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scip.zib.de

Mixed-Integer Nonlinear Programming

min ¢’ x

s.t. gk(x) <0 Vk € [m]
xi € Z VieZC [n]
xi € [4i, ui] Vi € [n]

The functions g : [£, u] — R can be

or

A o

convex nonconvex

and are given in algebraic form.
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SCIP solves MINLPs by spatial Branch & Bound

Ingredients: 0
e constructing an LP relaxation by 2

e relaxing integrality
e convexifying non-convexities 0s
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SCIP solves MINLPs by spatial Branch & Bound
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e constructing an LP relaxation by
e relaxing integrality
e convexifying non-convexities g
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SCIP solves MINLPs by spatial Branch & Bound

Ingredients:
e constructing an LP relaxation by

e relaxing integrality

e convexifying non-convexities

e branching on -
e fractional integer variables
e variables in violated nonconvex constraints

°

tightening of variable bounds (domain propagation)

e primal heuristics

presolving / reformulation
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Current Implementation (SCIP 6.0)




Expression trees and graphs

n m

cons_nonlinear (lhs < Z aixi + Z ¢ifj(x) < rhs) stores the nonlinear functions f; of
i=1 j=1

all constraints in one expression graph (DAG).

For example (MINLPLib instance nvs01):

2960.88 -+ 296088 - 0.0625x2
420.1691/900 + x2 — x3x1x5 = 0 +7200 — 2 x>0
1

Xobj — 0.047x71/900 4 x2 > 0

2960.88 + 18505.5x3

2960.88 + 18505.5y7

. 5/31
e some use of common subexpression



Expression operators and constraint handler

Operators (handled by cons_nonlinear):

e variable index, constant

o + — *x =

o 2/, P(peR), " (neZ) x x|x[P7t (p>1)
e exp, log

e min, max, abs

>, 11, affine-linear, quadratic, signomia

(user)
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Expression operators and constraint handler

Operators (handled by cons_nonlinear):

e variable index, constant

o + — *x =

o 2/, P(peR), " (neZ) x x|x[P7t (p>1)
e exp, log

e min, max, abs

>, T1. affine-linear, quadratic, signomial

e (user)
Additional constraint handler:

e quadratic
e abspower (x — x|x|P™!, p > 1)
e SOC (second-order cones)

e (bivariate)
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Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd

power, quadratic) remain.

900+ x2 =z
—z34+ 2224 =0
2960.88 + 18505.5x3 = z3

0.047x02  2960.88 4 18505.5x2 .,
2060.88 + 1850557

7200+ x2 = z

X1X2 = 25
\VZ1l = Zp
900 + x? 7200 + x?

420.169\/z1 — x32z5 = 0
zp—x3 >0
0.047x226 < Xob;

420.169./z1 — x325 e —z3+ 22z
—y1+y2y3

O OO®

e reformulates constraints by introducing new variables and new constraints

e other constraint handler can participate



Problem with this approach

An optimal solution:
min z

' x=—1
Consider s.t. exp(In(1000) + 1+ xy) < z y=1
oy <2 z = 1000
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Problem with this approach

An optimal solution:

min z =1
Consider

s.t. exp(In(1000) +1+xy) <z y=1

X 4y? <2 z = 1000

SCIP reports
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08
Solving Nodes : 5
Primal Bound 1 +9.99999656552062e+02 (3 solutions)
Dual Bound 1 +9.99999656552062e+02
Gap : 0.00 %

[nonlinear] <el>: exp((7.9077552789821368151 +1 (<x> * <y>)))-1<z>[C] <= 0;
violation: right hand side is violated by 0.000673453314561812
best solution is not feasible in original problem

x -1.00057454873626  (obj:0)
y 0.999425451364613 (obj:0)
z 999.999656552061 (obj:1)
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Reformulated problem

Reformulation takes apart exp(In(1000) + 1 + x y), thus SCIP actually solves
min z
s.t. exp(w) < z
In(1000) + 1+ xy = w
X2+ y2 <2
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Reformulated problem

