# Revising the handling of nonlinear constraints in SCIP

Work in Progress Report

#### Ksenia Bestuzheva, Benjamin Müller, Felipe Serrano, Stefan Vigerske, Fabian Wegscheider











WCGO  $\cdot$  Metz, France  $\cdot$  July 9, 2019

# SCIP: Solving Constraint Integer Programs

- modular branch-cut-and-price framework for constraint integer programming
- includes full-fledged MIP/MINLP solver
- part of SCIP Optimization Suite (GCG, SCIP, SoPlex, UG, ZIMPL)
- Latest Release Report: The SCIP Optimization Suite 6.0 by Gleixner, Bastubbe, Eifler, Gally, Gamrath, Gottwald, Hendel, Hojny, Koch, Lübbecke, Maher, Miltenberger, Müller, Pfetsch, Puchert, Rehfeldt, Schlösser, Schubert, Serrano, Shinano, Viernickel, Wegscheider, Witt, Witzig

## Download at scip.zib.de: SCIP Optimization Suite SCIP SoPlex ZIMPL UG GCG SCIP Solving Constraint Integer Programs About About SCIP is currently one of the fastest non-commercial solvers for mixed integer programming (MIP) and mixed integer nonlinear programming (MINLP). It is also a framework for constraint integer programming and branch-cut-and-price. It allows for total control of the solution process and the access License How To Cite Platforms Developers Workshop Related Work Exact MIP PolySCIP

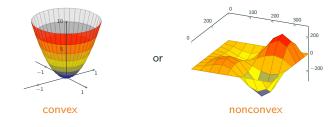
By default, SCIP comes with a bouquet of different plugins for solving MIPs and MINLPs.

• free for academic use

# Mixed-Integer Nonlinear Programming

$$\begin{array}{ll} \min c^{\mathsf{T}} x \\ \text{s.t. } g_k(x) \leq 0 & \forall k \in [m] \\ x_i \in \mathbb{Z} & \forall i \in \mathcal{I} \subseteq [n] \\ x_i \in [\ell_i, u_i] & \forall i \in [n] \end{array}$$

The functions  $g_k : [\ell, u] \to \mathbb{R}$  can be

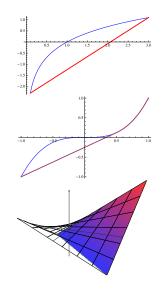


and are given in algebraic form.

## SCIP solves MINLPs by spatial Branch & Bound

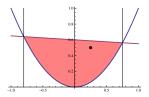
#### Ingredients:

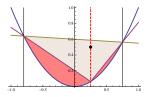
- constructing an LP relaxation by
  - relaxing integrality
  - convexifying non-convexities



#### Ingredients:

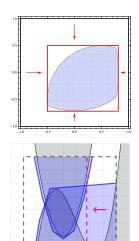
- constructing an LP relaxation by
  - relaxing integrality
  - convexifying non-convexities
- branching on
  - fractional integer variables
  - variables in violated nonconvex constraints





## Ingredients:

- constructing an LP relaxation by
  - relaxing integrality
  - convexifying non-convexities
- branching on
  - fractional integer variables
  - · variables in violated nonconvex constraints
- tightening of variable bounds (domain propagation)
- primal heuristics
- presolving / reformulation



Current Implementation (SCIP 6.0)

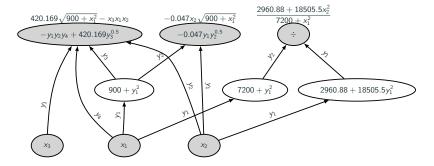
#### Expression trees and graphs

cons\_nonlinear (lhs  $\leq \sum_{i=1}^{n} a_i x_i + \sum_{j=1}^{m} c_j f_j(x) \leq rhs$ ) stores the nonlinear functions  $f_j$  of

all constraints in one expression graph (DAG).

For example (MINLPLib instance nvs01):

$$\begin{split} 420.169 \sqrt{900+x_1^2} - x_3 x_1 x_2 = 0 \qquad & \frac{2960.88 + 296088 \cdot 0.0625 x_2^2}{7200+x_1^2} - x_3 \geq 0 \\ & x_{obj} - 0.047 x_2 \sqrt{900+x_1^2} \geq 0 \end{split}$$



• some use of common subexpression

## Expression operators and constraint handler

Operators (handled by cons\_nonlinear):

- variable index, constant
- +, -, \*, ÷
- $\cdot^2$ ,  $\sqrt{\cdot}$ ,  $\cdot^p$   $(p \in \mathbb{R})$ ,  $\cdot^n$   $(n \in \mathbb{Z})$ ,  $x \mapsto x |x|^{p-1}$  (p > 1)
- exp, log
- min, max, abs
- $\sum$ ,  $\prod$ , affine-linear, quadratic, signomial
- (user)

## Expression operators and constraint handler

Operators (handled by cons\_nonlinear):

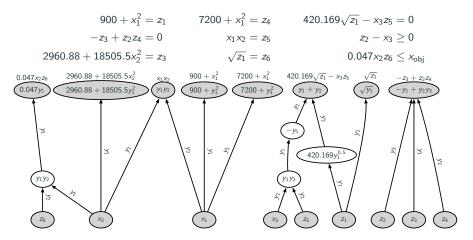
- variable index, constant
- +, -, \*, ÷
- $\cdot^2$ ,  $\sqrt{\cdot}$ ,  $\cdot^p$   $(p \in \mathbb{R})$ ,  $\cdot^n$   $(n \in \mathbb{Z})$ ,  $x \mapsto x |x|^{p-1}$  (p > 1)
- exp, log
- min, max, abs
- $\sum$ ,  $\prod$ , affine-linear, quadratic, signomial
- (user)

