Revising the handling of nonlinear constraints in SCIP

Work in Progress Report

Ksenia Bestuzheva, Benjamin Miiller, Felipe Serrano, Stefan Vigerske, Fabian Wegscheider

WCGO - Metz, France - July 9, 2019

SCIP: Solving Constraint Integer Programs

e modular branch-cut-and-price

framework for constraint integer
Download at scip.zib.de:

sc ization Suite

programming

SoPlex

e includes full-fledged
MIP /MINLP solver SCIP

Solving Constraint Intege

e part of SCIP Optimization Suite
(GCG, SCIP, SoPlex, UG, ZIMPL)

e Latest Release Report: The
SCIP Optimization Suite 6.0 by
Gleixner, Bastubbe, Eifler, Gally,
Gamrath, Gottwald, Hendel, Hojny,

Koch, Liibbecke, Maher, s N
Miltenberger, Miiller, Pfetsch, *
>

Puchert, Rehfeldt, Schlosser,

Schubert, Serrano, Shinano,

HowTo Cite

%

s for Soving MIPs and MINLP:

Viernickel, Wegscheider, Witt, oy dfou, S comes with a bouquet of e
Witzig

e free for academic use 2/31

scip.zib.de

Mixed-Integer Nonlinear Programming

min ¢’ x

s.t. gk(x) <0 Vk € [m]
xi € Z VieZC [n]
xi € [4i, ui] Vi € [n]

The functions g : [£, u] — R can be

or

A o

convex nonconvex

and are given in algebraic form.

3/31

SCIP solves MINLPs by spatial Branch & Bound

Ingredients: 0
e constructing an LP relaxation by 2

e relaxing integrality
e convexifying non-convexities 0s

4/31

SCIP solves MINLPs by spatial Branch & Bound
Ingredients: X o

e constructing an LP relaxation by
e relaxing integrality
e convexifying non-convexities g

e branching on kD ES o %

e fractional integer variables
e variables in violated nonconvex constraints g ™

e R

4/31

SCIP solves MINLPs by spatial Branch & Bound

Ingredients:
e constructing an LP relaxation by

e relaxing integrality

e convexifying non-convexities

e branching on -
e fractional integer variables
e variables in violated nonconvex constraints

°

tightening of variable bounds (domain propagation)

e primal heuristics

presolving / reformulation

4/31

Current Implementation (SCIP 6.0)

Expression trees and graphs

n m

cons_nonlinear (lhs < Z aixi + Z ¢ifj(x) < rhs) stores the nonlinear functions f; of
i=1 j=1

all constraints in one expression graph (DAG).

For example (MINLPLib instance nvs01):

2960.88 -+ 296088 - 0.0625x2
420.1691/900 + x2 — x3x1x5 = 0 +7200 — 2 x>0
1

Xobj — 0.047x71/900 4 x2 > 0

2960.88 + 18505.5x3

2960.88 + 18505.5y7

. 5/31
e some use of common subexpression

Expression operators and constraint handler

Operators (handled by cons_nonlinear):

e variable index, constant

o + — *x =

o 2/, P(peR), " (neZ) x x|x[P7t (p>1)
e exp, log

e min, max, abs

>, 11, affine-linear, quadratic, signomia

(user)

6/31

Expression operators and constraint handler

Operators (handled by cons_nonlinear):

e variable index, constant

o + — *x =

o 2/, P(peR), " (neZ) x x|x[P7t (p>1)
e exp, log

e min, max, abs

>, T1. affine-linear, quadratic, signomial

e (user)
Additional constraint handler:

e quadratic
e abspower (x — x|x|P™!, p > 1)
e SOC (second-order cones)

e (bivariate)

6/31

Reformulation in cons_nonlinear (during presolve)

Goal: Reformulate constraints such that only elementary cases (convex, concave, odd

power, quadratic) remain.

900+ x2 =z
—z34+ 2224 =0
2960.88 + 18505.5x3 = z3

0.047x02 2960.88 4 18505.5x2 .,
2060.88 + 1850557

7200+ x2 = z

X1X2 = 25
\VZ1l = Zp
900 + x? 7200 + x?

