
Revising the handling of nonlinear constraints in SCIP

Work in Progress Report

Ksenia Bestuzheva, Benjamin Müller, Felipe Serrano, Stefan Vigerske, Fabian Wegscheider

WCGO · Metz, France · July 9, 2019

SCIP: Solving Constraint Integer Programs

• modular branch-cut-and-price

framework for constraint integer

programming

• includes full-fledged

MIP/MINLP solver

• part of SCIP Optimization Suite

(GCG, SCIP, SoPlex, UG, ZIMPL)

• Latest Release Report: The

SCIP Optimization Suite 6.0 by

Gleixner, Bastubbe, Eifler, Gally,

Gamrath, Gottwald, Hendel, Hojny,

Koch, Lübbecke, Maher,

Miltenberger, Müller, Pfetsch,

Puchert, Rehfeldt, Schlösser,

Schubert, Serrano, Shinano,

Viernickel, Wegscheider, Witt,

Witzig

• free for academic use

Download at scip.zib.de:

2/31

scip.zib.de

Mixed-Integer Nonlinear Programming

min cTx

s.t. gk(x) ≤ 0 ∀k ∈ [m]

xi ∈ Z ∀i ∈ I ⊆ [n]

xi ∈ [`i , ui] ∀i ∈ [n]

The functions gk : [`, u]→ R can be

−1

1
−1

1

5

10

convex

or

0
100

200
300

0

200

−200

0

200

nonconvex

and are given in algebraic form.

3/31

SCIP solves MINLPs by spatial Branch & Bound

Ingredients:

• constructing an LP relaxation by

• relaxing integrality

• convexifying non-convexities

• branching on

• fractional integer variables

• variables in violated nonconvex constraints

• tightening of variable bounds (domain propagation)

• primal heuristics

• presolving / reformulation

0.5 1.0 1.5 2.0 2.5 3.0

-2.0

-1.5

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

4/31

SCIP solves MINLPs by spatial Branch & Bound

Ingredients:

• constructing an LP relaxation by

• relaxing integrality

• convexifying non-convexities

• branching on

• fractional integer variables

• variables in violated nonconvex constraints

• tightening of variable bounds (domain propagation)

• primal heuristics

• presolving / reformulation

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

4/31

SCIP solves MINLPs by spatial Branch & Bound

Ingredients:

• constructing an LP relaxation by

• relaxing integrality

• convexifying non-convexities

• branching on

• fractional integer variables

• variables in violated nonconvex constraints

• tightening of variable bounds (domain propagation)

• primal heuristics

• presolving / reformulation

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

4/31

Current Implementation (SCIP 6.0)

Expression trees and graphs

cons nonlinear (lhs ≤
n∑

i=1

aixi +
m∑
j=1

cj fj(x) ≤ rhs) stores the nonlinear functions fj of

all constraints in one expression graph (DAG).

For example (MINLPLib instance nvs01):

420.169
√

900 + x2
1 − x3x1x2 = 0

2960.88 + 296088 · 0.0625x2
2

7200 + x2
1

− x3 ≥ 0

xobj − 0.047x2

√
900 + x2

1 ≥ 0

y 1

y 2

y
2

y
1y

3

y
4

y 1

y
1

y1

y2

y1

x2x3 x1

7200 + y 2
1900 + y 2

1

−y1y2y4 + 420.169y 0.5
3

420.169
√

900 + x2
1 − x3x1x2

÷

2960.88 + 18505.5x2
2

7200 + x2
1

−0.047y1y
0.5
2

−0.047x2

√
900 + x2

1

2960.88 + 18505.5y 2
1

• some use of common subexpression
5/31

Expression operators and constraint handler

Operators (handled by cons nonlinear):

• variable index, constant

• +, −, ∗, ÷

• ·2,
√
·, ·p (p ∈ R), ·n (n ∈ Z), x 7→ x |x |p−1 (p > 1)

• exp, log

• min, max, abs

•
∑

,
∏

, affine-linear, quadratic, signomial

• (user)

Additional constraint handler:

• quadratic

• abspower (x → x |x |p−1, p > 1)

• SOC (second-order cones)

• (bivariate)

6/31

Expression operators and constraint handler

Operators (handled by cons nonlinear):

• variable index, constant

• +, −, ∗, ÷

• ·2,
√
·, ·p (p ∈ R), ·n (n ∈ Z), x 7→ x |x |p−1 (p > 1)

• exp, log

• min, max, abs

•
∑

,
∏

, affine-linear, quadratic, signomial

• (user)

Additional constraint handler:

• quadratic

• abspower (x → x |x |p−1, p > 1)

• SOC (second-order cones)

• (bivariate)

6/31

Reformulation in cons nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd

power, quadratic) remain.

900 + x2
1 = z1 7200 + x2

1 = z4 420.169
√
z1 − x3z5 = 0

−z3 + z2z4 = 0 x1x2 = z5 z2 − x3 ≥ 0

2960.88 + 18505.5x2
2 = z3

√
z1 = z6 0.047x2z6 ≤ xobj

y
2

y 1
y 1

y 1

y
1

y
2

y
1

y
2

y
1

y
1y 3y 1

y
1

y
2

y
2

y
1

y 1

y 1
z5 z4z3z2z1x2 x3x1

420.169y 0.5
1

z6

7200 + y 2
1

7200 + x2
1

900 + y 2
1

900 + x2
1

0.047y1

0.047x2z6

−y1 + y2y3

−z3 + z2z4

y1 + y2

420.169
√
z1 − x3z5

−y1

2960.88 + 18505.5y 2
1

2960.88 + 18505.5x2
2

√
y1

√
z1

y1y2

y1y2

x1x2

y1y2

• reformulates constraints by introducing new variables and new constraints

• other constraint handler can participate 7/31

Problem with this approach

Consider
min z

s.t. exp(ln(1000) + 1 + x y) ≤ z

x2 + y 2 ≤ 2

An optimal solution:

x = −1

y = 1

z = 1000

SCIP reports

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

[nonlinear] <e1>: exp((7.9077552789821368151 +1 (<x> * <y>)))-1<z>[C] <= 0;

violation: right hand side is violated by 0.000673453314561812

best solution is not feasible in original problem

x -1.00057454873626 (obj:0)

y 0.999425451364613 (obj:0)

z 999.999656552061 (obj:1)

