Revising the handling of nonlinear constraints in SCIP

Work in Progress Report

Ksenia Bestuzheva, Benjamin Müller, Felipe Serrano, Stefan Vigerske, Fabian Wegscheider

WCGO • Metz, France • July 9, 2019

SCIP: Solving Constraint Integer Programs

- modular branch-cut-and-price framework for constraint integer programming
- includes full-fledged

MIP/MINLP solver

- part of SCIP Optimization Suite (GCG, SCIP, SoPlex, UG, ZIMPL)
- Latest Release Report: The SCIP Optimization Suite 6.0 by Gleixner, Bastubbe, Eifler, Gally, Gamrath, Gottwald, Hendel, Hojny, Koch, Lübbecke, Maher, Miltenberger, Müller, Pfetsch, Puchert, Rehfeldt, Schlösser, Schubert, Serrano, Shinano, Viernickel, Wegscheider, Witt,

Download at scip.zib.de:
 Witzig

Mixed-Integer Nonlinear Programming

$$
\begin{array}{lr}
\min c^{\top} x & \\
\text { s.t. } g_{k}(x) \leq 0 & \forall k \in[m] \\
x_{i} \in \mathbb{Z} & \forall i \in \mathcal{I} \subseteq[n] \\
x_{i} \in\left[\ell_{i}, u_{i}\right] & \forall i \in[n]
\end{array}
$$

The functions $g_{k}:[\ell, u] \rightarrow \mathbb{R}$ can be

and are given in algebraic form.

SCIP solves MINLPs by spatial Branch \& Bound

Ingredients:

- constructing an LP relaxation by
- relaxing integrality
- convexifying non-convexities

SCIP solves MINLPs by spatial Branch \& Bound

Ingredients:

- constructing an LP relaxation by
- relaxing integrality
- convexifying non-convexities
- branching on

- fractional integer variables
- variables in violated nonconvex constraints

SCIP solves MINLPs by spatial Branch \& Bound

Ingredients:

- constructing an LP relaxation by
- relaxing integrality
- convexifying non-convexities
- branching on
- fractional integer variables
- variables in violated nonconvex constraints
- tightening of variable bounds (domain propagation)
- primal heuristics
- presolving / reformulation

Current Implementation (SCIP 6.0)

Expression trees and graphs

cons_nonlinear (lhs $\leq \sum_{i=1}^{n} a_{i} x_{i}+\sum_{j=1}^{m} c_{j} f_{j}(x) \leq$ rhs $)$ stores the nonlinear functions f_{j} of all constraints in one expression graph (DAG).
For example (MINLPLib instance nvs01):

$$
\begin{array}{r}
420.169 \sqrt{900+x_{1}^{2}}-x_{3} x_{1} x_{2}=0 \quad \frac{2960.88+296088 \cdot 0.0625 x_{2}^{2}}{7200+x_{1}^{2}}-x_{3} \geq 0 \\
x_{\text {obj }}-0.047 x_{2} \sqrt{900+x_{1}^{2}} \geq 0
\end{array}
$$

- some use of common subexpression

Expression operators and constraint handler

Operators (handled by cons_nonlinear):

- variable index, constant
- $+,-, *, \div$
- . ${ }^{2}, \sqrt{\cdot}, .^{p}(p \in \mathbb{R}), .^{n}(n \in \mathbb{Z}), x \mapsto x|x|^{p-1}(p>1)$
- exp, log
- min, max, abs
- \sum, Π, affine-linear, quadratic, signomial
- (user)

Expression operators and constraint handler

Operators (handled by cons_nonlinear):

- variable index, constant
- $+,-, *, \div$
- . ${ }^{2}, \sqrt{\cdot}, .^{p}(p \in \mathbb{R}), .^{n}(n \in \mathbb{Z}), x \mapsto x|x|^{p-1}(p>1)$
- exp, log
- min, max, abs
- \sum, Π, affine-linear, quadratic, signomial
- (user)

Additional constraint handler:

- quadratic
- abspower $\left(x \rightarrow x|x|^{p-1}, p>1\right)$
- SOC (second-order cones)
- (bivariate)

Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd power, quadratic) remain.

$$
\begin{array}{rlrl}
900+x_{1}^{2} & =z_{1} & 7200+x_{1}^{2} & =z_{4}
\end{array} \sqrt[{420.169 \sqrt{z_{1}}-x_{3} z_{5}}]{ }=0
$$

- reformulates constraints by introducing new variables and new constraints
- other constraint handler can participate

Problem with this approach

$\min z$

Consider

An optimal solution:
$x=-1$

$$
\begin{array}{rl}
\text { s.t. } \exp (\ln (1000)+1+x y) \leq z & y=1 \\
x^{2}+y^{2} \leq 2 & z=1000
\end{array}
$$