420.169\/z1 — x32z5 = 0
zp—x3 >0
0.047x226 < Xob;

420.169./z1 — x325 e —z3+ 22z
—y1+y2y3

O OO®

e reformulates constraints by introducing new variables and new constraints

e other constraint handler can participate

Problem with this approach

An optimal solution:
min z

' x=—1
Consider s.t. exp(In(1000) + 1+ xy) < z y=1
oy <2 z = 1000

8/31

Problem with this approach

An optimal solution:

min z =1
Consider

s.t. exp(In(1000) +1+xy) <z y=1

X 4y? <2 z = 1000

SCIP reports
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08
Solving Nodes : 5
Primal Bound 1 +9.99999656552062e+02 (3 solutions)
Dual Bound 1 +9.99999656552062e+02
Gap : 0.00 %

[nonlinear] <el>: exp((7.9077552789821368151 +1 (<x> * <y>)))-1<z>[C] <= 0;
violation: right hand side is violated by 0.000673453314561812
best solution is not feasible in original problem

x -1.00057454873626 (obj:0)
y 0.999425451364613 (obj:0)
z 999.999656552061 (obj:1)

8/31

Reformulated problem

Reformulation takes apart exp(In(1000) + 1 + x y), thus SCIP actually solves
min z
s.t. exp(w) < z
In(1000) + 1+ xy = w
X2+ y2 <2

9/31

Reformulated problem

Reformulation takes apart exp(In(1000) + 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) <z 0.4659 - 10~ ° < numerics/feastol v
In(1000) + 1+ xy = w 0.6731-10 ° < numerics/feastol v
4yt <2 0.6602 - 10™° < numerics/feastol v/

Solution (found by <relaxation>):
x = -1.000574549
y= 0.999425451
z =999.999656552
w= 6.907754936

9/31

Reformulated problem

Reformulation takes apart exp(In(1000) + 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) <z 0.4659 - 10~ ° < numerics/feastol v
In(1000) + 1+ xy = w 0.6731-10 ° < numerics/feastol v
4yt <2 0.6602 - 10™° < numerics/feastol v/

Solution (found by <relaxation>):

x= -1.000574549
y=0.999425451
z =999.999656552
w= 6.907754936

= Explicit reformulation of constraints ...

e ... looses the connection to the original problem.

9/31

Reformulated problem

Reformulation takes apart exp(In(1000) + 1 + x y), thus SCIP actually solves

min z Violation

s.t. exp(w) <z 0.4659 - 10" ° < numerics/feastol v
In(1000) + 1+ xy = w 0.6731-10 ° < numerics/feastol v
4yt <2 0.6602 - 10™° < numerics/feastol v/

Solution (found by <relaxation>):

x= -1.000574549
y=0.999425451
z =999.999656552
w= 6.907754936

= Explicit reformulation of constraints ...

e ... looses the connection to the original problem.
e ... looses distinction between original and auxiliary variables. Thus, we may
branch on auxiliary variables.

e ... prevents simultaneous exploitation of overlapping structures.
9/31

A new framework for NLP in SCIP
(work in progress)

A new framework for NLP in SCIP
(work in progress)

Fundamental structure

Everything is an expression.

e ONE constraint handler: cons_expr
e represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

e all algorithms (check, separation, propagation, etc.) work on the expression graph
(no upgrades to specialized nonlinear constraints)

10/31

Everything is an expression.

e ONE constraint handler: cons_expr
e represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

e all algorithms (check, separation, propagation, etc.) work on the expression graph
(no upgrades to specialized nonlinear constraints)

e separate expression operators (+, x) and high-level structures (quadratic, etc.)
= avoid redundancy / ambiguity of expression types (classic: +, >, linear, quad., ...)

e stronger identification of common subexpressions

10/31

Everything is an expression.

e ONE constraint handler: cons_expr
e represent all nonlinear constraints in one expression graph (DAG)
Ihs < expression-node < rhs

e all algorithms (check, separation, propagation, etc.) work on the expression graph
(no upgrades to specialized nonlinear constraints)

e separate expression operators (+, x) and high-level structures (quadratic, etc.)
= avoid redundancy / ambiguity of expression types (classic: +, >, linear, quad., ...)

e stronger identification of common subexpressions
Do not reformulate constraints.

e introduce auxiliary variables for the relaxation only

10/31

Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
e presolve,

e propagate domains, ...