8/31

Problem with this approach

Consider
min z

s.t. exp(ln(1000) + 1 + x y) ≤ z

x2 + y 2 ≤ 2

An optimal solution:

x = −1

y = 1

z = 1000

SCIP reports

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

[nonlinear] <e1>: exp((7.9077552789821368151 +1 (<x> * <y>)))-1<z>[C] <= 0;

violation: right hand side is violated by 0.000673453314561812

best solution is not feasible in original problem

x -1.00057454873626 (obj:0)

y 0.999425451364613 (obj:0)

z 999.999656552061 (obj:1)

8/31

Reformulated problem

Reformulation takes apart exp(ln(1000) + 1 + x y), thus SCIP actually solves

min z

Violation

s.t. exp(w) ≤ z

0.4659 · 10−6 ≤ numerics/feastol X

ln(1000) + 1 + x y = w

0.6731 · 10−6 ≤ numerics/feastol X

x2 + y 2 ≤ 2

0.6602 · 10−6 ≤ numerics/feastol X

Solution (found by <relaxation>):

x = -1.000574549

y = 0.999425451

z = 999.999656552

w= 6.907754936

⇒ Explicit reformulation of constraints ...

• ... looses the connection to the original problem.

• ... looses distinction between original and auxiliary variables. Thus, we may

branch on auxiliary variables.

• ... prevents simultaneous exploitation of overlapping structures.

9/31

Reformulated problem

Reformulation takes apart exp(ln(1000) + 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) ≤ z 0.4659 · 10−6 ≤ numerics/feastol X

ln(1000) + 1 + x y = w 0.6731 · 10−6 ≤ numerics/feastol X

x2 + y 2 ≤ 2 0.6602 · 10−6 ≤ numerics/feastol X

Solution (found by <relaxation>):

x = -1.000574549

y = 0.999425451

z = 999.999656552

w= 6.907754936

⇒ Explicit reformulation of constraints ...

• ... looses the connection to the original problem.

• ... looses distinction between original and auxiliary variables. Thus, we may

branch on auxiliary variables.

• ... prevents simultaneous exploitation of overlapping structures.

9/31

Reformulated problem

Reformulation takes apart exp(ln(1000) + 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) ≤ z 0.4659 · 10−6 ≤ numerics/feastol X

ln(1000) + 1 + x y = w 0.6731 · 10−6 ≤ numerics/feastol X

x2 + y 2 ≤ 2 0.6602 · 10−6 ≤ numerics/feastol X

Solution (found by <relaxation>):

x = -1.000574549

y = 0.999425451

z = 999.999656552

w= 6.907754936

⇒ Explicit reformulation of constraints ...

• ... looses the connection to the original problem.

• ... looses distinction between original and auxiliary variables. Thus, we may

branch on auxiliary variables.

• ... prevents simultaneous exploitation of overlapping structures.

9/31

Reformulated problem

Reformulation takes apart exp(ln(1000) + 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) ≤ z 0.4659 · 10−6 ≤ numerics/feastol X

ln(1000) + 1 + x y = w 0.6731 · 10−6 ≤ numerics/feastol X

x2 + y 2 ≤ 2 0.6602 · 10−6 ≤ numerics/feastol X

Solution (found by <relaxation>):

x = -1.000574549

y = 0.999425451

z = 999.999656552

w= 6.907754936

⇒ Explicit reformulation of constraints ...

• ... looses the connection to the original problem.

• ... looses distinction between original and auxiliary variables. Thus, we may

branch on auxiliary variables.

• ... prevents simultaneous exploitation of overlapping structures.
9/31

A new framework for NLP in SCIP

(work in progress)

A new framework for NLP in SCIP

(work in progress)

Fundamental structure

Main Ideas

Everything is an expression.

• ONE constraint handler: cons expr

• represent all nonlinear constraints in one expression graph (DAG)

lhs ≤ expression-node ≤ rhs

• all algorithms (check, separation, propagation, etc.) work on the expression graph

(no upgrades to specialized nonlinear constraints)

• separate expression operators (+, ×) and high-level structures (quadratic, etc.)

⇒ avoid redundancy / ambiguity of expression types (classic: +,
∑

, linear, quad., . . .)

• stronger identification of common subexpressions

Do not reformulate constraints.

• introduce auxiliary variables for the relaxation only

10/31

Main Ideas

Everything is an expression.

• ONE constraint handler: cons expr

• represent all nonlinear constraints in one expression graph (DAG)

lhs ≤ expression-node ≤ rhs

• all algorithms (check, separation, propagation, etc.) work on the expression graph

(no upgrades to specialized nonlinear constraints)

• separate expression operators (+, ×) and high-level structures (quadratic, etc.)

⇒ avoid redundancy / ambiguity of expression types (classic: +,
∑

, linear, quad., . . .)

• stronger identification of common subexpressions

Do not reformulate constraints.

• introduce auxiliary variables for the relaxation only

10/31

Main Ideas

Everything is an expression.

• ONE constraint handler: cons expr

• represent all nonlinear constraints in one expression graph (DAG)

lhs ≤ expression-node ≤ rhs

• all algorithms (check, separation, propagation, etc.) work on the expression graph

(no upgrades to specialized nonlinear constraints)

• separate expression operators (+, ×) and high-level structures (quadratic, etc.)

