫ λ

0
e2βp(z)dz

∫ y

0

e2βp(z)dz, (4.19)

which allows us to compute φ1(t, x, y) = Φ(y)∂φ0

∂x . If we call

L =

∫ λ

0

e2βp(z)dz, L̃ =

∫ λ

0

e−2βp(z)dz (4.20)

then (4.18) gives K = λ2/(LL̃). From (2.16) and the expansion φ̃(t, x, x/ε) = φ0(t, x) +

εφ1(t, x, x/ε) + o(ε), we have

û =
∂

∂x
U(t, x) = −β−1 ∂xφ̃(t, x, x/ε)

φ̃(t, x, x/ε)

= −β−1 ∂xφ0(t, x) + ∂yφ1(t, x, x/ε)

φ0(t, x)
+O(ε)

= −β−1 λe2βp(x/ε)∫ λ
0
e2βp(z)dz

∂xφ0
φ0

+O(ε)

= û0(t, x) +O(ε).

(4.21)

Results For the numerical test, we choose

p(x) = 0.1(cosx+ sinx), V (x) = x2/2, h = h(x) = sin2 x, x0 = −0.5

t = 0, T = 1.

The periodicity of p(x) is λ = 2π. φ0 is solved similarly as in the previous example, with

L̃ = −K∇V · ∇+
K

2β
∆ (4.22)
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Fig. 4.3: the non-oscillatory part of the control forces û0 in (4.21) for β = 5, 10.

The control û0 is used to change the measure and the dynamics (4.14) becomes

dxus = −V ′(xus )ds− 1

ε
p′(xus/ε)ds− û0ds+ β−1/2dw̃s, 0 ≤ s ≤ T,

x0 = −0.5.
(4.23)

which is used to generate trajectories. Table 4.4 records the simulation results for β = 5.0 and

10.0 with different values of ε. As before, nx is the mesh size used to compute φ0. N = 104

trajectories are sampled in each case. The column with label “I” presents results using large

N = 105 and are considered as the “true mean value”. When generating trajectories, small ∆t is

chosen to avoid discretization bias. From the results, we can see that in each case, the variance

is reduced when importance sampling is used. Moreover, for fixed β, as ε decreases, the sample

variance of the importance sampling method also decreases, which is accordance with Theorem

3.2. Fig. 4.3 shows the non-oscillatory part of the control forces, which has an effect pushing

the state x close to 0, which is where h attains its minimum.

5 Discussion and conclusions Importance sampling is a widely used variance reduction

technique when designing efficient Monte Carlo estimators. To successfully apply this method,

clever and careful selection of the change of measure is a key point. In the diffusion process

setting, the change of measure is realized by adding a control force to the original system and

the optimal control force is related to HJB equation. Our starting point is that, although it

is not easy to find the optimal control force, it is possible to approximate it and the resulting

estimators may also be efficient intuitively.

Based on the relation between the optimal control force and the HJB equation, we have

studied approximations of the HJB equation for which three different situations—timescale sep-

aration, small temperature and the combination of the former two—where each approximation
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Table 4.4: Monte Carlo method with and without importance sampling. T = 1.0, N = 104.

K = 0.407728 when β = 5.0, while K = 0.055302 when β = 10.0. The column with label “I”

shows the mean values sampled with large N = 105.

β ε nx ∆t I
IP Standard

IN VarsI ρs(I) IN VarsI ρs(I)

