Mathematik 2 Altklausuren

Lösungen ausgewählter Aufgaben

Aufgaben

1.	Eigenschaften linearer Abbildungen, 20 Punkte	.1
2.	Lineare Gleichungssysteme, 30 Punkte	
	Eigenwerte/Eigenvektoren, Diagonalisierbarkeit, 25 Punkte	
	Kritische Punkte von mehrdimensionalen Funktionen, 25 Punkte	
	Wegunabhängiges Kurvenintegral, 25 Punkte	
٥.	Wegandonangiges karvenintegral, 25 rankte illinintinininininininininininininininin	••

Diese Aufgaben stellen lediglich eine Auswahl von potenziellen Klausuraufgaben dar. Eine vollständige Übersicht von klausurrelevanten Themen ist zu finden auf:

https://www.zib.de/weber/Klausurvorbereitung2.pdf

1. Eigenschaften linearer Abbildungen, 20 Punkte

Gegeben sei die Matrix

$$\underline{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}$$

- a) Ist die Matrix \underline{S}_{α} orthogonal? Begründen Sie Ihre Antwort mit Hilfe einer Rechnung.
- b) Berechnen Sie die Determinante der Matrix Begründen Sie mit Hilfe der Determinante: Stellt eine volumentreue Abbildung dar? Stellt die Matrix eine spiegelfreie Abbildung dar?
- c) Berechnen Sie die Eigenwerte von \underline{S}_{α}
- d) Stellt \underline{S}_{α} eine Achsenspiegelung dar? Ohne Rechnung und ohne Begründung: Wie verlaufen die zwei Eigenvektoren von bezüglich der Spiegelachse?

Lösung:

a) Für Orthogonalität muss $\underline{S}_{\alpha} \left(\underline{S}_{\alpha}\right)^T = \underline{E}$ gelten. Wir prüfen:

$$\underline{S}_{\alpha} \left(\underline{S}_{\alpha} \right)^{T} = \underline{S}_{\alpha} \, \underline{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} \\
= \begin{pmatrix} \cos^{2}(\alpha) + \sin^{2}(\alpha) & \cos(\alpha)\sin(\alpha) - \sin(\alpha)\cos(\alpha) \\ \sin(\alpha)\cos(\alpha) - \cos(\alpha)\sin(\alpha) & \cos^{2}(\alpha) + \sin^{2}(\alpha) \end{pmatrix}$$

Mit dem trigonometrischen Pythagoras ($\cos^2(\alpha) + \sin^2(\alpha) = 1$) folgt:

$$\underline{S}_{\alpha} \left(\underline{S}_{\alpha} \right)^{T} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \underline{E}$$

Also ist die Matrix orthogonal.

b)

$$\det(\underline{S}_{\alpha}) = \det\begin{pmatrix}\cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha)\end{pmatrix} = -\cos^{2}(\alpha) - \sin^{2}(\alpha) = -[\sin^{2}(\alpha) + \cos^{2}(\alpha)] = -1$$

Die Abbildung ist volumentreu (Betrag der Determinante ist 1) und nicht orientierungserhaltend (negatives Vorzeichen), d.h. \underline{S}_{α} ist keine spiegelfreie Abbildung.

c) Die Eigenwerte von \underline{S}_{α} entsprechen den Nullstellen des charakteristischen Polynoms $\det(\underline{S}_{\alpha} - \lambda E)$

$$\det(\underline{S}_{\alpha} - \lambda \underline{E}) = \det\begin{pmatrix} \cos(\alpha) - \lambda & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) - \lambda \end{pmatrix} = [\cos(\alpha) - \lambda][-\cos(\alpha) - \lambda] - \sin^{2}(\alpha)$$
$$= -\cos^{2}(\alpha) + \lambda^{2} - \sin^{2}(\alpha) = \lambda^{2} - [\sin^{2}(\alpha) + \cos^{2}(\alpha)] = \lambda^{2} - 1$$

Die Nullstellen lauten $\lambda_{1,2} = \pm 1$.

d) Ein Eigenvektor (zu $\lambda_1=1$) liegt innerhalb der Spiegelachse, damit er durch \underline{S}_{α} auf sich selbst abgebildet wird. Der andere Eigenvektor (zu $\lambda_1=-1$) verläuft orthogonal zur Spiegelachse und dreht bei Abbindung seine Ausrichtung um.