⇒ avoid redundancy / ambiguity of expression types (classic: +,
∑

, linear, quad., . . .)

• stronger identification of common subexpressions

Do not reformulate constraints.

• introduce auxiliary variables for the relaxation only

10/31

Enforcement

Constraint:

log(x)2 + 2 log(x)y + y 2 ≤ 4

This formulation is used to

• check feasibility,

• presolve,

• propagate domains, ...

(Implicit) Reformulation: Used to construct

LP relaxation.

+

·2

log

x

×

2

·2

y

w1

w2 w3 w4

w5

11/31

Enforcement

Constraint:

log(x)2 + 2 log(x)y + y 2 ≤ 4

This formulation is used to

• check feasibility,

• presolve,

• propagate domains, ...

(Implicit) Reformulation:

w1 ≤ 4

log(x)2 + 2 log(x)y + y 2 = w1

Used to construct LP relaxation.

+

·2

log

x

×

2

·2

y

w1

w2 w3 w4

w5

11/31

Enforcement

Constraint:

log(x)2 + 2 log(x)y + y 2 ≤ 4

This formulation is used to

• check feasibility,

• presolve,

• propagate domains, ...

(Implicit) Reformulation:

w1 ≤ 4

w2 + 2w3 + w4 = w1

log(x)2 = w2

log(x)y = w3

y 2 = w4

Used to construct LP relaxation.

+

·2

log

x

×

2

·2

y

w1

w2 w3 w4

w5

11/31

Enforcement

Constraint:

log(x)2 + 2 log(x)y + y 2 ≤ 4

This formulation is used to

• check feasibility,

• presolve,

• propagate domains, ...

(Implicit) Reformulation:

w1 ≤ 4

w2 + 2w3 + w4 = w1

w 2
5 = w2

w5y = w3

y 2 = w4

log(x) = w5

Used to construct LP relaxation.

+

·2

log

x

×

2

·2

y

w1

w2 w3 w4

w5

11/31

Enforcement

Constraint:

log(x)2 + 2 log(x)y + y 2 ≤ 4

This formulation is used to

• check feasibility,

• presolve,

• propagate domains, ...

(Implicit) Reformulation:

w1 ≤ 4

w2 + 2w3 + w4 = w1

w 2
5 = w2

w5y = w3

y 2 = w4

log(x) = w5

Used to construct LP relaxation.

+

·2

log

x

×

2

·2

y

w1

w2 w3 w4

w5

11/31

Expression handler

Each operator type (+, ×, pow, etc.) is implemented by an expression handler, which

can provide a number of callbacks:

• evaluate and differentiate expression w.r.t. operands

• interval evaluation and tighten bounds on operands

• provide linear under- and over-estimators

• distribute branching scores to operands

• inform about curvature, monotonicity, integrality

• simplify, compare, print, parse, hash, copy, etc.

Expression handler are like other SCIP plugins, thus new ones can be added by users.

12/31

Motivating example revisited

min z s.t. exp(ln(1000) + 1 + x y) ≤ z , x2 + y 2 ≤ 2

Classic:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):

0 deleted vars, 0 deleted constraints, 1 added constraints,...

0 implications, 0 cliques

presolved problem has 4 variables (0 bin, 0 int, 0 impl, 4 cont)

and 3 constraints

2 constraints of type <quadratic>

1 constraints of type <nonlinear>

[...]

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

[nonlinear] <e1>: exp((7.90776 + (<x> * <y>)))-1<z>[C] <= 0;

violation: right hand side is violated by 0.000673453314561812

best solution is not feasible in original problem

x -1.00057454873626 (obj:0)

y 0.999425451364613 (obj:0)

z 999.999656552061 (obj:1)

New:

presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):

0 deleted vars, 0 deleted constraints, 0 added constraints,...

0 implications, 0 cliques

presolved problem has 3 variables (0 bin, 0 int, 0 impl, 3 cont)

and 2 constraints

2 constraints of type <expr>

[...]

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.47

Solving Nodes : 15

Primal Bound : +9.99999949950021e+02 (2 solutions)

Dual Bound : +9.99999949950021e+02

Gap : 0.00 %

x -1.00000002499999 (obj:0)

y 1.00000002499999 (obj:0)

z 999.999949950021 (obj:1)

13/31

Motivating example revisited

min z s.t. exp(ln(1000) + 1 + x y) ≤ z , x2 + y 2 ≤ 2

Classic:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):

0 deleted vars, 0 deleted constraints, 1 added constraints,...

0 implications, 0 cliques

presolved problem has 4 variables (0 bin, 0 int, 0 impl, 4 cont)

and 3 constraints

2 constraints of type <quadratic>

1 constraints of type <nonlinear>

[...]

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap : 0.00 %

[nonlinear] <e1>: exp((7.90776 + (<x> * <y>)))-1<z>[C] <= 0;

violation: right hand side is violated by 0.000673453314561812

best solution is not feasible in original problem

x -1.00057454873626 (obj:0)

y 0.999425451364613 (obj:0)

z 999.999656552061 (obj:1)

New:

presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):

0 deleted vars, 0 deleted constraints, 0 added constraints,...

0 implications, 0 cliques

presolved problem has 3 variables (0 bin, 0 int, 0 impl, 3 cont)

and 2 constraints

2 constraints of type <expr>

[...]