Problem with this approach

$\min z$

Consider

An optimal solution:
$x=-1$

$$
\begin{array}{rl}
\text { s.t. } \exp (\ln (1000)+1+x y) \leq z & y=1 \\
x^{2}+y^{2} \leq 2 & z=1000
\end{array}
$$

SCIP reports

```
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08
Solving Nodes : 5
Primal Bound : +9.99999656552062e+02 (3 solutions)
Dual Bound : +9.99999656552062e+02
Gap : 0.00 %
    [nonlinear] <e1>: exp((7.9077552789821368151 +1 (<x> * <y>)))-1<z>[C] <= 0;
violation: right hand side is violated by 0.000673453314561812
best solution is not feasible in original problem
X
y
z
-1.00057454873626 (obj:0)
0.999425451364613 (obj:0)
    999.999656552061 (obj:1)
```


Reformulated problem

Reformulation takes apart $\exp (\ln (1000)+1+x y)$, thus SCIP actually solves $\min z$
s.t. $\exp (w) \leq z$

$$
\begin{aligned}
& \ln (1000)+1+x y=w \\
& x^{2}+y^{2} \leq 2
\end{aligned}
$$

Reformulated problem

Reformulation takes apart $\exp (\ln (1000)+1+x y)$, thus SCIP actually solves

$$
\begin{array}{ll}
\min z \\
\text { s.t. } & \exp (w) \leq z \\
& \ln (1000)+1+x y=w \\
& x^{2}+y^{2} \leq 2
\end{array}
$$

Violation
$0.4659 \cdot 10^{-6} \leq$ numerics/feastol \checkmark
$0.6731 \cdot 10^{-6} \leq$ numerics/feastol \checkmark
$0.6602 \cdot 10^{-6} \leq$ numerics/feastol \checkmark
Solution (found by <relaxation>):

$$
\begin{aligned}
& x=-1.000574549 \\
& y=0.999425451 \\
& z=999.999656552 \\
& w=6.907754936
\end{aligned}
$$

Reformulated problem

Reformulation takes apart $\exp (\ln (1000)+1+x y)$, thus SCIP actually solves

$$
\begin{aligned}
& \min z \\
& \text { s.t. } \\
& \qquad \begin{array}{ll}
\exp (w) \leq z \\
& \ln (1000)+1+x y=w \\
& x^{2}+y^{2} \leq 2
\end{array}
\end{aligned}
$$

Violation

$$
0.4659 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark
$$

$$
0.6731 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark
$$

$$
0.6602 \cdot 10^{-6} \leq \text { numerics/feastol } \checkmark
$$

Solution (found by <relaxation>):

$$
\begin{aligned}
& x=-1.000574549 \\
& y=0.999425451 \\
& z=999.999656552 \\
& w=6.907754936 \\
& \Rightarrow \text { Explicit reformulation of constraints } \ldots
\end{aligned}
$$

- ... looses the connection to the original problem.

Reformulated problem

Reformulation takes apart $\exp (\ln (1000)+1+x y)$, thus SCIP actually solves
$\min z$

$$
\begin{array}{ll}
\text { s.t. } & \exp (w) \leq z \\
& \ln (1000)+1+x y=w \\
& x^{2}+y^{2} \leq 2
\end{array}
$$

Violation $0.4659 \cdot 10^{-6} \leq$ numerics/feastol \checkmark $0.6731 \cdot 10^{-6} \leq$ numerics/feastol \checkmark $0.6602 \cdot 10^{-6} \leq$ numerics/feastol \checkmark

Solution (found by <relaxation>):

$$
\begin{aligned}
& x=-1.000574549 \\
& y=0.999425451 \\
& z=999.999656552 \\
& w=6.907754936 \\
& \Rightarrow \text { Explicit reformulation of constraints } \ldots
\end{aligned}
$$

- ... looses the connection to the original problem.
- ... looses distinction between original and auxiliary variables. Thus, we may branch on auxiliary variables.
- ... prevents simultaneous exploitation of overlapping structures.

A new framework for NLP in SCIP

 (work in progress)
A new framework for NLP in SCIP

 (work in progress)Fundamental structure

Main Ideas

Everything is an expression.

- ONE constraint handler: cons_expr
- represent all nonlinear constraints in one expression graph (DAG)

$$
\text { lhs } \leq \text { expression-node } \leq \text { rhs }
$$

- all algorithms (check, separation, propagation, etc.) work on the expression graph (no upgrades to specialized nonlinear constraints)

Main Ideas

Everything is an expression.

- ONE constraint handler: cons_expr
- represent all nonlinear constraints in one expression graph (DAG)

$$
\text { lhs } \leq \text { expression-node } \leq \text { rhs }
$$

- all algorithms (check, separation, propagation, etc.) work on the expression graph (no upgrades to specialized nonlinear constraints)
- separate expression operators $(+, \times)$ and high-level structures (quadratic, etc.)
\Rightarrow avoid redundancy / ambiguity of expression types (classic:,$+ \sum$, linear, quad., ...)
- stronger identification of common subexpressions

Main Ideas

Everything is an expression.