#### Additional constraint handler:

- quadratic
- abspower  $(x \rightarrow x |x|^{p-1}, p > 1)$
- SOC (second-order cones)
- (bivariate)

# Reformulation in cons\_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd power, quadratic) remain.



- reformulates constraints by introducing new variables and new constraints
- other constraint handler can participate

# Problem with this approach

An optimal solution: min z x = -1s.t.  $\exp(\ln(1000) + 1 + xy) \le z$ y = 1

z = 1000

Consider

 $x^2 + y^2 \le 2$ 

# Problem with this approach

z

An optimal solution:

| Consider                                                                                                                                                                                                                                                                                                                                                                                    | min z<br>s.t. $\exp(\ln(1000) + 1 + xy) \le z$<br>$x^2 + y^2 \le 2$ | x = -1<br>y = 1<br>z = 1000 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|
| SCIP reports                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                             |
| SCIP Status       : problem is solved [optimal solution found]         Solving Time (sec)       : 0.08         Solving Nodes       : 5         Primal Bound       : +9.99999656552062e+02 (3 solutions)         Dual Bound       : +9.99999656552062e+02         Gap       : 0.00 %         [nonlinear] <e1>: exp((7.9077552789821368151 +1 (<x> * <y>)))-1<z>[C] &lt;= 0;</z></y></x></e1> |                                                                     |                             |
| x<br>y                                                                                                                                                                                                                                                                                                                                                                                      | -1.00057454873626<br>0.999425451364613                              | (obj:0)<br>(obj:0)          |

999.999656552061 (obj:1)

# **Reformulated problem**

## Reformulation takes apart exp(ln(1000) + 1 + xy), thus SCIP actually solves

min z  
s.t. 
$$\exp(w) \le z$$
  
 $\ln(1000) + 1 + xy = w$   
 $x^2 + y^2 \le 2$ 

min z

## Reformulation takes apart exp(ln(1000) + 1 + xy), thus SCIP actually solves

s.t. 
$$\exp(w) \le z$$
  
 $\ln(1000) + 1 + xy = w$   
 $x^2 + y^2 \le 2$ 

Violation  $0.4659 \cdot 10^{-6} \le \text{numerics/feastol } \checkmark$   $0.6731 \cdot 10^{-6} \le \text{numerics/feastol } \checkmark$  $0.6602 \cdot 10^{-6} \le \text{numerics/feastol } \checkmark$ 

Solution (found by <relaxation>):

 $\begin{array}{rrrr} x = & -1.000574549 \\ y = & 0.999425451 \\ z = 999.999656552 \\ w = & 6.907754936 \end{array}$ 

min z

# Reformulation takes apart exp(ln(1000) + 1 + xy), thus SCIP actually solves

s.t. 
$$\exp(w) \le z$$
  
 $\ln(1000) + 1 + xy = w$   
 $x^2 + y^2 \le 2$ 

 $0.4659 \cdot 10^{-6} \le \text{numerics/feastol } \checkmark$  $0.6731 \cdot 10^{-6} \le \text{numerics/feastol } \checkmark$  $0.6602 \cdot 10^{-6} \le \text{numerics/feastol } \checkmark$ 

Violation

Solution (found by <relaxation>):

 $\begin{array}{rll} x = & -1.000574549 \\ y = & 0.999425451 \end{array}$ 

z = 999.999656552

w= 6.907754936

- $\Rightarrow$  Explicit reformulation of constraints ...
  - ... looses the connection to the original problem.

min z

# Reformulation takes apart exp(ln(1000) + 1 + xy), thus SCIP actually solves

s.t. 
$$\exp(w) \le z$$
  
 $\ln(1000) + 1 + xy = w$   
 $x^2 + y^2 \le 2$ 

Violation  $0.4659 \cdot 10^{-6} \le \text{numerics/feastol } \checkmark$   $0.6731 \cdot 10^{-6} \le \text{numerics/feastol } \checkmark$  $0.6602 \cdot 10^{-6} \le \text{numerics/feastol } \checkmark$ 

Solution (found by <relaxation>):

 $\begin{array}{ll} x = & -1.000574549 \\ y = & 0.999425451 \\ z = 999.999656552 \end{array}$ 

w= 6.907754936

- $\Rightarrow$  Explicit reformulation of constraints ...
  - ... looses the connection to the original problem.
  - ... looses distinction between original and auxiliary variables. Thus, we may branch on auxiliary variables.
  - ... prevents simultaneous exploitation of overlapping structures.

A new framework for NLP in SCIP (work in progress)

A new framework for NLP in SCIP (work in progress)

**Fundamental structure** 

## Everything is an expression.

- ONE constraint handler: cons\_expr
- represent all nonlinear constraints in one expression graph (DAG)

 $\mathsf{lhs} \leq \mathsf{expression}\mathsf{-node} \leq \mathsf{rhs}$ 

• all algorithms (check, separation, propagation, etc.) work on the expression graph (no upgrades to specialized nonlinear constraints)

## Everything is an expression.

- ONE constraint handler: cons\_expr
- represent all nonlinear constraints in one expression graph (DAG)

 $\mathsf{lhs} \leq \mathsf{expression}\mathsf{-node} \leq \mathsf{rhs}$ 

- all algorithms (check, separation, propagation, etc.) work on the expression graph (no upgrades to specialized nonlinear constraints)
- separate expression operators  $(+, \times)$  and high-level structures (quadratic, etc.)
- $\Rightarrow$  avoid redundancy / ambiguity of expression types (classic: +,  $\sum$ , linear, quad., ...)
  - stronger identification of common subexpressions