SCIP Status : problem is solved [optimal solution found]

Solving Time (sec) : 0.47

Solving Nodes : 15

Primal Bound : +9.99999949950021e+02 (2 solutions)

Dual Bound : +9.99999949950021e+02

Gap : 0.00 %

x -1.00000002499999 (obj:0)

y 1.00000002499999 (obj:0)

z 999.999949950021 (obj:1)

13/31

Performance

• Testset: 1618 instances from MINLPLib1

• Time limit: 30 minutes, Optimality gap tolerance: 0.01%

• LP solver: CPLEX 12.9.0.0, NLP solver: IPOPT 3.12.11

classic code new code

solution infeasible 90 9

solved (out of 1618) 827 807

solved by both 701

mean time2 (on solved by both) 3.73s 4.52s

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

50

10
0

15
0

20
0

time(new code)/time(old code)

#
in

st
an

ce
s

Time (all instances)

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

50

10
0

15
0

20
0

gap(new code)/gap(old code)

#
in

st
an

ce
s

Gap at termination (all instances)

1http://www.minlplib.org, currently 1626 instances
2shifted geometric mean with shift = 1s:

∏n
i=1(ti + 1)1/n − 1 14/31

http://www.minlplib.org

Performance

• Testset: 1618 instances from MINLPLib1

• Time limit: 30 minutes, Optimality gap tolerance: 0.01%

• LP solver: CPLEX 12.9.0.0, NLP solver: IPOPT 3.12.11

classic code new code

solution infeasible 90 9

solved (out of 1618) 827 807

solved by both 701

mean time2 (on solved by both) 3.73s 4.52s

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

50

10
0

15
0

20
0

time(new code)/time(old code)

#
in

st
an

ce
s

Time (all instances)

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

50

10
0

15
0

20
0

gap(new code)/gap(old code)

#
in

st
an

ce
s

Gap at termination (all instances)

1http://www.minlplib.org, currently 1626 instances
2shifted geometric mean with shift = 1s:

∏n
i=1(ti + 1)1/n − 1 14/31

http://www.minlplib.org

A new framework for NLP in SCIP

(work in progress)

Acceleration

Exploiting structure

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

Smarter reformulation:

• Recognize that log(x)2 + 2 log(x)y + y 2 is convex in (log(x), y).

⇒ Introduce auxiliary variable for log(x) only.

w 2 + 2wy + y 2 ≤ 4

log(x) = w

Handle w 2 + 2wy + y 2 ≤ 4 as convex constraint (“gradient-cuts”).

Nonlinearity Handler:

• Adds additional separation and propagation algorithms for structures that can be

identified in the expression graph.

• Attached to nodes in expression graph, but does not define expressions or

constraints.

• Examples: quadratics, convex subexpressions, vertex-polyhedral

15/31

Exploiting structure

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

Smarter reformulation:

• Recognize that log(x)2 + 2 log(x)y + y 2 is convex in (log(x), y).

⇒ Introduce auxiliary variable for log(x) only.

w 2 + 2wy + y 2 ≤ 4

log(x) = w

Handle w 2 + 2wy + y 2 ≤ 4 as convex constraint (“gradient-cuts”).

Nonlinearity Handler:

• Adds additional separation and propagation algorithms for structures that can be

identified in the expression graph.

• Attached to nodes in expression graph, but does not define expressions or

constraints.

• Examples: quadratics, convex subexpressions, vertex-polyhedral

15/31

Exploiting structure

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

Smarter reformulation:

• Recognize that log(x)2 + 2 log(x)y + y 2 is convex in (log(x), y).

⇒ Introduce auxiliary variable for log(x) only.

w 2 + 2wy + y 2 ≤ 4

log(x) = w

Handle w 2 + 2wy + y 2 ≤ 4 as convex constraint (“gradient-cuts”).

Nonlinearity Handler:

• Adds additional separation and propagation algorithms for structures that can be

identified in the expression graph.

• Attached to nodes in expression graph, but does not define expressions or

constraints.

• Examples: quadratics, convex subexpressions, vertex-polyhedral

15/31

Nonlinearity Handler in Expression Graph

• Nodes in the expression graph can have one or several nlhdlrs attached.

• At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

w1 ≤ 4

w 2
2 + 2w2y + y 2 ≤ w1 [nlhdlr quadratic]

log(x) = w2 [expr log]

1. Add auxiliary variable w1 for root.

2. Run detect of all nlhdlrs on + node.

• nlhdlr quadratic detects a convex quadratic

structure and signals success.

• nlhdlr quadratic adds an auxiliary variable w2

for log node.

3. Run detect of all nlhdlrs on log node.

• No specialized nlhdlr signals success.

The expression handler will be used.

+

·2

log

x

×

2

·2

y

w1

quadratic

w2

expr log

16/31

Nonlinearity Handler in Expression Graph

• Nodes in the expression graph can have one or several nlhdlrs attached.

• At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

w1 ≤ 4

w 2
2 + 2w2y + y 2 ≤ w1 [nlhdlr quadratic]

log(x) = w2 [expr log]

1. Add auxiliary variable w1 for root.

2. Run detect of all nlhdlrs on + node.

• nlhdlr quadratic detects a convex quadratic

structure and signals success.

• nlhdlr quadratic adds an auxiliary variable w2

for log node.

3. Run detect of all nlhdlrs on log node.

• No specialized nlhdlr signals success.

The expression handler will be used.

+

·2

log

x

×

2

·2

y

w1

quadratic

w2

expr log

16/31

Nonlinearity Handler in Expression Graph

• Nodes in the expression graph can have one or several nlhdlrs attached.

• At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

w1 ≤ 4

w 2
2 + 2w2y + y 2 ≤ w1 [nlhdlr quadratic]

log(x) = w2 [expr log]

1. Add auxiliary variable w1 for root.

2. Run detect of all nlhdlrs on + node.

• nlhdlr quadratic detects a convex quadratic

structure and signals success.

• nlhdlr quadratic adds an auxiliary variable w2

for log node.

3. Run detect of all nlhdlrs on log node.

• No specialized nlhdlr signals success.

The expression handler will be used.