1

2. Lineare Gleichungssysteme, 30 Punkte

Gegeben sei die Matrix

$$\underline{A} = \begin{pmatrix} 1 & 2 & 5 & 1 \\ 0 & 1 & 2 & 1 \\ -1 & 2 & 3 & 3 \end{pmatrix}$$

und die beiden Vektoren $\vec{b} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$ und $\vec{b} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$.

- a) Berechnen Sie Bild und Kern der Matrix A.
- b) Ist das lineare Gleichungssystem $\underline{A}\vec{x} = \vec{b}$ für $x \in \mathbb{R}^4$ lösbar?
- c) Ist das lineare Gleichungssystem $\underline{A}\vec{x}=\vec{\hat{b}}$ für $x\in\mathbb{R}^4$ lösbar? Wenn ja, wie lautet die allgemeine Lösung des Gleichungssystems?

Lösung:

a) Die Anwendung des Bild-Kern-Algorithmus liefert

$$(\underline{A}|\underline{E}) = \begin{pmatrix} 1 & 2 & 5 & 1 \\ 0 & 1 & 2 & 1 \\ -1 & 2 & 3 & 3 \end{pmatrix} \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 \\ -1 & 4 & 8 & 4 \end{pmatrix} \begin{vmatrix} 1 & -2 & -5 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 4 & 0 & 0 \end{pmatrix} \begin{vmatrix} 1 & -2 & -1 & -1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ -1 & 4 & 0 & 0 \end{vmatrix}$$

Somit lauten bild $(\underline{A}) = \mu_1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \mu_2 \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$ und $\operatorname{kern}(\underline{A}) = \mu_3 \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + \mu_4 \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}$

b) Das Gleichungssystem ist lösbar, falls \vec{b} im Bild von \underline{A} enthalten ist. Prüfe:

$$\operatorname{bild}(\underline{A}) = \mu_1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \mu_2 \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \Rightarrow I: \mu_1 = 3, \quad II: \mu_2 = 1, \quad III: -\mu_1 + 4\mu_2 = 2$$

Einsetzten von (I) und (II) in (III) ergibt einen Widerspruch, da $-3+4=-1\neq 2$. Das Gleichungssystem $A\vec{x}=\vec{b}$ ist folglich nicht lösbar.

c) Das Gleichungssystem ist lösbar, falls $\vec{\hat{b}}$ im Bild von A enthalten ist.

$$\operatorname{bild}(\underline{A}) = \mu_1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \mu_2 \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \Rightarrow \operatorname{I:} \mu_1 = 3, \quad \operatorname{II:} \mu_2 = 1, \quad \operatorname{III:} -\mu_1 + 4\mu_2 = 1$$

Einsetzten von (I) und (II) in (III) zeigt, dass das Gleichungssystem lösbar ist. Da der Kern von A nicht trivial ist (s. Aufgabenteil a)), ist das Gleichungssystem mehrdeutig lösbar. Die allgemeine Lösung lautet:

2

3

$$\begin{pmatrix} 1 & -2 & -1 & -1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \vec{\mu} = \begin{pmatrix} 1 & -2 & -1 & -1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ \mu_3 \\ \mu_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu_3 \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + \mu_4 \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

3. Eigenwerte/Eigenvektoren, Diagonalisierbarkeit, 25 Punkte

a) Berechnen Sie die Eigenwerte der folgenden Matrix A:

$$\underline{A} = \begin{pmatrix} 5/2 & 1/2 & 0 \\ 1/2 & 5/2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

(Tipp: Ein Eigenwert lautet $\lambda_1 = 3$).