11/31

Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
e presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4

log(x) + 2log(x)y +y* = w1

11/31

Enforcement

Constraint:

log(x) + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
e presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4

wo + 2wz + wa

log(x)

log(x)y

y

2

2

w1

w2

w3

Wy

11/31

Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
e presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4

wo + 2wz + ws = wp
2

Ws = W2
Wsy = w3

2 _
Y =wa
log(x) = ws

4

&-@

11/31

Enforcement

Constraint:
log(x)* + 2log(x)y + y* < 4

This formulation is used to
e check feasibility,
e presolve,
e propagate domains, ...

(Implicit) Reformulation:

W1§4

wo + 2wz + ws = wp
2

Ws = W2
Wsy = w3

2 _
Y =wa
log(x) = ws

Used to construct LP relaxation.

4

&-@

11/31

Expression handler

Each operator type (4, X, pow, etc.) is implemented by an expression handler, which
can provide a number of callbacks:

e cvaluate and differentiate expression w.r.t. operands

e interval evaluation and tighten bounds on operands

e provide linear under- and over-estimators

e distribute branching scores to operands

e inform about curvature, monotonicity, integrality

e simplify, compare, print, parse, hash, copy, etc.

Expression handler are like other SCIP plugins, thus new ones can be added by users.

12/31

Motivating example revisited

minz s.t. exp(In(1000) + 1 +xy) <z, x* +y*> <2

Classic:

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive)
0 deleted vars, O deleted constraints, 1 added constraints,...

0 implications, O cliques

presolved problem has 4 variables (0 bin, 0 int, O impl, 4 cont)
and 3 constraints

2 constraints of type <quad

1 constraints of type <nonlinear>

[...]

SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08

Solving Nodes : 5

Primal Bound : +9.99999656552062e+02 (3 solutions)

Dual Bound : +9.99999656552062e+02

Gap £ 0.00 %

[nonlinear] <el>: exp((7.90776 + (<x> * <y>)))-1<z>[C] <= 0;
ed by 0.00067. 8

331

violation: right hand side is vi

best solution is not feasible in original problem

x (obj:0)
y 364613 (obj:0)
z 6552061 (obj:1)

13/31

Motivating example revisited

minz s.t. exp(In(1000) + 1 +xy) <z, x* +y*> <2

Classic: New:

presolving (3 rounds: 3 fast, 1 medium, 1 exhaustive):

presolving (5 rounds: 5 fast, 1 medium, 1 exhaustive):
straints,...

raints,... O deleted vars, O deleted constraints, 0 added c

0 deleted vars, O deleted constraints, 1 added co
0 implications, O cliques 0 implications, O cliques

presolved problem has 4 variabl

(0 bin, 0 int, O impl, 4 cont) presolved problem has 3 varia (0 bin, 0 int, 0 impl, 3 cont)

and 3 constraints

2 constraints of type <qua

1 constraints of type <nonlinear>

[...] [...1

SCIP Status : problem is solved [optimal solution found] SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.08 Solving Time (sec) : 0.47

Solving Nodes : 5 Solving Nodes : 16

Primal Bound : +9.99999656552062e+02 (3 solutions) Primal Bound : +9.99999949950021e+02 (2 solutions)

Dual Bound : +9.99999656552062e+02 Dual Bound : +9.99999949950021e+02

Gap :0.00 % Gap :0.00 %

[nonlinear] <el>: exp((7.90776 + (<x> * <y>)))-1<z>[C] <= 0;
ted by

314561812

D.0006

violation: right hand side is v
best solution is not feasible in original problem

626 (obj:0) x

x
y 0 (0bj:0) y
2 5552061 (obji1) z

Performance

e Testset: 1618 instances from MINLPLib!
e Time limit: 30 minutes, Optimality gap tolerance: 0.01%
e LP solver: CPLEX 12.9.0.0, NLP solver: IPOPT 3.12.11

‘ classic code new code

solution infeasible | 90 9

'http://www.minlplib.org, currently 1626 instances
%shifted geometric mean with shift = 1s: [[7(t; +1)V/" — 1 14/31

http://www.minlplib.org

Performance

e Testset: 1618 instances from MINLPLib!

e Time limit: 30 minutes, Optimality gap tolerance: 0.01%
e LP solver: CPLEX 12.9.0.0, NLP solver: IPOPT 3.12.11

classic code new code

solution infeasible

solved (out of 1618)

solved by both

mean time? (on solved by both)

Time (all instances)

instances
instances

time(new code) "

'http://www.minlplib.org, currently 1626 instances

Zshifted geometric mean with shift = 1s: T]7, (¢ + 1)/ —

9
807
701
4.52s

Gap at termination (all instances)

ap(new code) [gap(old code)

14/31

http://www.minlplib.org

A new framework for NLP in SCIP
(work in progress)

Acceleration

Exploiting structure

Constraint: log(x)* + 2log(x)y + y* < 4

Smarter reformulation:

e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).