- ONE constraint handler: cons_expr
- represent all nonlinear constraints in one expression graph (DAG)

$$
\text { lhs } \leq \text { expression-node } \leq \text { rhs }
$$

- all algorithms (check, separation, propagation, etc.) work on the expression graph (no upgrades to specialized nonlinear constraints)
- separate expression operators $(+, \times)$ and high-level structures (quadratic, etc.)
\Rightarrow avoid redundancy / ambiguity of expression types (classic:,$+ \sum$, linear, quad., ...)
- stronger identification of common subexpressions

Do not reformulate constraints.

- introduce auxiliary variables for the relaxation only

Enforcement

Constraint:

$$
\log (x)^{2}+2 \log (x) y+y^{2} \leq 4
$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...

Enforcement

Constraint:

$$
\log (x)^{2}+2 \log (x) y+y^{2} \leq 4
$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...
(Implicit) Reformulation:

$$
\begin{aligned}
w_{1} & \leq 4 \\
\log (x)^{2}+2 \log (x) y+y^{2} & =w_{1}
\end{aligned}
$$

Enforcement

Constraint:

$$
\log (x)^{2}+2 \log (x) y+y^{2} \leq 4
$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...
(Implicit) Reformulation:

$$
\begin{aligned}
w_{1} & \leq 4 \\
w_{2}+2 w_{3}+w_{4} & =w_{1} \\
\log (x)^{2} & =w_{2} \\
\log (x) y & =w_{3} \\
y^{2} & =w_{4}
\end{aligned}
$$

Enforcement

Constraint:

$$
\log (x)^{2}+2 \log (x) y+y^{2} \leq 4
$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...
(Implicit) Reformulation:

$$
\begin{aligned}
w_{1} & \leq 4 \\
w_{2}+2 w_{3}+w_{4} & =w_{1} \\
w_{5}^{2} & =w_{2} \\
w_{5} y & =w_{3} \\
y^{2} & =w_{4} \\
\log (x) & =w_{5}
\end{aligned}
$$

Enforcement

Constraint:

$$
\log (x)^{2}+2 \log (x) y+y^{2} \leq 4
$$

This formulation is used to

- check feasibility,
- presolve,
- propagate domains, ...
(Implicit) Reformulation:

$$
\begin{aligned}
w_{1} & \leq 4 \\
w_{2}+2 w_{3}+w_{4} & =w_{1} \\
w_{5}^{2} & =w_{2} \\
w_{5} y & =w_{3} \\
y^{2} & =w_{4} \\
\log (x) & =w_{5}
\end{aligned}
$$

Used to construct LP relaxation.

Expression handler

Each operator type (,$+ \times$, pow, etc.) is implemented by an expression handler, which can provide a number of callbacks:

- evaluate and differentiate expression w.r.t. operands
- interval evaluation and tighten bounds on operands
- provide linear under- and over-estimators
- distribute branching scores to operands
- inform about curvature, monotonicity, integrality
- simplify, compare, print, parse, hash, copy, etc.

Expression handler are like other SCIP plugins, thus new ones can be added by users.

Motivating example revisited

$\min z$ s.t. $\exp (\ln (1000)+1+x y) \leq z, x^{2}+y^{2} \leq 2$

Classic:

```
presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):
    O deleted vars, 0 deleted constraints, 1 added constraints,...
    O implications, O cliques
presolved problem has 4 variables (0 bin, 0 int, 0 impl, 4 cont)
    and 3 constraints
            2 constraints of type <quadratic>
            1 constraints of type <nonlinear>
```

[...]
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08
Solving Nodes : 5
Primal Bound : +9.99999656552062e+02 (3 solutions)
Dual Bound : +9.99999656552062e+02
Gap : 0.00%
[nonlinear] <e1>: $\exp ((7.90776+(\langle x\rangle *\langle y\rangle)))-1\langle z\rangle[C]<=0$;
violation: right hand side is violated by 0.000673453314561812
best solution is not feasible in original problem

-1.00057454873626	(obj:0)
0.999425451364613	(obj:0)
999.999656552061	(obj :1)

Motivating example revisited

$\min z$ s.t. $\exp (\ln (1000)+1+x y) \leq z, x^{2}+y^{2} \leq 2$

Classic:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):
0 deleted vars, 0 deleted constraints, 1 added constraints,...
0 implications, 0 cliques

```
presolved problem has 4 variables (0 bin, 0 int, 0 impl, 4 cont) presolved problem has 3 variables (0 bin, 0 int, 0 impl, 3 cont)
```

 and 3 constraints
 2 constraints of type <quadratic>
 1 constraints of type <nonlinear>
 [...]