+

·2

log

x

×

2

·2

y

w1

quadratic

w2

expr log

16/31

Nonlinearity Handler in Expression Graph

• Nodes in the expression graph can have one or several nlhdlrs attached.

• At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

w1 ≤ 4

w 2
2 + 2w2y + y 2 ≤ w1 [nlhdlr quadratic]

log(x) = w2 [expr log]

1. Add auxiliary variable w1 for root.

2. Run detect of all nlhdlrs on + node.

• nlhdlr quadratic detects a convex quadratic

structure and signals success.

• nlhdlr quadratic adds an auxiliary variable w2

for log node.

3. Run detect of all nlhdlrs on log node.

• No specialized nlhdlr signals success.

The expression handler will be used.

+

·2

log

x

×

2

·2

y

w1

quadratic

w2

expr log

16/31

Nonlinearity Handler in Expression Graph

• Nodes in the expression graph can have one or several nlhdlrs attached.

• At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

w1 ≤ 4

w 2
2 + 2w2y + y 2 ≤ w1 [nlhdlr quadratic]

log(x) = w2 [expr log]

1. Add auxiliary variable w1 for root.

2. Run detect of all nlhdlrs on + node.

• nlhdlr quadratic detects a convex quadratic

structure and signals success.

• nlhdlr quadratic adds an auxiliary variable w2

for log node.

3. Run detect of all nlhdlrs on log node.

• No specialized nlhdlr signals success.

The expression handler will be used.

+

·2

log

x

×

2

·2

y

w1

quadratic

w2

expr log

16/31

Nonlinearity Handler in Expression Graph

• Nodes in the expression graph can have one or several nlhdlrs attached.

• At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

w1 ≤ 4

w 2
2 + 2w2y + y 2 ≤ w1 [nlhdlr quadratic]

log(x) = w2 [expr log]

1. Add auxiliary variable w1 for root.

2. Run detect of all nlhdlrs on + node.

• nlhdlr quadratic detects a convex quadratic

structure and signals success.

• nlhdlr quadratic adds an auxiliary variable w2

for log node.

3. Run detect of all nlhdlrs on log node.

• No specialized nlhdlr signals success.

The expression handler will be used.

+

·2

log

x

×

2

·2

y

w1

quadratic

w2

expr log

16/31

Nonlinearity Handler in Expression Graph

• Nodes in the expression graph can have one or several nlhdlrs attached.

• At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

w1 ≤ 4

w 2
2 + 2w2y + y 2 ≤ w1 [nlhdlr quadratic]

log(x) = w2 [expr log]

1. Add auxiliary variable w1 for root.

2. Run detect of all nlhdlrs on + node.

• nlhdlr quadratic detects a convex quadratic

structure and signals success.

• nlhdlr quadratic adds an auxiliary variable w2

for log node.

3. Run detect of all nlhdlrs on log node.

• No specialized nlhdlr signals success.

The expression handler will be used.

+

·2

log

x

×

2

·2

y

w1

quadratic

w2

expr log

16/31

Nonlinearity Handler in Expression Graph

• Nodes in the expression graph can have one or several nlhdlrs attached.

• At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)2 + 2 log(x)y + y 2 ≤ 4

w1 ≤ 4

w 2
2 + 2w2y + y 2 ≤ w1 [nlhdlr quadratic]

log(x) = w2 [expr log]

1. Add auxiliary variable w1 for root.

2. Run detect of all nlhdlrs on + node.

• nlhdlr quadratic detects a convex quadratic

structure and signals success.

• nlhdlr quadratic adds an auxiliary variable w2

for log node.

3. Run detect of all nlhdlrs on log node.

• No specialized nlhdlr signals success.

The expression handler will be used.

+

·2

log

x

×

2

·2

y

w1

quadratic

w2

expr log

16/31

Handler for quadratic subexpressions

• Recognize quadratic forms (sums of squares and products in two terms).

• Recognize convexity by checking coefficient matrix for positive semidefiniteness.

Use this to provide tight linear underestimators by linearization.

• Provide better bound tightening, in particular for univariate quadratics:

{ax2 + bx : x ∈ [`, u]} =

conv{a`2 + b`, au2 + bu,− b2

4a
}, if − b

2a
∈ [`, u],

conv{a`2 + b`, au2 + bu}, otherwise

{x : ax2 + bx ≥ c} =


[
−∞,−

√
c
a

+ b2

4a2 − b
2a

]
∪
[√

c
a

+ b2

4a2 − b
2a
,∞
]
, if a > 0,[

−
√

c
a

+ b2

4a2 − b
2a
,
√

c
a

+ b2

4a2 − b
2a

]
, if a < 0.

17/31

Impact of handler for quadratics

previous (base case) + quadratic handler

solved (out of 1618) 807 843

solved by both 790

solved by both and affected3 312

mean time4 (on solved&affected) 12.7s 9.7s

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

time(+quadratic handler)/time(previous)

#
in

st
an

ce
s

Time (all instances)

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

gap(+quadratic handler)/gap(previous)

#
in

st
an

ce
s

Gap at termination (all instances)

3affected = different search path, indicated by different number of B&B nodes or LP iterations
4shifted geometric mean with shift = 1s:

∏n
i=1(ti + 1)1/n − 1

18/31

Separator for RLT

• for bilinear products xixj , we may have introduced auxiliary variables wi,j

• the expression handler for products generates McCormick inequalities:

(xi − `i)(xj − `j) ≥ 0 ⇒ wi,j ≥ `ixj + `jxi − `i `j

(xi − ui)(xj − uj) ≥ 0 ⇒ wi,j ≥ uixj + ujxi − uiuj

(xi − `i)(xj − uj) ≤ 0 ⇒ wi,j ≤ `ixj + ujxi − `iuj

(xi − ui)(xj − `j) ≤ 0 ⇒ wi,j ≤ uixj + `jxi − ui `j

Reformulation-Linearization Technique [Adams and Sherali, 1986]:

• additional valid cuts can be obtained by multiplication with linear constraints:

aTx ≥ b × xj − `j ⇒ aTw·,j − aTx `j ≥ bxj − b `j

aTx = b × xj ⇒ aTw·,j = bxj

• in our implementation, we only look for RLT cuts that do not introduce new

auxiliary variables wi,j

• very effective for pooling problems

19/31

Separator for RLT

• for bilinear products xixj , we may have introduced auxiliary variables wi,j

• the expression handler for products generates McCormick inequalities:

(xi − `i)(xj − `j) ≥ 0 ⇒ wi,j ≥ `ixj + `jxi − `i `j

(xi − ui)(xj − uj) ≥ 0 ⇒ wi,j ≥ uixj + ujxi − uiuj

(xi − `i)(xj − uj) ≤ 0 ⇒ wi,j ≤ `ixj + ujxi − `iuj

(xi − ui)(xj − `j) ≤ 0 ⇒ wi,j ≤ uixj + `jxi − ui `j

Reformulation-Linearization Technique [Adams and Sherali, 1986]:

• additional valid cuts can be obtained by multiplication with linear constraints:

aTx ≥ b × xj − `j ⇒ aTw·,j − aTx `j ≥ bxj − b `j

aTx = b × xj ⇒ aTw·,j = bxj

• in our implementation, we only look for RLT cuts that do not introduce new

auxiliary variables wi,j

• very effective for pooling problems

19/31

Impact of RLT separator

previous + RLT

solved (out of 1618) 843 857

solved by both 834

solved by both and affected 125

mean time (on solved&affected) 7.5s 5.0s

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

time(+RLT)/time(previous)

#
in

st
an

ce
s

Time (all instances)

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

gap(+RLT)/gap(previous)

#
in

st
an

ce
s

Gap at termination (all instances)

20/31

Tighter convex relaxations for bilinear terms

• McCormick inequalities give convex hull for xixj on box [`i , `j]× [ui , uj]

• they do not if additional inequalities are present, e.g., xi ≤ xj :

green — graph of wij = xixj

yellow — McCormick relaxation of xixj over [−2, 2]2

red — convex envelope of xixj over {(xi , xj) ∈ [−2, 2]2 : xi ≤ xj}
• closed formulas and algorithms are known [Linderoth 2004, Hijazi 2015, Locatelli

2016]

21/31

2D projections for xixj

Problem: inequalities utilizing only xi and xj may not be present in problem

Solution5: Project LP relaxation onto (xi , xj), P := projxi ,xj (LP)

• assume variable bounds are tight

• M := (ui+`i
2

,
uj+`j

2
) ∈ P

• every facet of P separates at most

one of the 4 corners

• optimize along directions from M

to each corner

⇒ P ′ ⊇ P described by at most

• 4 nontrivial inequalities

• 4 axis-parallel inequalities

xi

xj

P

M

P ′

• close connections to optimization-based bound tightening (project LP onto one

variable) [Gleixner and Weltge, 2013]

• projections also used to improve bound tightening on xixj

5Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15
22/31

2D projections for xixj

Problem: inequalities utilizing only xi and xj may not be present in problem

Solution5: Project LP relaxation onto (xi , xj), P := projxi ,xj (LP)

• assume variable bounds are tight

• M := (ui+`i
2

,
uj+`j

2
) ∈ P

• every facet of P separates at most

one of the 4 corners

• optimize along directions from M

to each corner

⇒ P ′ ⊇ P described by at most

• 4 nontrivial inequalities

• 4 axis-parallel inequalities

xi

xj

P

M

P ′

• close connections to optimization-based bound tightening (project LP onto one

variable) [Gleixner and Weltge, 2013]

• projections also used to improve bound tightening on xixj

5Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15
22/31

2D projections for xixj

Problem: inequalities utilizing only xi and xj may not be present in problem

Solution5: Project LP relaxation onto (xi , xj), P := projxi ,xj (LP)

• assume variable bounds are tight

• M := (ui+`i
2

,
uj+`j

2
) ∈ P

• every facet of P separates at most

one of the 4 corners

• optimize along directions from M

to each corner

⇒ P ′ ⊇ P described by at most

• 4 nontrivial inequalities

• 4 axis-parallel inequalities

xi

xj

P

M

P ′

• close connections to optimization-based bound tightening (project LP onto one

variable) [Gleixner and Weltge, 2013]

• projections also used to improve bound tightening on xixj

5Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15
22/31

2D projections for xixj

Problem: inequalities utilizing only xi and xj may not be present in problem

Solution5: Project LP relaxation onto (xi , xj), P := projxi ,xj (LP)

• assume variable bounds are tight

• M := (ui+`i
2

,
uj+`j

2
) ∈ P

• every facet of P separates at most

one of the 4 corners

• optimize along directions from M

to each corner

⇒ P ′ ⊇ P described by at most

• 4 nontrivial inequalities

• 4 axis-parallel inequalities

xi

xj

P

M

P ′

• close connections to optimization-based bound tightening (project LP onto one

variable) [Gleixner and Weltge, 2013]

• projections also used to improve bound tightening on xixj

5Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15
22/31

2D projections for xixj

Problem: inequalities utilizing only xi and xj may not be present in problem

Solution5: Project LP relaxation onto (xi , xj), P := projxi ,xj (LP)

• assume variable bounds are tight

• M := (ui+`i
2

,
uj+`j

2
) ∈ P

• every facet of P separates at most

one of the 4 corners

• optimize along directions from M

to each corner

⇒ P ′ ⊇ P described by at most

• 4 nontrivial inequalities

• 4 axis-parallel inequalities

xi

xj

P

M

P ′

• close connections to optimization-based bound tightening (project LP onto one

variable) [Gleixner and Weltge, 2013]