15/31

Exploiting structure

Constraint: log(x)* + 2log(x)y + y* < 4

Smarter reformulation:

e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).

= Introduce auxiliary variable for log(x) only.

w? + 2wy +y2 <4
log(x) = w

Handle w? 4 2wy + y* < 4 as convex constraint (“gradient-cuts”).

15/31

Exploiting structure

Constraint: log(x)* + 2log(x)y + y* < 4
Smarter reformulation:
e Recognize that log(x)? + 2log(x)y + y? is convex in (log(x), y).
= Introduce auxiliary variable for log(x) only.
2 2
w” 2wy +y° <4
log(x) = w
Handle w? 4 2wy + y* < 4 as convex constraint (“gradient-cuts”).

Nonlinearity Handler:
e Adds additional separation and propagation algorithms for structures that can be
identified in the expression graph.

e Attached to nodes in expression graph, but does not define expressions or
constraints.

e Examples: quadratics, convex subexpressions, vertex-polyhedral

15/31

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

16/31

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

16/31

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

o JO

2

1. Add auxiliary variable wy for root.

16/31

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

o JO

2

1. Add auxiliary variable wy for root.
2. Run detect of all nlhdlrs on + node.

16/31

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have

auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

w < 4 Wi
quadratic

1. Add auxiliary variable wy for root.
2. Run detect of all nlhdlrs on + node.

e nlhdlr_quadratic detects a convex quadratic
structure and signals success.

16/31

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

wi
quadratic

W1§4

w3 +2way +y° < wi [nlhdlr_quadratic]

1. Add auxiliary variable wy for root.
2. Run detect of all nlhdlrs on + node. w2

e nlhdlr_quadratic detects a convex quadratic
structure and signals success.

e nlhdlr_quadratic adds an auxiliary variable wp
for log node.

16/31

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4
w1
quadratic

W1§4

w3 +2way +y° < wi [nlhdlr_quadratic]

1. Add auxiliary variable wy for root.
2. Run detect of all nlhdlrs on + node.

e nlhdlr_quadratic detects a convex quadratic
structure and signals success.

e nlhdlr_quadratic adds an auxiliary variable wp
for log node.

3. Run detect of all nlhdlrs on log node.

16/31

Nonlinearity Handler in Expression Graph

e Nodes in the expression graph can have one or several nlhdlrs attached.
e At beginning of solve, detection callbacks are run only for nodes that have
auxiliary variable. Detection callback may add auxiliary variables.

Constraint: log(x)? + 2log(x)y + y* < 4

wi
quadratic

w1 S 4
w3 +2way +y° < wi [nlhdlr_quadratic]

|0g(X) = W2 [expr,log]

1. Add auxiliary variable wy for root.
2. Run detect of all nlhdlrs on + node. w2
e nlhdlr_quadratic detects a convex quadratic
structure and signals success.
e nlhdlr_quadratic adds an auxiliary variable wp
for log node.
3. Run detect of all nlhdlrs on log node.
e No specialized nlhdlr signals success.
The expression handler will be used.

16/31

Handler for quadratic subexpressions

e Recognize quadratic forms (sums of squares and products in two terms).

e Recognize convexity by checking coefficient matrix for positive semidefiniteness.
Use this to provide tight linear underestimators by linearization.

e Provide better bound tightening, in particular for univariate quadratics:

2 + bl, bu,—2Y. if — L e, ul,
{2X2+bX2X€[Z7u]}: Conv{a + au® + bu a} ! 2a [”]

conv{al® + bl, au® + bu}, otherwise
—00, — \/ g 72 2£:| |:\/ g ? 227 OO:| ’ if a > 07
{x:ax’ +bx>c} =
Vit m/it ?*i} if a <0.