5.0

0.05 5000 1× 10−7 0.496 0.497 2.4× 10−3 9.8× 10−2 0.496 3.0× 10−2 0.04

0.02 5000 1× 10−7 0.426 0.426 4.3× 10−4 4.9× 10−2 0.427 3.4× 10−2 0.43

0.01 5000 1× 10−7 0.436 0.436 1.0× 10−4 2.3× 10−2 0.435 3.3× 10−2 0.42

0.008 5000 5× 10−8 0.438 0.438 6.4× 10−5 1.8× 10−2 0.438 3.3× 10−2 0.41

0.005 5000 5× 10−8 0.442 0.441 3.0× 10−5 1.2× 10−2 0.443 3.4× 10−2 0.42

0.002 5000 5× 10−8 0.446 0.446 4.0× 10−5 1.4× 10−2 0.448 3.3× 10−2 0.41

10.0

0.05 2000 1× 10−5 0.198 0.198 1.3× 10−3 1.8× 10−1 0.198 5.8× 10−3 0.38

0.02 2000 5× 10−6 0.104 0.104 3.0× 10−4 1.7× 10−1 0.104 4.4× 10−3 0.64

0.01 2000 5× 10−6 0.109 0.109 5.8× 10−5 7.0× 10−2 0.109 2.3× 10−3 0.44

0.008 8000 5× 10−7 0.111 0.111 3.0× 10−5 4.9× 10−2 0.111 2.0× 10−3 0.40

0.006 8000 5× 10−7 0.114 0.114 1.7× 10−5 3.6× 10−2 0.114 1.6× 10−3 0.35

0.004 8000 1× 10−7 0.117 0.117 7.7× 10−6 2.4× 10−2 0.117 1.8× 10−3 0.36

0.002 8000 5× 10−8 0.120 0.120 4.1× 10−6 1.7× 10−2 0.120 1.7× 10−3 0.34

gave rise to an efficient Monte Carlo estimator. Under additional smoothness assumptions, the

asymptotic optimality of these approximations has been proved. This demonstrates that, when

temperature is small or timescales in the system are separated, the resulting approximate con-

trol force are suitable for importance sampling of the full system, in that they yield efficient

Monte Carlo estimators with small variance and small relative error. The fact our results are

based on uniform approximations in the L∞ norm is partly due to type of sampling problem—

deterministic initial condition and finite time horizon—and partly because it makes the stability

analysis of relative error (or standard deviation) easier. By a more careful analysis of (2.20) and

(2.21) it may be possible to weaken the assumptions. Weaker assumptions may be also possible

when considering ergodic limits as in [10] or for problems that involve random stopping times

[19]. We should mention that expected values of exponentials have been also studied in the

context of the numerical solution of optimal control problems for diffusions (e.g. in [32]) and

may be combined with the ideas and strategies to find approximations of the optimal force in

the optimal control problem proposed in this article.

Even though we have studied only simple model systems, the result in this paper are

promising. Future work should address adaptive importance sampling strategies for more general

expectations such as the mean first passage times, or small probabilities of functionals of paths

(e.g. committor probabilities [15]). In another interesting research direction is to study systems

in which the time scale separation may not be explicit, but some idea of what the relevant

coarse-grained variables are is available. This situation is typical for many problems arising in

biology, climate modelling, physics, etc. and to generalize the ideas developed in this paper

to such general complex systems, design fast and efficient importance samping strategies, is an

important and interesting research topic.
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Appendix A. Proof of Theorem 3.1.

In this section, we proof Theorem 3.1 and assume t = 0 without loss of generality. The

method relies on the maximum principle for parabolic PDEs, and we use some analysis in [33]

and [29]. We make the further assumption

Assumption 3: U , Ũ ∈ C1,3
b ([0, T ]× Rn) and the bounds are independent of β.

The following results from [33] will be useful.

Theorem A.1. If f ∈ C1,2([0, T )× Rn) ∪ Cb([0, T ]× Rn) and c, g ∈ Cb([0, T )) satisfy :

∂f

∂s
+ Lsf + c(s)f ≥ −g(s), 0 ≤ s < T, (A.1)

then

f(s, x) ≤ ||f(T, ·)|| exp
(∫ T

s

c(u) du
)

+

∫ T

s

g(t) exp
(∫ t

s

c(u) du
)
dt (A.2)

Lemma A.2. Let a : R1 → Sn be a function having two continuous derivatives. Suppose

that

λ0 = sup
{ |〈θ, a(x)

′′
θ〉|

|θ|2
: x ∈ R1 and θ ∈ Rn\{0}

}
<∞, (A.3)

then for and symmetric n× n-matrix u,

(tr(a(x)′u))2 ≤ 4n2λ0tr(ua(x)u), x ∈ Rn. (A.4)