• projections also used to improve bound tightening on xixj

5Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15
22/31

2D projections for xixj

Problem: inequalities utilizing only xi and xj may not be present in problem

Solution5: Project LP relaxation onto (xi , xj), P := projxi ,xj (LP)

• assume variable bounds are tight

• M := (ui+`i
2

,
uj+`j

2
) ∈ P

• every facet of P separates at most

one of the 4 corners

• optimize along directions from M

to each corner

⇒ P ′ ⊇ P described by at most

• 4 nontrivial inequalities

• 4 axis-parallel inequalities xi

xj

P

M P ′

• close connections to optimization-based bound tightening (project LP onto one

variable) [Gleixner and Weltge, 2013]

• projections also used to improve bound tightening on xixj

5Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15
22/31

2D projections for xixj

Problem: inequalities utilizing only xi and xj may not be present in problem

Solution5: Project LP relaxation onto (xi , xj), P := projxi ,xj (LP)

• assume variable bounds are tight

• M := (ui+`i
2

,
uj+`j

2
) ∈ P

• every facet of P separates at most

one of the 4 corners

• optimize along directions from M

to each corner

⇒ P ′ ⊇ P described by at most

• 4 nontrivial inequalities

• 4 axis-parallel inequalities xi

xj

P

M P ′

• close connections to optimization-based bound tightening (project LP onto one

variable) [Gleixner and Weltge, 2013]

• projections also used to improve bound tightening on xixj

5Details: Benjamin Müller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15
22/31

Impact of computing and utilizing 2D projections

previous + projections

solved (out of 1618) 857 857

solved by both 849

solved by both and affected 254

mean time (on solved&affected) 16.4s 17.3s

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

time(+projections)/time(previous)

#
in

st
an

ce
s

Time (all instances)

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

gap(+projections)/gap(previous)

#
in

st
an

ce
s

Gap at termination (all instances)

23/31

Linearizations of products of binary variables

Linearize
n∏

i=1

xi , xi ∈ {0, 1} :

• replace by a new variable z ∈ {0, 1}
• if n = 2, add linear constraints z ≤ x1, z ≤ x2, z ≥ x1 + x2 − 1

• if n > 2, add “and”-constraint z =
∧n

i=1 xi (specialized constraint handler)

Linearize

y
n∑

j=1

ajxj , xj ∈ {0, 1}, n ≥ 50 :

• replace by a new variable z ∈ {0, 1}, and

• add linear constraints

MLy ≤ z ≤ MUy ,∑
j ajxj −MU(1− y) ≤ z ≤

∑
j ajxj −ML(1− y)

24/31

Linearizations of products of binary variables

Linearize
n∏

i=1

xi , xi ∈ {0, 1} :

• replace by a new variable z ∈ {0, 1}
• if n = 2, add linear constraints z ≤ x1, z ≤ x2, z ≥ x1 + x2 − 1

• if n > 2, add “and”-constraint z =
∧n

i=1 xi (specialized constraint handler)

Linearize

y
n∑

j=1

ajxj , xj ∈ {0, 1}, n ≥ 50 :

• replace by a new variable z ∈ {0, 1}, and

• add linear constraints

MLy ≤ z ≤ MUy ,∑
j ajxj −MU(1− y) ≤ z ≤

∑
j ajxj −ML(1− y)

24/31

Impact of linearization of products of binary variables

previous + linearization

solved (out of 1618) 857 879

solved by both 857

solved by both and affected 70

mean time (on solved&affected) 24.3s 16.9s

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

time(+linearization of products)/time(previous)

#
in

st
an

ce
s

Time (all instances)

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

gap(+linearization of products)/gap(previous)

#
in

st
an

ce
s

Gap at termination (all instances)

25/31

Detecting of convexity

• analyze expressions using a set of rules, e.g.,

f (x) convex⇒ a · f (x)

convex, a ≥ 0

concave, a ≤ 0

f (x), g(x) convex⇒ f (x) + g(x) convex

f (x) concave⇒ log(f (x)) concave

f (x) =
∏
i

xei
i , xi ≥ 0⇒ f (x)


convex, ei ≤ 0 ∀i
convex, ∃j : ei ≤ 0 ∀i 6= j ;

∑
i ei ≥ 1

concave, ei ≥ 0 ∀i ;
∑

i ei ≤ 1

• find maximal convex subexpressions

• underestimate via gradient-cuts

26/31

Impact of convexity detection

previous + convexity

solved (out of 1618) 879 875

solved by both 868

solved by both and affected 325

mean time (on solved&affected) 14.3s 14.7s

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

time(+convexity)/time(previous)

#
in

st
an

ce
s

Time (all instances)

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

gap(+convexity)/gap(previous)

#
in

st
an

ce
s

Gap at termination (all instances)

27/31

“On/off“-terms

Given f (x) convex with x semicontinuous, i.e., there exists binary variable y such that

x = x0, if y = 0,

x ∈ [`, u], if y = 1.

For x0 = 0, f (0) = 0, the perspective cut [Frangioni, Gentile, 2006]

f (x̂)y +∇f (x̂)(x − x̂y) ≤ w

is valid for the disjunctive set

{(x , y , z) : x = x0, y = 0, f (x0) ≤ w} ∪ {(x , y , z) : x ∈ [`, u], y = 1, f (x) ≤ w}.

28/31

“On/off“-terms

Given f (x) convex with x semicontinuous, i.e., there exists binary variable y such that

x = x0, if y = 0,

x ∈ [`, u], if y = 1.

For x0 = 0, f (0) = 0, the perspective cut [Frangioni, Gentile, 2006]

f (x̂)y +∇f (x̂)(x − x̂y) ≤ w

is valid for the disjunctive set

{(x , y , z) : x = x0, y = 0, f (x0) ≤ w} ∪ {(x , y , z) : x ∈ [`, u], y = 1, f (x) ≤ w}.