SCIP Status : problem is solved [optimal solution found] Solving Time (sec) : 0.08 Solving Nodes : 5
Primal Bound : +9.99999656552062e+02 (3 solutions)
Dual Bound : +9.99999656552062e+02
Gap : 0.00%
[nonlinear] <e1>: $\exp ((7.90776+(\langle x\rangle *\langle y\rangle)))-1\langle z\rangle[C]<=0$; violation: right hand side is violated by 0.000673453314561812 best solution is not feasible in original problem

New:

presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):
0 deleted vars, 0 deleted constraints, 0 added constraints,...
0 implications, 0 cliques
and 2 constraints
2 constraints of type <expr>
[...]
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.47
Solving Nodes : 15
Primal Bound : +9.99999949950021e+02 (2 solutions)
Dual Bound : +9.99999949950021e+02
Gap $: 0.00 \%$

-1.00057454873626	(obj :0)	x	-1.00000002499999	(obj:0)
0.999425451364613	(obj :0)	y	1.00000002499999	(obj:0)
999.999656552061	(obj:1)	z	999.999949950021	(obj:1)

Performance

- Testset: 1618 instances from MINLPLib ${ }^{1}$
- Time limit: 30 minutes, Optimality gap tolerance: 0.01%
- LP solver: CPLEX 12.9.0.0, NLP solver: IPOPT 3.12.11

	classic code	new code
\# solution infeasible	90	9

[^0]
Performance

- Testset: 1618 instances from MINLPLib ${ }^{1}$
- Time limit: 30 minutes, Optimality gap tolerance: 0.01%
- LP solver: CPLEX 12.9.0.0, NLP solver: IPOPT 3.12.11

	classic code	new code
\# solution infeasible	90	9
\# solved (out of 1618)	827	807
\# solved by both	701	
mean time ${ }^{2}$ (on solved by both)	3.73s	4.52s

[^1]
A new framework for NLP in SCIP

 (work in progress)Acceleration

Exploiting structure

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$
Smarter reformulation:

- Recognize that $\log (x)^{2}+2 \log (x) y+y^{2}$ is convex in $(\log (x), y)$.

Exploiting structure

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

Smarter reformulation:

- Recognize that $\log (x)^{2}+2 \log (x) y+y^{2}$ is convex in $(\log (x), y)$.
\Rightarrow Introduce auxiliary variable for $\log (x)$ only.

$$
\begin{aligned}
w^{2}+2 w y+y^{2} & \leq 4 \\
\log (x) & =w
\end{aligned}
$$

Handle $w^{2}+2 w y+y^{2} \leq 4$ as convex constraint ("gradient-cuts").

Exploiting structure

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

Smarter reformulation:

- Recognize that $\log (x)^{2}+2 \log (x) y+y^{2}$ is convex in $(\log (x), y)$.
\Rightarrow Introduce auxiliary variable for $\log (x)$ only.

$$
\begin{aligned}
w^{2}+2 w y+y^{2} & \leq 4 \\
\log (x) & =w
\end{aligned}
$$

Handle $w^{2}+2 w y+y^{2} \leq 4$ as convex constraint ("gradient-cuts").

Nonlinearity Handler:

- Adds additional separation and propagation algorithms for structures that can be identified in the expression graph.
- Attached to nodes in expression graph, but does not define expressions or constraints.
- Examples: quadratics, convex subexpressions, vertex-polyhedral

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
w_{1} \leq 4
$$

1. Add auxiliary variable w_{1} for root.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
w_{1} \leq 4
$$

1. Add auxiliary variable w_{1} for root.
2. Run detect of all nlhdlrs on + node.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
w_{1} \leq 4
$$

1. Add auxiliary variable w_{1} for root.
2. Run detect of all nlhdlrs on + node.

- nlhdlr_quadratic detects a convex quadratic structure and signals success.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
\begin{aligned}
w_{1} & \leq 4 \\
w_{2}^{2}+2 w_{2} y+y^{2} & \leq w_{1} \quad[\text { nlhdlr_quadratic }]
\end{aligned}
$$

1. Add auxiliary variable w_{1} for root.
2. Run detect of all nlhdlrs on + node.

- nlhdlr_quadratic detects a convex quadratic structure and signals success.
- nlhdlr_quadratic adds an auxiliary variable w_{2} for log node.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
\begin{aligned}
w_{1} & \leq 4 \\
w_{2}^{2}+2 w_{2} y+y^{2} & \leq w_{1} \quad[\text { nlhdlr_quadratic }]
\end{aligned}
$$

1. Add auxiliary variable w_{1} for root.
2. Run detect of all nlhdlrs on + node.

- nlhdlr_quadratic detects a convex quadratic structure and signals success.
- nlhdlr_quadratic adds an auxiliary variable w_{2} for log node.

3. Run detect of all nlhdlrs on log node.

Nonlinearity Handler in Expression Graph

- Nodes in the expression graph can have one or several nlhdlrs attached.
- At beginning of solve, detection callbacks are run only for nodes that have auxiliary variable. Detection callback may add auxiliary variables.