17/31

Impact of handler for quadratics

previous (base case) -+ quadratic handler

solved (out of 1618)

solved by both

solved by both and affected®
mean time* (on solved&affected)

Time (all instances)

instances

time(-+quadratic handler) /yime(

previous)

807 843
790
312

12.7s 9.7s

Gap at termination (all instances)

instances

gap(-+quadratic handier) gap(

previous)

3affected = different search path, indicated by different number of B&B nodes or LP iterations
“shifted geometric mean with shift = 1s: [T, (t; + nyn 1

18/31

Separator for RLT

e for bilinear products x;x;, we may have introduced auxiliary variables w; ;

e the expression handler for products generates McCormick inequalities:

(xi —€i)(xj —£;) >0 = wij > lixj + {ix; — il

(xi — uj)(xj —u;) >0 = W, > Uuixj + upx; — uju;
(xi —£i)(xj —uj) <0 = wij <Lixp + upx; — Liu;
(xi —u)(x—4) <0 = wij < upxg+ X — uil)

19/31

Separator for RLT

e for bilinear products x;x;, we may have introduced auxiliary variables w; ;

e the expression handler for products generates McCormick inequalities:

(i = ti)(x—4) =0 = wij > lixj + {xi — L

(xi — uj)(xj —u;) >0 = W, > Uuixj + upx; — uju;
(xi —£i)(xj —uj) <0 = wij <Lixp + upx; — Liu;
(xi —u)(x—4) <0 = wij < upxg+ X — uil)

Reformulation-Linearization Technique [Adams and Sherali, 1986]:

e additional valid cuts can be obtained by multiplication with linear constraints:

alx>b x x—1/ = aw,;—axl>bx— bl

T
ax=b x x = a w.j=bx

e in our implementation, we only look for RLT cuts that do not introduce new

auxiliary variables w; ;

e very effective for pooling problems

19/31

Impact of RLT separator

previous + RLT

solved (out of 1618) 843 857
solved by both 834
solved by both and affected 125
mean time (on solved&affected) 7.5s 5.0s
Time (all instances) Gap at termination (all instances)
L L
* #*
$ DS P P DS
P4 o T
I R s
time(+RLT) yime(previous) P(+RLT) /gap(previous)

20/31

Tighter convex relaxations for bilinear terms

e McCormick inequalities give convex hull for xix; on box [¢;, ;] X [ui, uj]

e they do not if additional inequalities are present, e.g., x; < x;:

green — graph of wj = xix;
— McCormick relaxation of x;x; over [—2, 2]
red — convex envelope of x;x; over {(x;,x;) € [~2,2]° : x; < x;}

e closed formulas and algorithms are known [Linderoth 2004, Hijazi 2015, Locatelli
2016]

21/31

2D projections for x;x;

Problem: inequalities utilizing only x; and x; may not be present in problem
- 5 . . L .
Solution”: Project LP relaxation onto (x;,;), P := proj, . (LP)
e assume variable bounds are tight
o i+ uitd
o M= (ufh Wiy ep
e every facet of P separates at most
one of the 4 corners

®Details: Benjamin Miiller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15 y
22/31

2D projections for x;x;

Problem: inequalities utilizing only x; and x; may not be present in problem
- 5 . . L .
Solution”: Project LP relaxation onto (x;,;), P := proj, . (LP)
e assume variable bounds are tight
o i+ uitd
o M= (ufh Wiy ep
e every facet of P separates at most
one of the 4 corners

e optimize along directions from M

to each corner

®Details: Benjamin Miiller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15 y
22/31

2D projections for x;x;

Problem: inequalities utilizing only x; and x; may not be present in problem
- 5 . . L .
Solution”: Project LP relaxation onto (x;,;), P := proj, . (LP)
e assume variable bounds are tight
o i+ uitd
o M= (ufh Wiy ep
e every facet of P separates at most
one of the 4 corners

e optimize along directions from M

to each corner

®Details: Benjamin Miiller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15 y
22/31

2D projections for x;x;

Problem: inequalities utilizing only x; and x; may not be present in problem
- 5 . . L .
Solution”: Project LP relaxation onto (x;,;), P := proj, . (LP)
e assume variable bounds are tight
o i+ uitd
o M= (ufh Wiy ep
e every facet of P separates at most
one of the 4 corners

e optimize along directions from M

to each corner

®Details: Benjamin Miiller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15 y
22/31

2D projections for x;x;