- b) Berechnen Sie zu jedem Eigenwert die zugehörigen Eigenvektoren.
- c) Warum ist A diagonalisierbar?

Lösung:

a) Die Eigenwerte von \underline{A} entsprechen den Nullstellen des charakteristischen Polynoms $\det(\underline{A} - \lambda \underline{E})$:

$$\det(\underline{A} - \lambda \underline{E}) = \begin{pmatrix} 5/2 - \lambda & 1/2 & 0 \\ 1/2 & 5/2 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{pmatrix} = \left(\frac{5}{2} - \lambda\right)^2 (3 - \lambda) - \frac{1}{4}(3 - \lambda)$$

Ausklammern von $(3 - \lambda)$ liefert:

$$\det(\underline{A} - \lambda \underline{E}) = (3 - \lambda) \left[\left(\frac{5}{2} - \lambda \right)^2 - \frac{1}{4} \right] = (3 - \lambda) [\lambda^2 - 5\lambda + 6]$$

Die erste Nullstelle kann direkt abgelesen werden: $\lambda_1=3$. Die beiden anderen Nullstellen folgen aus der pq-Formel (wobei $6=\frac{24}{4}$):

$$\lambda_{2,3} = \frac{5}{2} \pm \sqrt{\frac{25}{4} - \frac{24}{4}} = \frac{5}{2} \pm \sqrt{\frac{1}{4}} = \frac{5}{2} \pm \frac{1}{2}$$

Also folgt: $\lambda_{1,2} = 3$ und $\lambda_3 = 2$.

b) Die Eigenvektoren zu $\lambda_{1,2}=3$ folgen mit dem Bild-Kern-Algorithmus:

$$(\underline{A} - \lambda_{1,2} \underline{E} | \underline{E}) = \begin{pmatrix} -1/2 & 1/2 & 0 & 1 & 0 & 0 \\ 1/2 & -1/2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -1/2 & 0 & 0 & 1 & 0 & 1 \\ 1/2 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Die Eigenvektoren zu $\lambda_{1,2}=3$ lauten: $\vec{v}_1=(0,0,1)^T$ und $\vec{v}_2=(1,1,0)^T$.

Die Eigenvektoren zu $\lambda_3=2$ werden analog bestimmt:

$$(\underline{A} - \lambda_3 \underline{E} | \underline{E}) = \begin{pmatrix} 1/2 & 1/2 & 0 & 1 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1/2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1/2 & 0 & 0 & 1 & 0 & -1 \\ 1/2 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1/2 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Der Eigenvektor zu $\lambda_3 = 2$ lautet: $\vec{v}_3 = (-1, 1, 0)^T$.

c) Die Matrix \underline{A} ist diagonalisierbar, weil die geometrischen und die algebraischen Vielfachheiten der Eigenwerte gleich sind.

4. Kritische Punkte von mehrdimensionalen Funktionen, 25 Punkte

Gegeben sei folgende zweidimensionale, reelle Funktion

$$f(x, y) = \sin(x) + y(x - \pi)$$

- a) Berechnen Sie den Gradienten und die Hessematrix der Funktion
- b) Berechnen Sie einen kritischen Punkt der Funktion.
- c) Handelt es sich bei dem kritischen Punkt aus Aufgabenteil b) um ein Minimum, Maximum oder um einen Sattelpunkt? Begründen Sie mit Hilfe (einer Eigenwertanalyse) der Hessematrix.