Constraint: $\log (x)^{2}+2 \log (x) y+y^{2} \leq 4$

$$
\begin{array}{rlrl}
w_{1} & \leq 4 \\
w_{2}^{2}+2 w_{2} y+y^{2} & \leq w_{1} & & \text { [nlhdlr_quadratic }] \\
\log (x) & =w_{2} & & {[\text { expr_log }]}
\end{array}
$$

1. Add auxiliary variable w_{1} for root.
2. Run detect of all nlhdlrs on + node.

- nlhdlr_quadratic detects a convex quadratic structure and signals success.
- nlhdlr_quadratic adds an auxiliary variable w_{2} for log node.

3. Run detect of all nlhdlrs on log node.

- No specialized nlhdlr signals success.

The expression handler will be used.

Handler for quadratic subexpressions

- Recognize quadratic forms (sums of squares and products in two terms).
- Recognize convexity by checking coefficient matrix for positive semidefiniteness. Use this to provide tight linear underestimators by linearization.
- Provide better bound tightening, in particular for univariate quadratics:

$$
\begin{aligned}
\left\{a x^{2}+b x: x \in[\ell, u]\right\}= & \begin{cases}\operatorname{conv}\left\{a \ell^{2}+b \ell, a u^{2}+b u,-\frac{b^{2}}{4 a}\right\}, & \text { if }-\frac{b}{2 a} \in[\ell, u], \\
\operatorname{conv}\left\{a \ell^{2}+b \ell, a u^{2}+b u\right\}, & \text { otherwise }\end{cases} \\
\left\{x: a x^{2}+b x \geq c\right\} & = \begin{cases}{\left[-\infty,-\sqrt{\frac{c}{a}+\frac{b^{2}}{4 a^{2}}}-\frac{b}{2 a}\right] \cup\left[\sqrt{\frac{c}{a}+\frac{b^{2}}{4 a^{2}}}-\frac{b}{2 a}, \infty\right],} & \text { if } a>0 \\
{\left[-\sqrt{\frac{c}{a}+\frac{b^{2}}{4 a^{2}}}-\frac{b}{2 a}, \sqrt{\frac{c}{a}+\frac{b^{2}}{4 a^{2}}}-\frac{b}{2 a}\right],} & \text { if } a<0\end{cases}
\end{aligned}
$$

Impact of handler for quadratics

[^2]
Separator for RLT

- for bilinear products $x_{i} x_{j}$, we may have introduced auxiliary variables $w_{i, j}$
- the expression handler for products generates McCormick inequalities:

$$
\begin{array}{rll}
\left(x_{i}-\ell_{i}\right)\left(x_{j}-\ell_{j}\right) \geq 0 & \Rightarrow & w_{i, j} \geq \ell_{i} x_{j}+\ell_{j} x_{i}-\ell_{i} \ell_{j} \\
\left(x_{i}-u_{i}\right)\left(x_{j}-u_{j}\right) \geq 0 & \Rightarrow & w_{i, j} \geq u_{i} x_{j}+u_{j} x_{i}-u_{i} u_{j} \\
\left(x_{i}-\ell_{i}\right)\left(x_{j}-u_{j}\right) \leq 0 & \Rightarrow & w_{i, j} \leq \ell_{i} x_{j}+u_{j} x_{i}-\ell_{i} u_{j} \\
\left(x_{i}-u_{i}\right)\left(x_{j}-\ell_{j}\right) \leq 0 & \Rightarrow & w_{i, j} \leq u_{i} x_{j}+\ell_{j} x_{i}-u_{i} \ell_{j}
\end{array}
$$

Separator for RLT

- for bilinear products $x_{i} x_{j}$, we may have introduced auxiliary variables $w_{i, j}$
- the expression handler for products generates McCormick inequalities:

$$
\begin{array}{lll}
\left(x_{i}-\ell_{i}\right)\left(x_{j}-\ell_{j}\right) \geq 0 & \Rightarrow & w_{i, j} \geq \ell_{i} x_{j}+\ell_{j} x_{i}-\ell_{i} \ell_{j} \\
\left(x_{i}-u_{i}\right)\left(x_{j}-u_{j}\right) \geq 0 & \Rightarrow & w_{i, j} \geq u_{i} x_{j}+u_{j} x_{i}-u_{i} u_{j} \\
\left(x_{i}-\ell_{i}\right)\left(x_{j}-u_{j}\right) \leq 0 & \Rightarrow & w_{i, j} \leq \ell_{i} x_{j}+u_{j} x_{i}-\ell_{i} u_{j} \\
\left(x_{i}-u_{i}\right)\left(x_{j}-\ell_{j}\right) \leq 0 & \Rightarrow & w_{i, j} \leq u_{i} x_{j}+\ell_{j} x_{i}-u_{i} \ell_{j}
\end{array}
$$

Reformulation-Linearization Technique [Adams and Sherali, 1986]:

- additional valid cuts can be obtained by multiplication with linear constraints:

$$
\begin{array}{lll}
a^{\top} x \geq b \quad & \times \quad x_{j}-\ell_{j} & \Rightarrow \quad a^{\top} w_{\cdot, j}-a^{\top} x \ell_{j} \geq b x_{j}-b \ell_{j} \\
a^{\top} x=b \quad \times \quad x_{j} & \Rightarrow a^{\top} w_{\cdot, j}=b x_{j}
\end{array}
$$

- in our implementation, we only look for RLT cuts that do not introduce new auxiliary variables $w_{i, j}$
- very effective for pooling problems

Impact of RLT separator

	previous	+ RLT
\# solved (out of 1618)	843	857
\# solved by both	834	
\# solved by both and affected	125	
mean time (on solved\&affected)	7.5 s	5.0 s

Tighter convex relaxations for bilinear terms

- McCormick inequalities give convex hull for $x_{i} x_{j}$ on box $\left[\ell_{i}, \ell_{j}\right] \times\left[u_{i}, u_{j}\right]$
- they do not if additional inequalities are present, e.g., $x_{i} \leq x_{j}$:

$$
\text { green - graph of } w_{i j}=x_{i} x_{j}
$$

yellow - McCormick relaxation of $x_{i} x_{j}$ over $[-2,2]^{2}$

$$
\text { red - convex envelope of } x_{i} x_{j} \text { over }\left\{\left(x_{i}, x_{j}\right) \in[-2,2]^{2}: x_{i} \leq x_{j}\right\}
$$

- closed formulas and algorithms are known [Linderoth 2004, Hijazi 2015, Locatelli 2016]

2D projections for $x_{i} x_{j}$

Problem: inequalities utilizing only x_{i} and x_{j} may not be present in problem
Solution ${ }^{5}$: Project LP relaxation onto $\left(x_{i}, x_{j}\right), P:=\operatorname{proj}_{x_{i}, x_{j}}($ LP $)$

- assume variable bounds are tight
- $M:=\left(\frac{u_{i}+\ell_{i}}{2}, \frac{u_{j}+\ell_{j}}{2}\right) \in P$
- every facet of P separates at most one of the 4 corners

[^3]
2D projections for $x_{i} x_{j}$

Problem: inequalities utilizing only x_{i} and x_{j} may not be present in problem
Solution ${ }^{5}$: Project LP relaxation onto $\left(x_{i}, x_{j}\right), P:=\operatorname{proj}_{x_{i}, x_{j}}($ LP $)$

- assume variable bounds are tight
- $M:=\left(\frac{u_{i}+\ell_{i}}{2}, \frac{u_{j}+\ell_{j}}{2}\right) \in P$
- every facet of P separates at most one of the 4 corners
- optimize along directions from M to each corner

[^4]
2D projections for $x_{i} x_{j}$

Problem: inequalities utilizing only x_{i} and x_{j} may not be present in problem
Solution ${ }^{5}$: Project LP relaxation onto $\left(x_{i}, x_{j}\right), P:=\operatorname{proj}_{x_{i}, x_{j}}$ (LP)

- assume variable bounds are tight
- $M:=\left(\frac{u_{i}+\ell_{i}}{2}, \frac{u_{j}+\ell_{j}}{2}\right) \in P$
- every facet of P separates at most one of the 4 corners
- optimize along directions from M to each corner

[^5]
2D projections for $x_{i} x_{j}$

Problem: inequalities utilizing only x_{i} and x_{j} may not be present in problem
Solution ${ }^{5}$: Project LP relaxation onto $\left(x_{i}, x_{j}\right), P:=\operatorname{proj}_{x_{i}, x_{j}}$ (LP)

- assume variable bounds are tight
- $M:=\left(\frac{u_{i}+\ell_{i}}{2}, \frac{u_{j}+\ell_{j}}{2}\right) \in P$
- every facet of P separates at most one of the 4 corners
- optimize along directions from M to each corner

[^6]
2D projections for $x_{i} x_{j}$

Problem: inequalities utilizing only x_{i} and x_{j} may not be present in problem
Solution ${ }^{5}$: Project LP relaxation onto $\left(x_{i}, x_{j}\right), P:=\operatorname{proj}_{x_{i}, x_{j}}$ (LP)

- assume variable bounds are tight
- $M:=\left(\frac{u_{i}+\ell_{i}}{2}, \frac{u_{j}+\ell_{j}}{2}\right) \in P$
- every facet of P separates at most one of the 4 corners
- optimize along directions from M to each corner

[^7]
2D projections for $x_{i} x_{j}$

Problem: inequalities utilizing only x_{i} and x_{j} may not be present in problem
Solution ${ }^{5}$: Project LP relaxation onto $\left(x_{i}, x_{j}\right), P:=\operatorname{proj}_{x_{i}, x_{j}}$ (LP)