Problem: inequalities utilizing only x; and x; may not be present in problem
- 5 . . L .
Solution”: Project LP relaxation onto (x;,;), P := proj, . (LP)
e assume variable bounds are tight
o i+ uitd
o M= (ufh Wiy ep
e every facet of P separates at most
one of the 4 corners

e optimize along directions from M

to each corner

®Details: Benjamin Miiller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15 y
22/31

2D projections for x;x;

Problem: inequalities utilizing only x; and x; may not be present in problem
Solution®: Project LP relaxation onto (x;,x), P := projy, ,, (LP)
e assume variable bounds are tight
o i+ uitd
o M= (ufh Wiy ep
e every facet of P separates at most
one of the 4 corners

e optimize along directions from M
to each corner
= P’ D P described by at most

e 4 nontrivial inequalities
e 4 axis-parallel inequalities

®Details: Benjamin Miiller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for

Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15 y
22/31

2D projections for x;x;

Problem: inequalities utilizing only x; and x; may not be present in problem

Solution®: Project LP relaxation onto (x;,X;), P := projxl,’xj(LP)

assume variable bounds are tight

X 40 uitl;
M = (7“’2 ’,7121) epP
every facet of P separates at most
one of the 4 corners
optimize along directions from M
to each corner

P’ O P described by at most

e 4 nontrivial inequalities
e 4 axis-parallel inequalities

Xi

close connections to optimization-based bound tightening (project LP onto one
variable) [Gleixner and Weltge, 2013]
projections also used to improve bound tightening on x;x;

®Details: Benjamin Miiller, Felipe Serrano, Ambros Gleixner, Using two-dimensional Projections for
Stronger Separation and Propagation of Bilinear Terms, 2019, ZIB-Report 19-15

22/31

Impact of computing and utilizing 2D projections

previous -+ projections

solved (out of 1618) 857 857
solved by both 849
solved by both and affected 254
mean time (on solved&affected) 16.4s 17.3s
Time (all instances) Gap at termination (all instances)

instances
instances

time(+projections) /time(previous) gap(+projections) /gap(previous)

23/31

Linearizations of products of binary variables

Linearize

li[x,-7 x; € {0,1}:
i=1

e replace by a new variable z € {0,1}
e if n =2, add linear constraints z<x3, z<x, z>x1 +x — 1

e if n>2, add “and”-constraint z = A7

i_1 Xi (specialized constraint handler)

24/31

Linearizations of products of binary variables

Linearize

li[x,-7 x; € {0,1}:
i=1

e replace by a new variable z € {0,1}
e if n =2, add linear constraints z<x3, z<x, z>x1 +x — 1

e if n>2, add “and”-constraint z = A7

i_1 Xi (specialized constraint handler)

Linearize

n
yZapg, xj € {0,1}, n>50:
=1

e replace by a new variable z € {0,1}, and

e add linear constraints

24/31

Impact of linearization of products of binary variables

previous + linearization

solved (out of 1618) 857 879
solved by both 857
solved by both and affected 70
mean time (on solved&affected) 24.3s 16.9s

Time (all instances) Gap at termination (all instances)

instances
instances

N N N S PN IR I SO)

AQQ \Q\ v{) e@ g "3’1 w’& Q‘Bn > bl »Q\ \QL} an% ¥ e ”f\n n$ 2
RS SR & & e @7 ¢ W &
time(+linearization of products) /time(previous) gap(+inearization of products) /gap previous)

25/31

Detecting of convexity

e analyze expressions using a set of rules, e.g.,

convex, a>0
f(x) convex = a- f(x)
concave, a<0

f(x),g(x) convex = f(x) + g(x) convex
f(x) concave = log(f(x)) concave
convex, & <0V/
f(x) = fo",x,- >0= f(x)qconvex, Jj:e<OVi#£j; >, e>1
' concave, € >0Vi; Y .e<1
e find maximal convex subexpressions

e underestimate via gradient-cuts

26/31

Impact of convexity detection

instances

previous + convexity

solved (out of 1618)

solved by both

solved by both and affected
mean time (on solved&affected)

Time (all instances)

time(-+-convexity) /time(previous)

instances

879 875
868
325

14.3s 14.7s

Gap at termination (all instances)

&7 @7 W &
N ~

Sap(+converity)gap(previous)

27/31

“On/off“-terms

Given f(x) convex with x semicontinuous, i.e., there exists binary variable y such that
x = xp, ify=0,
x € lu], ify=1

28/31

“On/off“-terms

Given f(x) convex with x semicontinuous, i.e., there exists binary variable y such that
x = xp, ify=0,
x € lu], ify=1

For xo = 0, f(0) = 0, the perspective cut [Frangioni, Gentile, 2006]
f(R)y + VF(R)(x — &y) < w
is valid for the disjunctive set

{(x,y,2) : x=x0,y =0,f(x0) S w}U{(x,y,2) : x € [l,u],y =1,f(x) < w}.