## Everything is an expression.

- ONE constraint handler: cons\_expr
- represent all nonlinear constraints in one expression graph (DAG)

 $\mathsf{lhs} \leq \mathsf{expression}\mathsf{-node} \leq \mathsf{rhs}$ 

- all algorithms (check, separation, propagation, etc.) work on the expression graph (no upgrades to specialized nonlinear constraints)
- separate expression operators  $(+, \times)$  and high-level structures (quadratic, etc.)
- $\Rightarrow$  avoid redundancy / ambiguity of expression types (classic: +,  $\sum$ , linear, quad., ...)
  - stronger identification of common subexpressions

## Do not reformulate constraints.

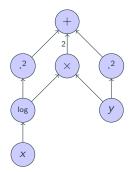
• introduce auxiliary variables for the relaxation only

## Constraint:

$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...



## Constraint:

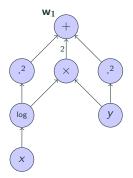
$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...

# (Implicit) Reformulation:

$$w_1 \le 4$$
  
 $\log(x)^2 + 2\log(x)y + y^2 = w_1$ 



# Constraint:

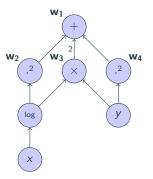
$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...

## (Implicit) Reformulation:

$$w_1 \le 4$$
  
 $w_2 + 2w_3 + w_4 = w_1$   
 $\log(x)^2 = w_2$   
 $\log(x)y = w_3$   
 $y^2 = w_4$ 



## Constraint:

$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

## This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...

# (Implicit) Reformulation:

$$w_1 \le 4$$

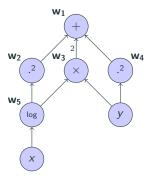
$$w_2 + 2w_3 + w_4 = w_1$$

$$w_5^2 = w_2$$

$$w_5y = w_3$$

$$y^2 = w_4$$

$$\log(x) = w_5$$



## Constraint:

$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

#### This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...

# (Implicit) Reformulation:

$$w_1 \le 4$$

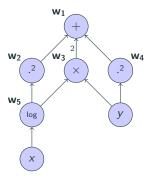
$$w_2 + 2w_3 + w_4 = w_1$$

$$w_5^2 = w_2$$

$$w_5y = w_3$$

$$y^2 = w_4$$

$$\log(x) = w_5$$



Used to construct LP relaxation.

Each operator type  $(+, \times, pow, etc.)$  is implemented by an expression handler, which can provide a number of callbacks:

- evaluate and differentiate expression w.r.t. operands
- interval evaluation and tighten bounds on operands
- provide linear under- and over-estimators
- distribute branching scores to operands
- inform about curvature, monotonicity, integrality
- simplify, compare, print, parse, hash, copy, etc.

Expression handler are like other SCIP plugins, thus new ones can be added by users.

```
min z s.t. \exp(\ln(1000) + 1 + xy) \le z, x^2 + y^2 \le 2
```

#### **Classic:**

```
presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):
0 deleted vars, 0 deleted constraints, 1 added constraints,...
0 implications, 0 cliques
presolved problem has 4 variables (0 bin, 0 int, 0 impl, 4 cont)
and 3 constraints
2 constraints of type <quadratic>
1 constraints of type <quadratic>
```

[...]

```
      SCIP Status
      : problem is solved [optimal solution found]

      Solving Time (sec): 0.08

      Solving Nodes
      : 5

      Primal Bound
      : +9.99999656552062e+02 (3 solutions)

      Dual Bound
      : +9.99999656552062e+02

      Gap
      : 0.00 %

      [nollinear] <el>: exp((7.90776 + (<x > <y>)))-1<<z>[C] <= 0;</td>

      violation: right hand side is violated by 0.000673453314561812

      best solution is not feesible in original problem
```

| x | -1.00057454873626 | (obj:0) |
|---|-------------------|---------|
| У | 0.999425451364613 | (obj:0) |
| z | 999.999656552061  | (obj:1) |

```
min z s.t. \exp(\ln(1000) + 1 + xy) \le z, x^2 + y^2 \le 2
```

#### **Classic:**

#### New:

```
presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive): presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):
0 deleted vars, 0 deleted constraints, 1 added constraints,... 0 deleted vars, 0 deleted constraints, 0 added constraints,... 0 implications, 0 cliques
presolved problem has 4 variables (0 bin, 0 int, 0 impl, 4 cont) presolved problem has 3 variables (0 bin, 0 int, 0 impl, 3 cont)
and 3 constraints of type <quadratic> 2 constraints of type <quadratic> 2 constraints of type <constraints of type <constraints of type <constraints of type <constraints</pre>
```

[...]