Appendix B. Proof of Theorem 3.1. The HJB equation (2.15) can be written as

∂U

∂t
+ b · ∇U +

σσT

2β
: ∇2U − |σ

T∇U |2

2
+ h = 0 (B.1)

With the notations in Subsection 3.1, we also have the equation for Ũ as

∂Ũ

∂t
+ b · ∇Ũ − |σ

T∇Ũ |2

2
+ h = 0 (B.2)

Let R = U − Ũ , subtracting (B.2) from (B.1), we obtain

∂R

∂t
+
(
b− σσT∇(Ũ + U)

2

)
· ∇R+

σσT

2β
: ∇2R = −σσ

T

2β
: ∇2Ũ (B.3)

To simplify the notations, we denote

L̃ =
(
b− σσT∇(Ũ + U)

2

)
· ∇+

σσT

2β
: ∇2 =

n∑
i=1

bi(t, z)
∂

∂zi
+

1

2

n∑
i=1

aij(t, z)
∂2

∂zi∂zj

F = −σσ
T

2
: ∇2Ũ
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This yields

∂R

∂t
+ L̃R− β−1F = 0 . (B.4)

Taking the derivative with respect to zi in (B.4), we obtain

∂

∂t

∂R

∂zi
+

n∑
j=1

bj
∂

∂zj

∂R

∂zi
+

1

2

n∑
j,k=1

ajk
∂2

∂zj∂zk

∂R

∂zi
+

n∑
j=1

∂bj

∂zi

∂R

∂zj

+
1

2

n∑
j,k=1

∂ajk

∂zi

∂2R

∂zj∂zk
− β−1 ∂F

∂zi
= 0.

Let w =
n∑
i=1

( ∂R∂zi )2. Multiplying the above equation by 2 ∂R∂zi and summing over i, we get

∂w

∂t
+ L̃w −

n∑
i,j,k=1

ajk
∂2R

∂zj∂zi

∂2R

∂zk∂zi
+

n∑
i,j,k=1

∂ajk

∂zi

∂2R

∂zj∂zk

∂R

∂zi
+ 2

n∑
i,j=1

∂bj

∂zi

∂R

∂zj

∂R

∂zi

−2β−1
n∑
i=1

∂F

∂zi

∂R

∂zi
= 0 (B.5)

By Lemma A.2, we know

( n∑
j,k=1

∂ajk

∂zi

∂2R

∂zj∂zk

)2
=
(
tr(

∂a

∂zi
H)
)2
≤ 4n2λitr(HaH) (B.6)

where H = (Hjk) =
(

∂2R
∂zj∂zk

)
. Therefore we have

( n∑
i,j,k=1

∂ajk

∂zi

∂2R

∂zj∂zk

∂R

∂zi

)2
≤
[ n∑
i=1

( n∑
j,k=1

∂ajk

∂zi

∂2R

∂zj∂zk

)2]
w ≤ 4C1γw (B.7)

with γ = tr(HaH). It then follows that

−
n∑

i,j,k=1

ajk
∂2R

∂zj∂zi

∂2R

∂zk∂zi
+

n∑
i,j,k=1

∂ajk

∂zi

∂2R

∂zj∂zk

∂R

∂zi
≤ 2C

1/2
1 γ1/2w1/2 − γ ≤ C1w . (B.8)

The other two terms in (B.5) can be estimated by

2

n∑
i,j=1

∂bj

∂zi

∂R

∂zj

∂R

∂zi
− 2β−1

n∑
i=1

∂F

∂zi

∂R

∂zi
≤ C2w + C3β

−1w1/2 ≤ C4w + β−2 (B.9)

Combining (B.8) (B.9) together, It follows from (B.5) that

∂w

∂t
+ L̃w + (C1 + C4)w ≥ −β−2 (B.10)

Applying Theorem A.1 and notice w(T, ·) = 0, we obtain

||û− û0||L∞ = ||σT (∇U −∇Ũ)||L∞ ≤ C||∇U −∇Ũ ||L∞ ≤ Cβ−1. (B.11)
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