T =0,2,=0

':(:; =07zp=10|
~— T g — B

28/31

Impact of perspective cuts

previous + perspective

solved (out of 1618) 875 883
solved by both 874
solved by both and affected 112
mean time (on solved&affected) 19.8s 15.8s
Time (all instances) Gap at termination (all instances)

instances
instances

time(-+perspective) /time(previous) gap(+perspective) fgap(previous)

29/31

Symmetry detection

Example:

max x1 + X2 + x3

s.t. X1—|—X222
X +x2+x2<5

Observation: For any feasible solution, exchanging x; and x» provides a new feasible
solution with same objective value.

30/31

Symmetry detection

Example:

max x1 + X2 + x3

s.t. X1—|—X222
X +x2+x2<5

Observation: For any feasible solution, exchanging x; and x» provides a new feasible
solution with same objective value.

e can be detected by finding automorphisms on a vertex-colored graph [Liberti 2010]

Ty
1
T2
9 e T
va +\'\'

e SCIP aims to find and break symmetries on binary variables [SCIP 5 report, 2017]

30/31

Impact of symmetry

previous + symmetry detect

solved (out of 1618) 883 881
solved by both 875
solved by both and affected 58
mean time (on solved&affected) 27.1s 19.1s
Time (all instances) Gap at termination (all instances)
©

instances
instances

imeCsymmetry deect)ime(prvious) gap(-+symmetry detect)gapprevious)

31/31

A new framework for NLP in SCIP
(work in progress)

Conclusion

The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

e less issues with slightly infeasible solutions
e casier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)

32/31

The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

e less issues with slightly infeasible solutions

e casier to extend by own operators and structure-exploiting algorithms
Core: new constraint handler (cons_expr)

Expression Handler:

e var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy

32/31

The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

e less issues with slightly infeasible solutions
e casier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)
Expression Handler:

e var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy
Nonlinearity Handler:

e quadratic: recognize and separate convex quadratic; domain propagation

e bilinear: tighter estimators and bounds for x;x; over polytope

e convex: recognize some simple general convexities, separate by linearization

e perspective: perspective estimators for convex functions in semicontinuous vars.

(default: wrap around expression handler)

32/31

The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

e less issues with slightly infeasible solutions
e casier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)
Expression Handler:

e var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy
Nonlinearity Handler:

e quadratic: recognize and separate convex quadratic; domain propagation

e bilinear: tighter estimators and bounds for x;x; over polytope

e convex: recognize some simple general convexities, separate by linearization

e perspective: perspective estimators for convex functions in semicontinuous vars.

(default: wrap around expression handler)

New separator: RLT

32/31

The handling of nonlinear constraints in SCIP is rewritten.
The new code will be nicer, better, faster, greater:

e less issues with slightly infeasible solutions
e casier to extend by own operators and structure-exploiting algorithms

Core: new constraint handler (cons_expr)
Expression Handler:

e var, value, sum, product, pow, signed pow, abs, exp, log, cos, sin, entropy
Nonlinearity Handler:

e quadratic: recognize and separate convex quadratic; domain propagation

e bilinear: tighter estimators and bounds for x;x; over polytope

e convex: recognize some simple general convexities, separate by linearization

e perspective: perspective estimators for convex functions in semicontinuous vars.

(default: wrap around expression handler)
New separator: RLT

Symmetry detection 32/31

Not ready yet, but getting closer

‘ classic code new code

solved (out of 1618) 827 881

solved by both 748

mean time (on solved by both) 4.26s 5.19s
Time (all instances) Gap at termination (all instances)

instances
instances

time(classic code) /time(new code) gap(classic code) /gap(new code)

33/31

	Current Implementation (SCIP 6.0)
	A new framework for NLP in SCIP (work in progress)
	Fundamental structure
	Acceleration
	Conclusion