[...]

|                                                                | SCIP Status                                       | :   | problem is solved [optimal solution found]                 | SCIP Status        | : problem is solved [optimal solution found] |
|----------------------------------------------------------------|---------------------------------------------------|-----|------------------------------------------------------------|--------------------|----------------------------------------------|
|                                                                | Solving Time (sec)                                | :   | 0.08                                                       | Solving Time (sec) | : 0.47                                       |
|                                                                | Solving Nodes                                     | :   | 5                                                          | Solving Nodes      | : 15                                         |
|                                                                | Primal Bound                                      | :   | +9.99999656552062e+02 (3 solutions)                        | Primal Bound       | : +9.99999949950021e+02 (2 solutions)        |
|                                                                | Dual Bound                                        | :   | +9.99999656552062e+02                                      | Dual Bound         | : +9.99999949950021e+02                      |
|                                                                | Gap                                               | :   | 0.00 %                                                     | Gap                | : 0.00 %                                     |
|                                                                | [nonlinear] <e1></e1>                             | : ) | exp((7.90776 + ( <x> * <y>)))-1<z>[C] &lt;= 0;</z></y></x> |                    |                                              |
| violation: right hand side is violated by 0.000673453314561812 |                                                   |     | d side is violated by 0.000673453314561812                 |                    |                                              |
|                                                                | best solution is not feasible in original problem |     |                                                            |                    |                                              |
|                                                                |                                                   |     |                                                            |                    |                                              |
|                                                                |                                                   |     |                                                            |                    |                                              |

| x | -1.00057454873626 | (obj:0) | х |  |
|---|-------------------|---------|---|--|
| У | 0.999425451364613 | (obj:0) | у |  |
| z | 999.999656552061  | (obj:1) | z |  |
|   |                   |         |   |  |

- -1.0000002499999 (obj:0)
- 1.0000002499999 (obj:0)
- 999.999949950021 (obj:1)

## Performance

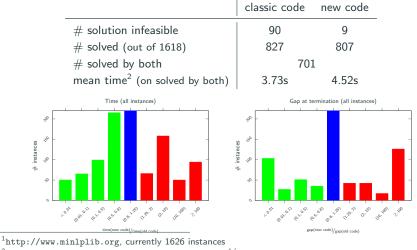
- Testset: 1618 instances from MINLPLib<sup>1</sup>
- Time limit: 30 minutes, Optimality gap tolerance: 0.01%
- LP solver: CPLEX 12.9.0.0, NLP solver: IPOPT 3.12.11

|                       | classic code | new code |
|-----------------------|--------------|----------|
| # solution infeasible | 90           | 9        |

<sup>&</sup>lt;sup>1</sup>http://www.minlplib.org, currently 1626 instances <sup>2</sup>shifted geometric mean with shift = 1s:  $\prod_{i=1}^{n} (t_i + 1)^{1/n} - 1$ 

## Performance

- Testset: 1618 instances from MINLPLib<sup>1</sup>
- Time limit: 30 minutes, Optimality gap tolerance: 0.01%
- LP solver: CPLEX 12.9.0.0, NLP solver: IPOPT 3.12.11



<sup>2</sup>shifted geometric mean with shift = 1s:  $\prod_{i=1}^{n} (t_i + 1)^{1/n} - 1$ 

A new framework for NLP in SCIP (work in progress)

Acceleration

## **Exploiting structure**

**Constraint**:  $\log(x)^2 + 2\log(x)y + y^2 \le 4$ 

## Smarter reformulation:

• Recognize that  $\log(x)^2 + 2\log(x)y + y^2$  is convex in  $(\log(x), y)$ .

## **Exploiting structure**

**Constraint**: 
$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

#### Smarter reformulation:

- Recognize that  $\log(x)^2 + 2\log(x)y + y^2$  is convex in  $(\log(x), y)$ .
- $\Rightarrow$  Introduce auxiliary variable for log(x) only.

$$w^2 + 2wy + y^2 \le 4$$
$$\log(x) = w$$

Handle  $w^2 + 2wy + y^2 \le 4$  as convex constraint ("gradient-cuts").

## **Exploiting structure**

**Constraint**: 
$$\log(x)^2 + 2\log(x)y + y^2 \le 4$$

#### Smarter reformulation:

- Recognize that  $\log(x)^2 + 2\log(x)y + y^2$  is convex in  $(\log(x), y)$ .
- $\Rightarrow$  Introduce auxiliary variable for log(x) only.

$$w^2 + 2wy + y^2 \le 4$$
$$\log(x) = w$$

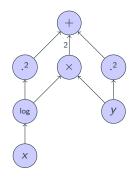
Handle  $w^2 + 2wy + y^2 \le 4$  as convex constraint ("gradient-cuts").

#### Nonlinearity Handler:

- Adds additional separation and propagation algorithms for structures that can be identified in the expression graph.
- Attached to nodes in expression graph, but does not *define* expressions or constraints.
- Examples: quadratics, convex subexpressions, vertex-polyhedral

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run **only** for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run **only** for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

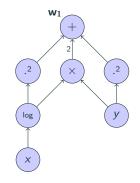


- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run **only** for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

**Constraint**:  $\log(x)^2 + 2\log(x)y + y^2 \le 4$ 

$$w_1 \leq 4$$

1. Add auxiliary variable  $w_1$  for root.

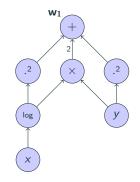


- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run **only** for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

**Constraint**:  $\log(x)^2 + 2\log(x)y + y^2 \le 4$ 

 $w_1 \leq 4$ 

- 1. Add auxiliary variable  $w_1$  for root.
- 2. Run detect of all nlhdlrs on + node.

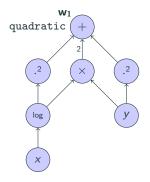


- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run **only** for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

**Constraint**:  $\log(x)^2 + 2\log(x)y + y^2 \le 4$ 

 $w_1 \leq 4$ 

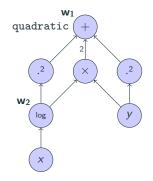
- 1. Add auxiliary variable  $w_1$  for root.
- 2. Run detect of all nlhdlrs on + node.
  - nlhdlr\_quadratic detects a convex quadratic structure and signals success.



- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run **only** for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

$$w_1 \leq 4$$
  
 $w_2^2 + 2w_2y + y^2 \leq w_1 \quad [nlhdlr_quadratic]$ 

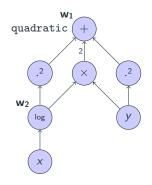
- 1. Add auxiliary variable  $w_1$  for root.
- 2. Run detect of all nlhdlrs on + node.
  - nlhdlr\_quadratic detects a convex quadratic structure and signals success.
  - nlhdlr\_quadratic adds an auxiliary variable w<sub>2</sub> for log node.



- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run **only** for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

$$w_1 \leq 4$$
  
 $w_2^2 + 2w_2y + y^2 \leq w_1 \quad [nlhdlr_quadratic]$ 

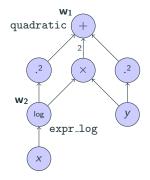
- 1. Add auxiliary variable  $w_1$  for root.
- 2. Run detect of all nlhdlrs on + node.
  - nlhdlr\_quadratic detects a convex quadratic structure and signals success.
  - nlhdlr\_quadratic adds an auxiliary variable w<sub>2</sub> for log node.
- 3. Run detect of all nlhdlrs on log node.



- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run **only** for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

$$w_1 \leq 4$$
  
 $w_2^2 + 2w_2y + y^2 \leq w_1 \quad [nlhdlr_quadratic]$   
 $\log(x) = w_2 \quad [expr_log]$ 

- 1. Add auxiliary variable  $w_1$  for root.
- 2. Run detect of all nlhdlrs on + node.
  - nlhdlr\_quadratic detects a convex quadratic structure and signals success.
  - nlhdlr\_quadratic adds an auxiliary variable w<sub>2</sub> for log node.
- 3. Run detect of all nlhdlrs on log node.
  - No specialized nlhdlr signals success. The expression handler will be used.

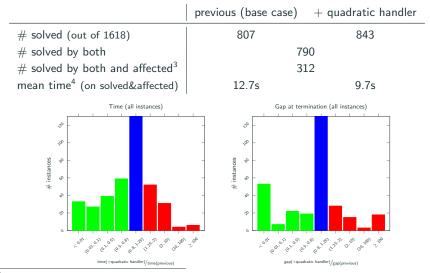


- Recognize quadratic forms (sums of squares and products in two terms).
- Recognize convexity by checking coefficient matrix for positive semidefiniteness. Use this to provide tight linear underestimators by linearization.
- Provide better bound tightening, in particular for univariate quadratics:

$$\{ax^{2} + bx : x \in [\ell, u]\} = \begin{cases} \operatorname{conv}\{a\ell^{2} + b\ell, au^{2} + bu, -\frac{b^{2}}{4a}\}, & \text{if } -\frac{b}{2a} \in [\ell, u], \\ \operatorname{conv}\{a\ell^{2} + b\ell, au^{2} + bu\}, & \text{otherwise} \end{cases}$$

$$\{x : ax^{2} + bx \ge c\} = \begin{cases} \left[-\infty, -\sqrt{\frac{c}{a} + \frac{b^{2}}{4a^{2}}} - \frac{b}{2a}\right] \cup \left[\sqrt{\frac{c}{a} + \frac{b^{2}}{4a^{2}}} - \frac{b}{2a}, \infty\right], & \text{if } a > 0, \\ -\sqrt{\frac{c}{a} + \frac{b^{2}}{4a^{2}}} - \frac{b}{2a}, \sqrt{\frac{c}{a} + \frac{b^{2}}{4a^{2}}} - \frac{b}{2a}} \end{cases}, & \text{if } a < 0. \end{cases}$$

#### Impact of handler for quadratics



<sup>3</sup>affected = different search path, indicated by different number of B&B nodes or LP iterations <sup>4</sup>shifted geometric mean with shift = 1s:  $\prod_{i=1}^{n} (t_i + 1)^{1/n} - 1$ 

# Separator for RLT

- for bilinear products  $x_i x_j$ , we may have introduced auxiliary variables  $w_{i,j}$
- the expression handler for products generates McCormick inequalities:

$$\begin{aligned} &(x_i - \ell_i)(x_j - \ell_j) \ge 0 & \Rightarrow & w_{i,j} \ge \ell_i x_j + \ell_j x_i - \ell_i \ell_j \\ &(x_i - u_i)(x_j - u_j) \ge 0 & \Rightarrow & w_{i,j} \ge u_i x_j + u_j x_i - u_i u_j \\ &(x_i - \ell_i)(x_j - u_j) \le 0 & \Rightarrow & w_{i,j} \le \ell_i x_j + u_j x_i - \ell_i u_j \\ &(x_i - u_i)(x_j - \ell_j) \le 0 & \Rightarrow & w_{i,j} \le u_i x_j + \ell_j x_i - u_i \ell_j \end{aligned}$$



# Separator for RLT

- for bilinear products  $x_i x_j$ , we may have introduced auxiliary variables  $w_{i,j}$
- the expression handler for products generates McCormick inequalities:

$$\begin{aligned} &(x_i - \ell_i)(x_j - \ell_j) \ge 0 & \Rightarrow & w_{i,j} \ge \ell_i x_j + \ell_j x_i - \ell_i \ell_j \\ &(x_i - u_i)(x_j - u_j) \ge 0 & \Rightarrow & w_{i,j} \ge u_i x_j + u_j x_i - u_i u_j \\ &(x_i - \ell_i)(x_j - u_j) \le 0 & \Rightarrow & w_{i,j} \le \ell_i x_j + u_j x_i - \ell_i u_j \\ &(x_i - u_i)(x_j - \ell_j) \le 0 & \Rightarrow & w_{i,j} \le u_i x_j + \ell_j x_i - u_i \ell_j \end{aligned}$$