Reformulation takes apart exp(In(1000) + 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) <z 0.4659 - 10~ ° < numerics/feastol v
In(1000) + 1+ xy = w 0.6731-10 ° < numerics/feastol v
4yt <2 0.6602 - 10™° < numerics/feastol v/

Solution (found by <relaxation>):
x = -1.000574549
y= 0.999425451
z =999.999656552
w=  6.907754936
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= Explicit reformulation of constraints ...

e ... looses the connection to the original problem.
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Reformulated problem

Reformulation takes apart exp(In(1000) + 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) <z 0.4659 - 10" ° < numerics/feastol v
In(1000) + 1+ xy = w 0.6731-10 ° < numerics/feastol v
4yt <2 0.6602 - 10™° < numerics/feastol v/

Solution (found by <relaxation>):

x= -1.000574549
y=0.999425451
z =999.999656552
w= 6.907754936

= Explicit reformulation of constraints ...

e ... looses the connection to the original problem.
e ... looses distinction between original and auxiliary variables. Thus, we may
branch on auxiliary variables.

e ... prevents simultaneous exploitation of overlapping structures.
9/31



A new framework for NLP in SCIP
(work in progress)



A new framework for NLP in SCIP
(work in progress)

Fundamental structure



Everything is an expression.

e ONE constraint handler: cons_expr
e represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

e all algorithms (check, separation, propagation, etc.) work on the expression graph
(no upgrades to specialized nonlinear constraints)
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Everything is an expression.

e ONE constraint handler: cons_expr
e represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

e all algorithms (check, separation, propagation, etc.) work on the expression graph
(no upgrades to specialized nonlinear constraints)

e separate expression operators (+, x) and high-level structures (quadratic, etc.)
= avoid redundancy / ambiguity of expression types (classic: +, >, linear, quad., ...)

e stronger identification of common subexpressions
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Everything is an expression.

e ONE constraint handler: cons_expr
e represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

e all algorithms (check, separation, propagation, etc.) work on the expression graph
(no upgrades to specialized nonlinear constraints)

e separate expression operators (+, x) and high-level structures (quadratic, etc.)
= avoid redundancy / ambiguity of expression types (classic: +, >, linear, quad., ...)

e stronger identification of common subexpressions
Do not reformulate constraints.

e introduce auxiliary variables for the relaxation only
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Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
e presolve,

e propagate domains, ...
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Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
e presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4

log(x) + 2log(x)y +y* = w1
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Enforcement

Constraint:

log(x) + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
e presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4

wo + 2wz + wa

log(x)

log(x)y

y

2

2

w1

w2

w3

Wy

11/31



Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
e presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4

wo + 2wz + ws = wp
2

Ws = W2
Wsy = w3

2 _
Y =wa
log(x) = ws

4

&-@
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Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
e presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4

wo + 2wz + ws = wp
2

Ws = W2
Wsy = w3

2 _
Y =wa
log(x) = ws

Used to construct LP relaxation.

4

&-@
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Expression handler

Each operator type (4, X, pow, etc.) is implemented by an expression handler, which
can provide a number of callbacks:

e cvaluate and differentiate expression w.r.t. operands

e interval evaluation and tighten bounds on operands

e provide linear under- and over-estimators

e distribute branching scores to operands

e inform about curvature, monotonicity, integrality

e simplify, compare, print, parse, hash, copy, etc.

Expression handler are like other SCIP plugins, thus new ones can be added by users.
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Motivating example revisited

minz s.t. exp(In(1000) + 1 +xy) <z, x* +y*> <2

Classic:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive)
0 deleted vars, O deleted constraints, 1 added constraints,...

0 implications, O cliques

presolved problem has 4 variables (0 bin, 0 int, O impl, 4 cont)
and 3 constraints

2 constraints of type <quad

1 constraints of type <nonlinear>

[...]

SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap £ 0.00 %

[nonlinear] <el>: exp((7.90776 + (<x> * <y>)))-1<z>[C] <= 0;
ed by 0.00067. 8

331

violation: right hand side is vi

best solution is not feasible in original problem

x (obj:0)
y 364613  (obj:0)
z 6552061  (obj:1)
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Motivating example revisited

minz s.t. exp(In(1000) + 1 +xy) <z, x* +y*> <2

Classic: New:

presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):
straints,...

raints,... O deleted vars, O deleted constraints, 0 added c

0 deleted vars, O deleted constraints, 1 added co
0 implications, O cliques 0 implications, O cliques

presolved problem has 4 variabl

(0 bin, 0 int, O impl, 4 cont) presolved problem has 3 varia (0 bin, 0 int, 0 impl, 3 cont)

and 3 constraints

2 constraints of type <qua

1 constraints of type <nonlinear>

[...] [...1

SCIP Status : problem is solved [optimal solution found] SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08 Solving Time (sec) : 0.47

Solving Nodes : 5 Solving Nodes : 16

Primal Bound : +9.99999656552062e+02 (3 solutions) Primal Bound : +9.99999949950021e+02 (2 solutions)

Dual Bound : +9.99999656552062e+02 Dual Bound : +9.99999949950021e+02

Gap :0.00 % Gap :0.00 %

[nonlinear] <el>: exp((7.90776 + (<x> * <y>)))-1<z>[C] <= 0;
ted by

314561812

D.0006

violation: right hand side is v
best solution is not feasible in original problem

626 (obj:0) x

x
y 0 (0bj:0) y
2 5552061 (obji1)  z




Performance

e Testset: 1618 instances from MINLPLib!
e Time limit: 30 minutes, Optimality gap tolerance: 0.01%
e LP solver: CPLEX 12.9.0.0, NLP solver: IPOPT 3.12.11

‘ classic code new code

# solution infeasible | 90 9

'http://www.minlplib.org, currently 1626 instances
%shifted geometric mean with shift = 1s: [[7(t; +1)V/" — 1 14/31
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Performance

e Testset: 1618 instances from MINLPLib!

e Time limit: 30 minutes, Optimality gap tolerance: 0.01%
e LP solver: CPLEX 12.9.0.0, NLP solver: IPOPT 3.12.11

classic code new code

# solution infeasible

# solved (out of 1618)

# solved by both

mean time? (on solved by both)

Time (all instances)

# instances
# instances

time(new code) "

'http://www.minlplib.org, currently 1626 instances

Zshifted geometric mean with shift = 1s: T]7, (¢ + 1)/ —

9
807
701
4.52s

Gap at termination (all instances)

ap(new code) [gap(old code)
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A new framework for NLP in SCIP
(work in progress)

Acceleration



Exploiting structure

Constraint: log(x)* + 2log(x)y + y* < 4

Smarter reformulation:

e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).
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Exploiting structure

Constraint: log(x)* + 2log(x)y + y* < 4

Smarter reformulation:

e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).

= Introduce auxiliary variable for log(x) only.

w? + 2wy +y2 <4
log(x) = w

Handle w? 4 2wy + y* < 4 as convex constraint (“gradient-cuts”).
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Exploiting structure

Constraint: log(x)* + 2log(x)y + y* < 4
Smarter reformulation:
e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).
= Introduce auxiliary variable for log(x) only.
2 2
w” 2wy +y° <4
log(x) = w
Handle w? 4 2wy + y* < 4 as convex constraint (“gradient-cuts”).