- assume variable bounds are tight
- $M:=\left(\frac{u_{i}+\ell_{i}}{2}, \frac{u_{j}+\ell_{j}}{2}\right) \in P$
- every facet of P separates at most one of the 4 corners
- optimize along directions from M

to each corner

$\Rightarrow P^{\prime} \supseteq P$ described by at most

- 4 nontrivial inequalities
- 4 axis-parallel inequalities

[^8]
2D projections for $x_{i} x_{j}$

Problem: inequalities utilizing only x_{i} and x_{j} may not be present in problem
Solution ${ }^{5}$: Project LP relaxation onto $\left(x_{i}, x_{j}\right), P:=\operatorname{proj}_{x_{i}, x_{j}}$ (LP)

- assume variable bounds are tight
- $M:=\left(\frac{u_{i}+\ell_{i}}{2}, \frac{u_{j}+\ell_{j}}{2}\right) \in P$
- every facet of P separates at most one of the 4 corners
- optimize along directions from M
to each corner
$\Rightarrow P^{\prime} \supseteq P$ described by at most
- 4 nontrivial inequalities
- 4 axis-parallel inequalities

- close connections to optimization-based bound tightening (project LP onto one variable) [Gleixner and Weltge, 2013]
- projections also used to improve bound tightening on $x_{i} x_{j}$

[^9]
Impact of computing and utilizing 2D projections

	previous	+ projections	
\# solved (out of 1618)	857	857	
\# solved by both	849		
\# solved by both and affected		254	
mean time (on solved\&affected)	16.4 s	17.3 s	

Linearizations of products of binary variables

Linearize

$$
\prod_{i=1}^{n} x_{i}, \quad x_{i} \in\{0,1\}:
$$

- replace by a new variable $z \in\{0,1\}$
- if $n=2$, add linear constraints $z \leq x_{1}, z \leq x_{2}, z \geq x_{1}+x_{2}-1$
- if $n>2$, add "and"-constraint $z=\bigwedge_{i=1}^{n} x_{i}$ (specialized constraint handler)

Linearizations of products of binary variables

Linearize

$$
\prod_{i=1}^{n} x_{i}, \quad x_{i} \in\{0,1\}:
$$

- replace by a new variable $z \in\{0,1\}$
- if $n=2$, add linear constraints $z \leq x_{1}, z \leq x_{2}, z \geq x_{1}+x_{2}-1$
- if $n>2$, add "and"-constraint $z=\bigwedge_{i=1}^{n} x_{i}$ (specialized constraint handler)

Linearize

$$
y \sum_{j=1}^{n} a_{j} x_{j}, \quad x_{j} \in\{0,1\}, \quad n \geq 50:
$$

- replace by a new variable $z \in\{0,1\}$, and
- add linear constraints

$$
\begin{aligned}
& M^{L} y \leq z \leq M^{U} y, \\
& \sum_{j} a_{j} x_{j}-M^{U}(1-y) \leq z \leq \sum_{j} a_{j} x_{j}-M^{L}(1-y)
\end{aligned}
$$

Impact of linearization of products of binary variables

	previous	+ linearization	
\# solved (out of 1618)	857	879	
\# solved by both		857	
\# solved by both and affected		70	
mean time (on solved\&affected)	24.3 s	16.9 s	

Detecting of convexity

- analyze expressions using a set of rules, e.g.,

$$
\begin{gathered}
f(x) \text { convex } \Rightarrow a \cdot f(x) \begin{cases}\text { convex, } & a \geq 0 \\
\text { concave, } & a \leq 0\end{cases} \\
f(x), g(x) \text { convex } \Rightarrow f(x)+g(x) \text { convex } \\
f(x) \text { concave } \Rightarrow \log (f(x)) \text { concave } \\
f(x)=\prod_{i} x_{i}^{e_{i}}, x_{i} \geq 0 \Rightarrow f(x) \begin{cases}\text { convex, } & e_{i} \leq 0 \forall i \\
\text { convex, } & \exists j: e_{i} \leq 0 \forall i \neq j ; \sum_{i} e_{i} \geq 1 \\
\text { concave, } & e_{i} \geq 0 \forall i ; \sum_{i} e_{i} \leq 1\end{cases}
\end{gathered}
$$

- find maximal convex subexpressions
- underestimate via gradient-cuts

Impact of convexity detection

	previous	+ convexity	
\# solved (out of 1618)	879	875	
\# solved by both	868		
\# solved by both and affected	325		
mean time (on solved\&affected)	14.3 s	14.7 s	

"On/off"-terms

Given $f(x)$ convex with x semicontinuous, i.e., there exists binary variable y such that

$$
\begin{array}{rr}
x=x_{0}, & \text { if } y=0, \\
x \in[\ell, u], & \text { if } y=1 .
\end{array}
$$

"On/off"-terms

Given $f(x)$ convex with x semicontinuous, i.e., there exists binary variable y such that

$$
\begin{array}{cl}
x=x_{0}, & \text { if } y=0 \\
x \in[\ell, u], & \text { if } y=1
\end{array}
$$