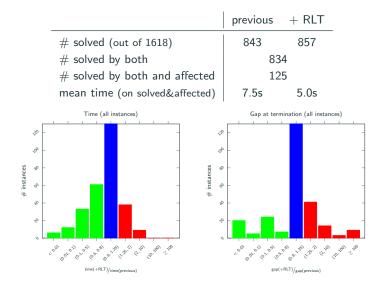
#### Reformulation-Linearization Technique [Adams and Sherali, 1986]:

• additional valid cuts can be obtained by multiplication with linear constraints:

$$a^{\mathsf{T}} x \ge b \quad \times \quad x_j - \ell_j \qquad \Rightarrow \quad a^{\mathsf{T}} w_{\cdot,j} - a^{\mathsf{T}} x \, \ell_j \ge b x_j - b \, \ell_j$$
  
$$a^{\mathsf{T}} x = b \quad \times \quad x_j \qquad \Rightarrow \quad a^{\mathsf{T}} w_{\cdot,j} = b x_j$$

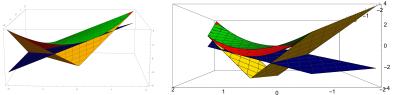
- in our implementation, we only look for RLT cuts that do not introduce new auxiliary variables *w*<sub>*i*,*j*</sub>
- very effective for pooling problems

#### Impact of RLT separator



### Tighter convex relaxations for bilinear terms

- McCormick inequalities give convex hull for  $x_i x_j$  on box  $[\ell_i, \ell_j] \times [u_i, u_j]$
- they do not if additional inequalities are present, e.g.,  $x_i \leq x_j$ :



green — graph of  $w_{ij} = x_i x_j$ 

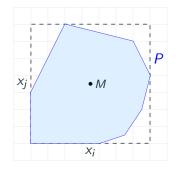
yellow — McCormick relaxation of  $x_i x_j$  over  $[-2, 2]^2$ 

red — convex envelope of  $x_i x_j$  over  $\{(x_i, x_j) \in [-2, 2]^2 : x_i \leq x_j\}$ 

closed formulas and algorithms are known [Linderoth 2004, Hijazi 2015, Locatelli 2016]

**Problem**: inequalities utilizing only  $x_i$  and  $x_j$  may not be present in problem **Solution**<sup>5</sup>: Project LP relaxation onto  $(x_i, x_j)$ ,  $P := \text{proj}_{x_i, x_i}(\text{LP})$ 

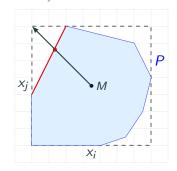
- assume variable bounds are tight
- $M := \left(\frac{u_i + \ell_i}{2}, \frac{u_j + \ell_j}{2}\right) \in P$
- every facet of *P* separates at most one of the 4 corners



<sup>&</sup>lt;sup>5</sup>Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

**Problem**: inequalities utilizing only  $x_i$  and  $x_j$  may not be present in problem **Solution**<sup>5</sup>: Project LP relaxation onto  $(x_i, x_j)$ ,  $P := \text{proj}_{x_i, x_j}(\text{LP})$ 

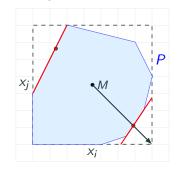
- assume variable bounds are tight
- $M := \left(\frac{u_i+\ell_i}{2}, \frac{u_j+\ell_j}{2}\right) \in P$
- every facet of *P* separates at most one of the 4 corners
- optimize along directions from *M* to each corner



<sup>&</sup>lt;sup>5</sup>Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

**Problem**: inequalities utilizing only  $x_i$  and  $x_j$  may not be present in problem **Solution**<sup>5</sup>: Project LP relaxation onto  $(x_i, x_j)$ ,  $P := \text{proj}_{x_i, x_i}(\text{LP})$ 

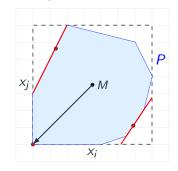
- assume variable bounds are tight
- $M := \left(\frac{u_i+\ell_i}{2}, \frac{u_j+\ell_j}{2}\right) \in P$
- every facet of *P* separates at most one of the 4 corners
- optimize along directions from *M* to each corner



<sup>&</sup>lt;sup>5</sup>Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

**Problem**: inequalities utilizing only  $x_i$  and  $x_j$  may not be present in problem **Solution**<sup>5</sup>: Project LP relaxation onto  $(x_i, x_j)$ ,  $P := \text{proj}_{x_i, x_j}(\text{LP})$ 

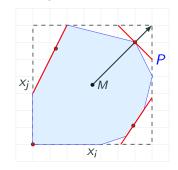
- assume variable bounds are tight
- $M := \left(\frac{u_i+\ell_i}{2}, \frac{u_j+\ell_j}{2}\right) \in P$
- every facet of *P* separates at most one of the 4 corners
- optimize along directions from *M* to each corner



<sup>&</sup>lt;sup>5</sup>Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

**Problem**: inequalities utilizing only  $x_i$  and  $x_j$  may not be present in problem **Solution**<sup>5</sup>: Project LP relaxation onto  $(x_i, x_j)$ ,  $P := \text{proj}_{x_i, x_i}(\text{LP})$ 