Nonlinearity Handler:
e Adds additional separation and propagation algorithms for structures that can be
identified in the expression graph.

e Attached to nodes in expression graph, but does not define expressions or
constraints.

e Examples: quadratics, convex subexpressions, vertex-polyhedral

15/31



Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

16/31



Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

16/31



Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

o JO

2

1. Add auxiliary variable wy for root.
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Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

o JO

2

1. Add auxiliary variable wy for root.
2. Run detect of all nlhdlrs on + node.
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Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

w < 4 Wi
quadratic

1. Add auxiliary variable wy for root.
2. Run detect of all nlhdlrs on + node.

e nlhdlr_quadratic detects a convex quadratic
structure and signals success.
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Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

wi
quadratic

W1§4

w3 +2way +y° < wi  [nlhdlr_quadratic]

1. Add auxiliary variable wy for root.
2. Run detect of all nlhdlrs on + node. w2

e nlhdlr_quadratic detects a convex quadratic
structure and signals success.

e nlhdlr_quadratic adds an auxiliary variable wp
for log node.
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Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4
w1
quadratic

W1§4

w3 +2way +y° < wi  [nlhdlr_quadratic]

1. Add auxiliary variable wy for root.
2. Run detect of all nlhdlrs on + node.

e nlhdlr_quadratic detects a convex quadratic
structure and signals success.

e nlhdlr_quadratic adds an auxiliary variable wp
for log node.

3. Run detect of all nlhdlrs on log node.

16/31



Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

wi
quadratic

w1 S 4
w3 +2way +y° < wi  [nlhdlr_quadratic]

|0g(X) = W2 [expr,log]

1. Add auxiliary variable wy for root.
2. Run detect of all nlhdlrs on + node. w2
e nlhdlr_quadratic detects a convex quadratic
structure and signals success.
e nlhdlr_quadratic adds an auxiliary variable wp
for log node.
3. Run detect of all nlhdlrs on log node.
e No specialized nlhdlr signals success.
The expression handler will be used.
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Handler for quadratic subexpressions

e Recognize quadratic forms (sums of squares and products in two terms).

e Recognize convexity by checking coefficient matrix for positive semidefiniteness.
Use this to provide tight linear underestimators by linearization.

e Provide better bound tightening, in particular for univariate quadratics:

2 + bl, bu,—2Y. if — L e, ul,
{2X2+bX2X€[Z7u]}: Conv{a + au® + bu a} ! 2a [ ”]

conv{al® + bl, au® + bu}, otherwise
—00, — \/ g 72 2£:| |:\/ g ? 227 OO:| ’ if a > 07
{x:ax’ +bx>c} =
Vit m/it ?*i} if a <0.
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Impact of handler for quadratics

previous (base case) -+ quadratic handler

# solved (out of 1618)

# solved by both

# solved by both and affected®
mean time* (on solved&affected)

Time (all instances)

# instances

time(-+quadratic handler) /yime(

previous)

807 843
790
312

12.7s 9.7s

Gap at termination (all instances)

# instances

gap(-+quadratic handier) gap(

previous)

3affected = different search path, indicated by different number of B&B nodes or LP iterations
“shifted geometric mean with shift = 1s: [T, (t; + nyn 1
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Separator for RLT

e for bilinear products x;x;, we may have introduced auxiliary variables w; ;

e the expression handler for products generates McCormick inequalities:

(xi —€i)(xj —£;) >0 = wij > lixj + {ix; — il

(xi — uj)(xj —u;) >0 = W, > Uuixj + upx; — uju;
(xi —£i)(xj —uj) <0 = wij <Lixp + upx; — Liu;
(xi —u)(x—4) <0 = wij < upxg+ X — uil)

19/31



Separator for RLT

e for bilinear products x;x;, we may have introduced auxiliary variables w; ;

e the expression handler for products generates McCormick inequalities:

(i = ti)(x—4) =0 = wij > lixj + {xi — L

(xi — uj)(xj —u;) >0 = W, > Uuixj + upx; — uju;
(xi —£i)(xj —uj) <0 = wij <Lixp + upx; — Liu;
(xi —u)(x—4) <0 = wij < upxg+ X — uil)