Lösung:

a) Mithilfe der Rechenregeln für partielle Ableitungen finden wir schnell:

$$\vec{\nabla}f = \begin{pmatrix} f_x \\ f_y \end{pmatrix} = \begin{pmatrix} \cos(x) + y \\ x - \pi \end{pmatrix}$$

$$\underline{H}_f = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} -\sin(x) & 1 \\ 1 & 0 \end{pmatrix}$$

b) Für kritische Punkte muss $\vec{\nabla} f = \vec{0}$ gelten. Daraus folgt ein Gleichungssystem:

I:
$$cos(x) + y = 0$$

II: $x - \pi = 0$

Aus Gleichung (II) folgt sofort, dass $x=\pi$. Durch Einsetzen in (I) finden wir, dass y=1 ist. Das heißt wir wir haben den kritischen Punkt $(x,y)^T=(\pi,1)^T$ gefunden.

c) Wir betrachten die Nullstellen von $\det(\underline{H}_f - \lambda \underline{E})$ an dem Punkt $(\pi, 1)^T$.

$$\det(\underline{H}_f - \lambda \underline{E}) = \begin{pmatrix} -\sin(\pi) - \lambda & 1 \\ 1 & 0 - \lambda \end{pmatrix} = \begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix} = (-\lambda)^2 - 1 = \lambda^2 - 1$$

Da $\lambda_1=1$, $\lambda_2=-1$ handelt es sich bei dem kritischen Punkt um einen Sattelpunkt erster Ordnung.

Δ

5

5. Wegunabhängiges Kurvenintegral, 25 Punkte

Zu berechnen ist folgendes Kurvenintegral:

$$\int_{C} \exp(x+y) \, dx + \{ \exp(x+y) + 3y^2 \} \, dy$$

wobei die Kurve \mathcal{C} einen Halbkreis um den Ursprung vom Anfangspunkt (-1,0) bis zum Endpunkt (1,0) beschreibt.

- a) Zeigen Sie zunächst mit Hilfe der Exaktheitsbedingung, dass das Kurvenintegral wegunabhängig ist.
- b) Finden Sie alle Funktionen z(x,y) deren totales Differential $dz = \exp(x+y) dx + \{\exp(x+y) + 3y2 dy\}$ lautet. Geben Sie den Rechenweg an.
- c) Zeigen Sie durch Rechnung, dass das Kurvenintegral den Wert $e-\frac{1}{e}$ hat.

Lösung:

a) Das Kurvenintegral ist genau dann wegunabhängig, wenn $\exp(x+y) dx + \{\exp(x+y) + 3y^2\} dy$ exakt ist. Prüfe Integrabilitätsbedingung:

$$\frac{\partial P(x,y)}{\partial y} = \frac{\partial}{\partial y} \exp(x+y) = \exp(x+y) = \frac{\partial}{\partial x} \{ \exp(x+y) + 3y^2 \} = \frac{\partial Q(x,y)}{\partial x}$$

Die Bedingung ist erfüllt, das Kurvenintegral ist also wegunabhängig.

b) Es gilt $\exp(x + y) dx + \{\exp(x + y) + 3y^2\} dy = P(x, y) dx + Q(x, y) dy$.

Vorgehen: (i) Integriere P(x, y) nach x:

$$\int \exp(x+y) \, dx = \exp(x+y) + c(y)$$

(ii) Leite das Ergebnis nach y ab:

$$\frac{\partial}{\partial y} \{ \exp(x + y) + c(y) \} = \exp(x + y) + c'(y)$$

(iii) Vergleiche das Ergebnis mit Q(x, y):

$$\exp(x + y) + c'(y) = \exp(x + y) + 3y^2 \Rightarrow c'(y) = 3y^2$$

(iv) Bestimme alle Funktionen z(x, y):

$$\int c'(y) dy = y^3 + \tilde{c} \Rightarrow z(x, y) = \exp(x + y) + y^3 + \tilde{c}$$

c) Es gilt:

$$\int_{c} P(x,y)dx + Q(x,y)dy = \int_{(-1,0)}^{(1,0)} z_{x}(x,y)dx + z_{y}(x,y)dy = z(1,0) - z(-1,0) = e - \frac{1}{e}$$

M. Weber, M. Kapitzke, L. Eitelhuber