28/31

Impact of perspective cuts

previous + perspective

solved (out of 1618) 875 883

solved by both 874

solved by both and affected 112

mean time (on solved&affected) 19.8s 15.8s

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

time(+perspective)/time(previous)

#
in

st
an

ce
s

Time (all instances)

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

gap(+perspective)/gap(previous)

#
in

st
an

ce
s

Gap at termination (all instances)

29/31

Symmetry detection

Example:

max x1 + x2 + x3

s.t. x1 + x2 ≥ 2√
x2

1 + x2
2 + x2

3 ≤ 5

Observation: For any feasible solution, exchanging x1 and x2 provides a new feasible

solution with same objective value.

• can be detected by finding automorphisms on a vertex-colored graph [Liberti 2010]

1

2

x1

x2

x3

√
.

+
(.)2

• SCIP aims to find and break symmetries on binary variables [SCIP 5 report, 2017]

30/31

Symmetry detection

Example:

max x1 + x2 + x3

s.t. x1 + x2 ≥ 2√
x2

1 + x2
2 + x2

3 ≤ 5

Observation: For any feasible solution, exchanging x1 and x2 provides a new feasible

solution with same objective value.

• can be detected by finding automorphisms on a vertex-colored graph [Liberti 2010]

1

2

x1

x2

x3

√
.

+
(.)2

• SCIP aims to find and break symmetries on binary variables [SCIP 5 report, 2017]

30/31

Impact of symmetry

previous + symmetry detect

solved (out of 1618) 883 881

solved by both 875

solved by both and affected 58

mean time (on solved&affected) 27.1s 19.1s

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

10
0

20
0

30
0

time(+symmetry detect)/time(previous)

#
in

st
an

ce
s

Time (all instances)

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

20

40

60

80

10
0

12
0

gap(+symmetry detect)/gap(previous)

#
in

st
an

ce
s

Gap at termination (all instances)

31/31

A new framework for NLP in SCIP

(work in progress)

Conclusion

Summary

The handling of nonlinear constraints in SCIP is rewritten.

The new code will be nicer, better, faster, greater:

• less issues with slightly infeasible solutions

• easier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons expr)

Expression Handler:

• var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

Nonlinearity Handler:

• quadratic: recognize and separate convex quadratic; domain propagation

• bilinear: tighter estimators and bounds for xixj over polytope

• convex: recognize some simple general convexities, separate by linearization

• perspective: perspective estimators for convex functions in semicontinuous vars.

• (default: wrap around expression handler)

New separator: RLT

Symmetry detection

32/31

Summary

The handling of nonlinear constraints in SCIP is rewritten.

The new code will be nicer, better, faster, greater:

• less issues with slightly infeasible solutions

• easier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons expr)

Expression Handler:

• var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

Nonlinearity Handler:

• quadratic: recognize and separate convex quadratic; domain propagation

• bilinear: tighter estimators and bounds for xixj over polytope

• convex: recognize some simple general convexities, separate by linearization

• perspective: perspective estimators for convex functions in semicontinuous vars.

• (default: wrap around expression handler)

New separator: RLT

Symmetry detection

32/31

Summary

The handling of nonlinear constraints in SCIP is rewritten.

The new code will be nicer, better, faster, greater:

• less issues with slightly infeasible solutions

• easier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons expr)

Expression Handler:

• var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

Nonlinearity Handler:

• quadratic: recognize and separate convex quadratic; domain propagation

• bilinear: tighter estimators and bounds for xixj over polytope

• convex: recognize some simple general convexities, separate by linearization

• perspective: perspective estimators for convex functions in semicontinuous vars.

• (default: wrap around expression handler)

New separator: RLT

Symmetry detection

32/31

Summary

The handling of nonlinear constraints in SCIP is rewritten.

The new code will be nicer, better, faster, greater:

• less issues with slightly infeasible solutions

• easier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons expr)

Expression Handler:

• var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

Nonlinearity Handler:

• quadratic: recognize and separate convex quadratic; domain propagation

• bilinear: tighter estimators and bounds for xixj over polytope

• convex: recognize some simple general convexities, separate by linearization

• perspective: perspective estimators for convex functions in semicontinuous vars.

• (default: wrap around expression handler)

New separator: RLT

Symmetry detection

32/31

Summary

The handling of nonlinear constraints in SCIP is rewritten.

The new code will be nicer, better, faster, greater:

• less issues with slightly infeasible solutions

• easier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons expr)

Expression Handler:

• var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

Nonlinearity Handler:

• quadratic: recognize and separate convex quadratic; domain propagation

• bilinear: tighter estimators and bounds for xixj over polytope

• convex: recognize some simple general convexities, separate by linearization

• perspective: perspective estimators for convex functions in semicontinuous vars.

• (default: wrap around expression handler)

New separator: RLT

Symmetry detection
32/31

Not ready yet, but getting closer

classic code new code

solved (out of 1618) 827 881

solved by both 748

mean time (on solved by both) 4.26s 5.19s

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

50

10
0

15
0

20
0

time(classic code)/time(new code)

#
in

st
an

ce
s

Time (all instances)

<
0.

01

(0
.0

1,
0.

1)

(0
.1
, 0
.5

)

(0
.5
, 0
.8

)

(0
.8
, 1
.2

5)

(1
.2

5,
2)

(2
, 1

0)

(1
0,

10
0)

≥
10

0

0

50

10
0

15
0

20
0

gap(classic code)/gap(new code)

#
in

st
an

ce
s

Gap at termination (all instances)

33/31

	Current Implementation (SCIP 6.0)
	A new framework for NLP in SCIP (work in progress)
	Fundamental structure
	Acceleration
	Conclusion