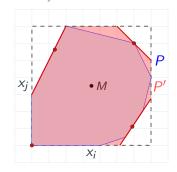
- assume variable bounds are tight
- $M := \left(\frac{u_i+\ell_i}{2}, \frac{u_j+\ell_j}{2}\right) \in P$
- every facet of *P* separates at most one of the 4 corners
- optimize along directions from *M* to each corner



<sup>&</sup>lt;sup>5</sup>Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

**Problem**: inequalities utilizing only  $x_i$  and  $x_j$  may not be present in problem **Solution**<sup>5</sup>: Project LP relaxation onto  $(x_i, x_j)$ ,  $P := \text{proj}_{x_i, x_j}(LP)$ 

- assume variable bounds are tight
- $M := \left(\frac{u_i+\ell_i}{2}, \frac{u_j+\ell_j}{2}\right) \in P$
- every facet of *P* separates at most one of the 4 corners
- optimize along directions from *M* to each corner
- $\Rightarrow$   $P' \supseteq P$  described by at most
  - 4 nontrivial inequalities
  - 4 axis-parallel inequalities



<sup>&</sup>lt;sup>5</sup>Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

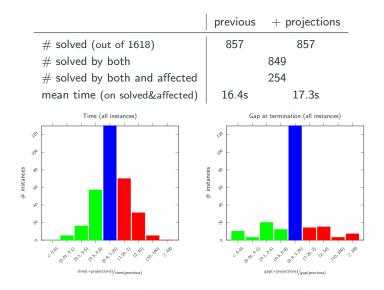
**Problem**: inequalities utilizing only  $x_i$  and  $x_j$  may not be present in problem **Solution**<sup>5</sup>: Project LP relaxation onto  $(x_i, x_j)$ ,  $P := \text{proj}_{x_i, x_j}(\text{LP})$ 

- assume variable bounds are tight
- $M := \left(\frac{u_i+\ell_i}{2}, \frac{u_j+\ell_j}{2}\right) \in P$
- every facet of *P* separates at most one of the 4 corners
- optimize along directions from *M* to each corner
- $\Rightarrow$   $P' \supseteq P$  described by at most
  - 4 nontrivial inequalities
  - 4 axis-parallel inequalities

- x<sub>j</sub> M P'
- close connections to optimization-based bound tightening (project LP onto one variable) [Gleixner and Weltge, 2013]
- projections also used to improve bound tightening on x<sub>i</sub>x<sub>j</sub>

<sup>&</sup>lt;sup>5</sup>Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

### Impact of computing and utilizing 2D projections



### Linearizations of products of binary variables

### Linearize

$$\prod_{i=1}^n x_i, \qquad x_i \in \{0,1\}:$$

- replace by a new variable  $z \in \{0, 1\}$
- if n = 2, add linear constraints  $z \le x_1$ ,  $z \le x_2$ ,  $z \ge x_1 + x_2 1$
- if n > 2, add "and"-constraint  $z = \bigwedge_{i=1}^{n} x_i$  (specialized constraint handler)

### Linearizations of products of binary variables

### Linearize

$$\prod_{i=1}^n x_i, \qquad x_i \in \{0,1\}:$$

- replace by a new variable  $z \in \{0, 1\}$
- if n = 2, add linear constraints  $z \le x_1$ ,  $z \le x_2$ ,  $z \ge x_1 + x_2 1$
- if n > 2, add "and"-constraint  $z = \bigwedge_{i=1}^{n} x_i$  (specialized constraint handler)

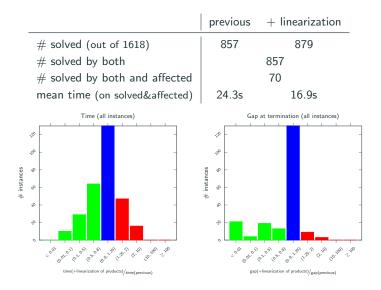
#### Linearize

$$y \sum_{j=1}^{n} a_j x_j, \qquad x_j \in \{0,1\}, \qquad n \ge 50:$$

- replace by a new variable  $z \in \{0, 1\}$ , and
- add linear constraints

$$egin{aligned} \mathcal{M}^L y &\leq z \leq \mathcal{M}^U y, \ \sum_j a_j x_j - \mathcal{M}^U (1-y) &\leq z \leq \sum_j a_j x_j - \mathcal{M}^L (1-y). \end{aligned}$$

### Impact of linearization of products of binary variables

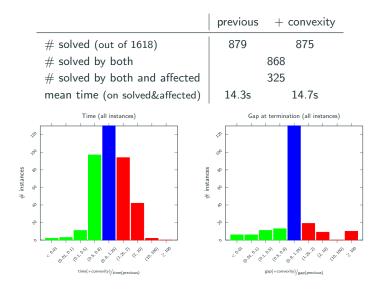


• analyze expressions using a set of rules, e.g.,

$$\begin{split} f(x) \ \text{convex} \Rightarrow \ a \cdot f(x) \begin{cases} \text{convex}, & a \ge 0\\ \text{concave}, & a \le 0 \end{cases} \\ f(x), g(x) \ \text{convex} \Rightarrow \ f(x) + g(x) \ \text{convex} \\ f(x) \ \text{concave} \Rightarrow \ \log(f(x)) \ \text{concave} \end{cases} \\ f(x) = \prod_{i} x_{i}^{e_{i}}, x_{i} \ge 0 \Rightarrow \ f(x) \begin{cases} \text{convex}, & e_{i} \le 0 \ \forall i \\ \text{convex}, & \exists j : e_{i} \le 0 \ \forall i \ne j; \ \sum_{i} e_{i} \ge 1 \\ \text{concave}, & e_{i} \ge 0 \ \forall i; \ \sum_{i} e_{i} \le 1 \end{cases} \end{split}$$

- find maximal convex subexpressions
- underestimate via gradient-cuts

### Impact of convexity detection



# "On/off"-terms

Given f(x) convex with x semicontinuous, i.e., there exists binary variable y such that

$$x = x_0$$
, if  $y = 0$ ,  
 $x \in [\ell, u]$ , if  $y = 1$ .