For $x_{0}=0, f(0)=0$, the perspective cut [Frangioni, Gentile, 2006]

$$
f(\hat{x}) y+\nabla f(\hat{x})(x-\hat{x} y) \leq w
$$

is valid for the disjunctive set

$$
\left\{(x, y, z): x=x_{0}, y=0, f\left(x_{0}\right) \leq w\right\} \cup\{(x, y, z): x \in[\ell, u], y=1, f(x) \leq w\}
$$

Impact of perspective cuts

	previous	+ perspective	
\# solved (out of 1618)	875	883	
\# solved by both	874		
\# solved by both and affected	112		
mean time (on solved\&affected)	19.8 s	15.8 s	

Symmetry detection

Example:

$$
\begin{aligned}
& \max x_{1}+x_{2}+x_{3} \\
& \text { s.t. } x_{1}+x_{2} \geq 2 \\
& \quad \sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} \leq 5
\end{aligned}
$$

Observation: For any feasible solution, exchanging x_{1} and x_{2} provides a new feasible solution with same objective value.

Symmetry detection

Example:

$$
\begin{aligned}
& \max x_{1}+x_{2}+x_{3} \\
& \text { s.t. } x_{1}+x_{2} \geq 2 \\
& \quad \sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} \leq 5
\end{aligned}
$$

Observation: For any feasible solution, exchanging x_{1} and x_{2} provides a new feasible solution with same objective value.

- can be detected by finding automorphisms on a vertex-colored graph [Liberti 2010]

- SCIP aims to find and break symmetries on binary variables [SCIP 5 report, 2017]

Impact of symmetry

	previous	+ symmetry detect	
\# solved (out of 1618)	883	881	
\# solved by both	875		
\# solved by both and affected	58		
mean time (on solved\&affected)	27.1 s	19.1 s	

time(+symmetry detect)/time(previous)

Gap at termination (all instances)

gap(+symmetry detect)/gap(previous)

A new framework for NLP in SCIP

 (work in progress)
Conclusion

Summary

The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

- less issues with slightly infeasible solutions
- easier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)

Summary

The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

- less issues with slightly infeasible solutions
- easier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)

Expression Handler:

- var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

Summary

The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

- less issues with slightly infeasible solutions
- easier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)

Expression Handler:

- var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

Nonlinearity Handler:

- quadratic: recognize and separate convex quadratic; domain propagation
- bilinear: tighter estimators and bounds for $x_{i} x_{j}$ over polytope
- convex: recognize some simple general convexities, separate by linearization
- perspective: perspective estimators for convex functions in semicontinuous vars.
- (default: wrap around expression handler)

Summary

The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

- less issues with slightly infeasible solutions
- easier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)

Expression Handler:

- var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

Nonlinearity Handler:

- quadratic: recognize and separate convex quadratic; domain propagation
- bilinear: tighter estimators and bounds for $x_{i} x_{j}$ over polytope
- convex: recognize some simple general convexities, separate by linearization
- perspective: perspective estimators for convex functions in semicontinuous vars.
- (default: wrap around expression handler)

New separator: RLT

Summary

The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

- less issues with slightly infeasible solutions
- easier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)

Expression Handler:

- var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

Nonlinearity Handler:

- quadratic: recognize and separate convex quadratic; domain propagation
- bilinear: tighter estimators and bounds for $x_{i} x_{j}$ over polytope
- convex: recognize some simple general convexities, separate by linearization
- perspective: perspective estimators for convex functions in semicontinuous vars.
- (default: wrap around expression handler)

New separator: RLT
Symmetry detection

Not ready yet, but getting closer

	classic code	new code
\# solved (out of 1618) \# solved by both	827	881
mean time (on solved by both)	4.26 s	748

Time (all instances)

Gap at termination (all instances)

gap(classic code)/gap(new code)

[^0]: ${ }^{1}$ http://www.minlplib.org, currently 1626 instances
 ${ }^{2}$ shifted geometric mean with shift $=1 \mathrm{~s}: \prod_{i=1}^{n}\left(t_{i}+1\right)^{1 / n}-1$

[^1]: ${ }^{1}$ http://www.minlplib.org, currently 1626 instances
 ${ }^{2}$ shifted geometric mean with shift $=1 \mathrm{~s}: \prod_{i=1}^{n}\left(t_{i}+1\right)^{1 / n}-1$

[^2]: ${ }^{3}$ affected $=$ different search path, indicated by different number of $B \& B$ nodes or LP iterations
 ${ }^{4}$ shifted geometric mean with shift $=1 \mathrm{~s}: \prod_{i=1}^{n}\left(t_{i}+1\right)^{1 / n}-1$

[^3]: ${ }^{5}$ Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

[^4]: ${ }^{5}$ Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

[^5]: ${ }^{5}$ Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

[^6]: ${ }^{5}$ Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

[^7]: ${ }^{5}$ Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

[^8]: ${ }^{5}$ Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

[^9]: ${ }^{5}$ Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