Reformulation-Linearization Technique [Adams and Sherali, 1986]:

e additional valid cuts can be obtained by multiplication with linear constraints:

alx>b x x—1/ = aw,;—axl>bx— bl

T
ax=b x x = a w.j=bx

e in our implementation, we only look for RLT cuts that do not introduce new

auxiliary variables w; ;

e very effective for pooling problems

19/31



Impact of RLT separator

previous + RLT

# solved (out of 1618) 843 857
# solved by both 834
# solved by both and affected 125
mean time (on solved&affected) 7.5s 5.0s
Time (all instances) Gap at termination (all instances)
L L
* #*
$ DS P P DS
P4 o T
I R s
time(+RLT) yime(previous) P(+RLT) /gap(previous)
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Tighter convex relaxations for bilinear terms

e McCormick inequalities give convex hull for xix; on box [¢;, ;] X [ui, uj]

e they do not if additional inequalities are present, e.g., x; < x;:

green — graph of wj = xix;
— McCormick relaxation of x;x; over [—2, 2]
red — convex envelope of x;x; over {(x;,x;) € [~2,2]° : x; < x;}

e closed formulas and algorithms are known [Linderoth 2004, Hijazi 2015, Locatelli
2016]
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2D projections for x;x;

Problem: inequalities utilizing only x; and x; may not be present in problem
- 5 . . L .
Solution”: Project LP relaxation onto (x;,;), P := proj, . (LP)
e assume variable bounds are tight
o i+ uitd
o M= (ufh Wiy ep
e every facet of P separates at most
one of the 4 corners

®Details: Benjamin Miiller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15 y
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2D projections for x;x;

Problem: inequalities utilizing only x; and x; may not be present in problem
Solution®: Project LP relaxation onto (x;,x), P := projy, ,, (LP)
e assume variable bounds are tight
o i+ uitd
o M= (ufh Wiy ep
e every facet of P separates at most
one of the 4 corners

e optimize along directions from M
to each corner
= P’ D P described by at most

e 4 nontrivial inequalities
e 4 axis-parallel inequalities

®Details: Benjamin Miiller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for
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2D projections for x;x;

Problem: inequalities utilizing only x; and x; may not be present in problem

Solution®: Project LP relaxation onto (x;,X;), P := projxl,’xj(LP)

assume variable bounds are tight

X 40 uitl;
M = (7“’2 ’,7121) epP
every facet of P separates at most
one of the 4 corners
optimize along directions from M
to each corner

P’ O P described by at most

e 4 nontrivial inequalities
e 4 axis-parallel inequalities

Xi

close connections to optimization-based bound tightening (project LP onto one
variable) [Gleixner and Weltge, 2013]
projections also used to improve bound tightening on x;x;

®Details: Benjamin Miiller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for
Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15
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Impact of computing and utilizing 2D projections

previous -+ projections

# solved (out of 1618) 857 857
# solved by both 849
# solved by both and affected 254
mean time (on solved&affected) 16.4s 17.3s
Time (all instances) Gap at termination (all instances)

# instances
# instances

time(+projections) /time(previous) gap(+projections) /gap(previous)
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Linearizations of products of binary variables

Linearize

li[x,-7 x; € {0,1}:
i=1

e replace by a new variable z € {0,1}
e if n =2, add linear constraints z<x3, z<x, z>x1 +x — 1

e if n>2, add “and”-constraint z = A7

i_1 Xi (specialized constraint handler)
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Linearize

li[x,-7 x; € {0,1}:
i=1

e replace by a new variable z € {0,1}
e if n =2, add linear constraints z<x3, z<x, z>x1 +x — 1

e if n>2, add “and”-constraint z = A7

i_1 Xi (specialized constraint handler)

Linearize

n
yZapg, xj € {0,1}, n>50:
=1

e replace by a new variable z € {0,1}, and

e add linear constraints
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Impact of linearization of products of binary variables

previous  + linearization

# solved (out of 1618) 857 879
# solved by both 857
# solved by both and affected 70
mean time (on solved&affected) 24.3s 16.9s

Time (all instances) Gap at termination (all instances)

# instances
# instances

N N N S PN IR I SO )