Given f(x) convex with x semicontinuous, i.e., there exists binary variable y such that

$$\begin{aligned} x &= x_0, & \text{if } y = 0, \\ x &\in [\ell, u], & \text{if } y = 1. \end{aligned}$$

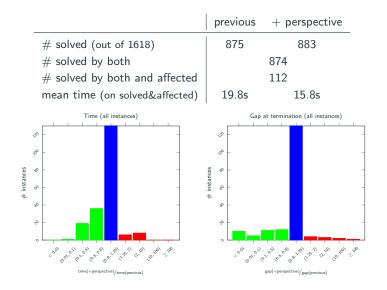
For  $x_0 = 0$ , f(0) = 0, the perspective cut [Frangioni, Gentile, 2006]  $f(\hat{x})y + \nabla f(\hat{x})(x - \hat{x}y) \le w$ 

is valid for the disjunctive set

$$\{(x, y, z) : x = x_0, y = 0, f(x_0) \le w\} \cup \{(x, y, z) : x \in [\ell, u], y = 1, f(x) \le w\}.$$



#### Impact of perspective cuts



# Symmetry detection

Example:

$$\max x_1 + x_2 + x_3 \\ \text{s.t. } x_1 + x_2 \ge 2 \\ \sqrt{x_1^2 + x_2^2 + x_3^2} \le 5$$

**Observation**: For any feasible solution, exchanging  $x_1$  and  $x_2$  provides a new feasible solution with same objective value.

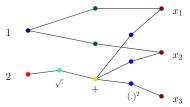
### Symmetry detection

#### Example:

$$\max x_1 + x_2 + x_3$$
  
s.t.  $x_1 + x_2 \ge 2$   
 $\sqrt{x_1^2 + x_2^2 + x_3^2} \le 5$ 

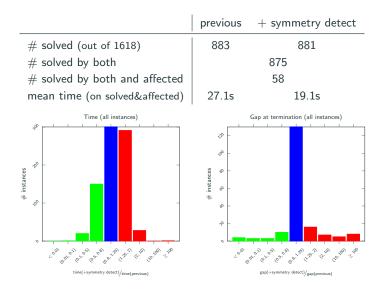
**Observation**: For any feasible solution, exchanging  $x_1$  and  $x_2$  provides a new feasible solution with same objective value.

• can be detected by finding automorphisms on a vertex-colored graph [Liberti 2010]



• SCIP aims to find and break symmetries on binary variables [SCIP 5 report, 2017]

### Impact of symmetry



A new framework for NLP in SCIP (work in progress)

Conclusion

The handling of nonlinear constraints in SCIP is rewritten.

The new code will be nicer, better, faster, greater:

- less issues with slightly infeasible solutions
- easier to extend by own operators and structure-exploiting algorithms

**Core**: new constraint handler (cons\_expr)

The handling of nonlinear constraints in SCIP is rewritten.

The new code will be nicer, better, faster, greater:

- less issues with slightly infeasible solutions
- easier to extend by own operators and structure-exploiting algorithms

**Core**: new constraint handler (cons\_expr)

**Expression Handler:** 

• var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

The handling of nonlinear constraints in SCIP is rewritten.

The new code will be nicer, better, faster, greater:

- less issues with slightly infeasible solutions
- easier to extend by own operators and structure-exploiting algorithms

**Core**: new constraint handler (cons\_expr)

**Expression Handler:** 

• var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

#### Nonlinearity Handler:

- quadratic: recognize and separate convex quadratic; domain propagation
- bilinear: tighter estimators and bounds for  $x_i x_j$  over polytope
- convex: recognize some simple general convexities, separate by linearization
- perspective: perspective estimators for convex functions in semicontinuous vars.
- (default: wrap around expression handler)

The handling of nonlinear constraints in SCIP is rewritten.

The new code will be nicer, better, faster, greater:

- less issues with slightly infeasible solutions
- easier to extend by own operators and structure-exploiting algorithms

**Core**: new constraint handler (cons\_expr)

**Expression Handler:** 

• var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

#### Nonlinearity Handler:

- quadratic: recognize and separate convex quadratic; domain propagation
- bilinear: tighter estimators and bounds for  $x_i x_j$  over polytope
- convex: recognize some simple general convexities, separate by linearization
- perspective: perspective estimators for convex functions in semicontinuous vars.
- (default: wrap around expression handler)

New separator: RLT

The handling of nonlinear constraints in SCIP is rewritten.

The new code will be nicer, better, faster, greater:

- less issues with slightly infeasible solutions
- easier to extend by own operators and structure-exploiting algorithms

**Core**: new constraint handler (cons\_expr)

**Expression Handler:** 

• var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

#### Nonlinearity Handler:

- quadratic: recognize and separate convex quadratic; domain propagation
- bilinear: tighter estimators and bounds for  $x_i x_j$  over polytope
- convex: recognize some simple general convexities, separate by linearization
- perspective: perspective estimators for convex functions in semicontinuous vars.
- (default: wrap around expression handler)

New separator: RLT

#### Symmetry detection

### Not ready yet, but getting closer