AQQ \Q\ v{) e@ g "3’1 w’& Q‘Bn > bl »Q\ \QL} an% ¥ e ”f\n n$ 2
RS SR & & e @7 ¢ W &
time(+linearization of products) /time(previous) gap(+inearization of products) /gap previous)
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Detecting of convexity

e analyze expressions using a set of rules, e.g.,

convex, a>0
f(x) convex = a- f(x)
concave, a<0

f(x),g(x) convex = f(x) + g(x) convex
f(x) concave = log(f(x)) concave
convex, & <0V/
f(x) = fo",x,- >0= f(x)qconvex, Jj:e<OVi#£j; >, e>1
' concave, € >0Vi; Y .e<1
e find maximal convex subexpressions

e underestimate via gradient-cuts
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Impact of convexity detection

# instances

previous  + convexity

# solved (out of 1618)

# solved by both

# solved by both and affected
mean time (on solved&affected)

Time (all instances)

time(-+-convexity) /time(previous)

# instances

879 875
868
325

14.3s 14.7s

Gap at termination (all instances)

&7 @7 W &
N ~

Sap(+converity)gap(previous)
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“On/off“-terms

Given f(x) convex with x semicontinuous, i.e., there exists binary variable y such that
x = xp, ify=0,
x € lu], ify=1
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“On/off“-terms

Given f(x) convex with x semicontinuous, i.e., there exists binary variable y such that
x = xp, ify=0,
x € lu], ify=1

For xo = 0, f(0) = 0, the perspective cut [Frangioni, Gentile, 2006]
f(R)y + VF(R)(x — &y) < w
is valid for the disjunctive set

{(x,y,2) : x=x0,y =0,f(x0) S w}U{(x,y,2) : x € [l,u],y =1,f(x) < w}.

T =0,2,=0

':(:; =07zp=10|
~— T g — B
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Impact of perspective cuts

previous  + perspective

# solved (out of 1618) 875 883
# solved by both 874
# solved by both and affected 112
mean time (on solved&affected) 19.8s 15.8s
Time (all instances) Gap at termination (all instances)

# instances
# instances

time(-+perspective) /time(previous) gap(+perspective) fgap(previous)
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Symmetry detection

Example:

max x1 + X2 + x3

s.t. X1—|—X222
X +x2+x2<5

Observation: For any feasible solution, exchanging x; and x» provides a new feasible
solution with same objective value.
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Symmetry detection

Example:

max x1 + X2 + x3

s.t. X1—|—X222
X +x2+x2<5

Observation: For any feasible solution, exchanging x; and x» provides a new feasible
solution with same objective value.

e can be detected by finding automorphisms on a vertex-colored graph [Liberti 2010]

Ty
1
T2
9 e T
va +\'\'

e SCIP aims to find and break symmetries on binary variables [SCIP 5 report, 2017]
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Impact of symmetry

previous  + symmetry detect

# solved (out of 1618) 883 881
# solved by both 875
# solved by both and affected 58
mean time (on solved&affected) 27.1s 19.1s
Time (all instances) Gap at termination (all instances)
©

# instances
# instances

imeCsymmetry deect)ime(prvious) gap(-+symmetry detect)gapprevious)
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A new framework for NLP in SCIP
(work in progress)

Conclusion



The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

e less issues with slightly infeasible solutions
e casier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)
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The new code will be nicer, better, faster, greater:

e less issues with slightly infeasible solutions
e casier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)
Expression Handler:

e var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy
Nonlinearity Handler:

e quadratic: recognize and separate convex quadratic; domain propagation

e bilinear: tighter estimators and bounds for x;x; over polytope

e convex: recognize some simple general convexities, separate by linearization

e perspective: perspective estimators for convex functions in semicontinuous vars.

(default: wrap around expression handler)
New separator: RLT
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Not ready yet, but getting closer

‘ classic code new code

# solved (out of 1618) 827 881

# solved by both 748

mean time (on solved by both) 4.26s 5.19s
Time (all instances) Gap at termination (all instances)

# instances
# instances

time(classic code) /time(new code) gap(classic code) /gap(new code)
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