FU Berlin: SoSe 2019 (Mathematik 1, Weber)

Übungszettel Nr. 1, Abgabe 24.04.2019

Lernziel: Euklidischer Ring, Polynome (Faktorisierung und Nullstellen), Euklidischer Algorithmus, Horner-Schema.

Aufgabe 1: (Polynomdivision / Euklidischer Ring) Die Menge der ganzen Zahlen \mathbb{Z} ist abgeschlossen bezüglich der Addition, der Multiplikation und der Subtraktion. Nur bei der Division gilt dieses nicht: Stattdessen gibt es die "Division mit Rest". Das gleiche Verhalten gilt auch für die Menge $\mathbb{Q}[X]$ der Polynome mit rationalen Koeffizienten.

a) Führen Sie in \mathbb{Z} und in $\mathbb{Q}[X]$ eine Division mit Rest durch:

$$849 = 7 \times \dots + \dots$$

 $x^3 - 2x + 5 = (x^2 + 1) \times \dots + \dots$

- b) Denkt man sich die Divisionsaufgabe als "Divisor X Quotient + Rest = Dividend", dann ist der Rest bei der Division 'kleiner' als der Divisor. Wie ist der Begriff 'kleiner' bei der Division ganzer Zahlen und bei der Polynomdivision zu verstehen?
- c) In $\mathbb{Z}[X]$ (Polynome mit ganzzahligen Koeffizienten) gibt es diese Division mit 'kleinerem' Rest nicht. Probieren Sie $x^3 + 3 = (2x^2 + 1) \times \cdots + \cdots$ zu rechnen, ohne Bruchzahlen zu verwenden!

Aufgabe 2: (Euklidischer Algorithmus)

Benutzen Sie den Euklidischen Algorithmus, um den ggT von Nenner und Zähler zu bestimmen und somit folgende Brüche zu kürzen:

$$\frac{105}{147} \qquad \frac{x^3 - 2x^2 - x + 2}{x^3 + x^2 - x - 1}$$

Für mutige Studierende, die über den "Klausur-Tellerrand" hinausblicken wollen: Das ggT-Verfahren geht sogar für Polynome in mehreren Veränderlichen. Versuchen Sie mal, den ggT von x³y+x²y-xy²-y²-2x³-2x²+2xy+2y und x³y-x²y-xy²+y²-2x³+2x²+2xy-2y zu bestimmen... auch hier wird der Rest bei Division immer 'kleiner'. Diese Aufgabe können Sie nur lösen, wenn Sie im Netz recherchieren, wie Polynomdivision in mehreren Veränderlich geht. Das ist nämlich komplizierter.

Aufgabe 3: (Polynome faktorisieren, Horner-Schema)

- a) Schreiben Sie die Polynome $x^3 2x^2 x + 2$ und $x^3 + x^2 x 1$ als Produkt von Faktoren der Form (x + ...), also "Linearfaktoren", indem Sie z.B. die Resultate aus Aufgabe 2 benutzen.
- b) $x^3 2x^2 + x 2$ hat eine Nullstelle bei $x_1 = 2$. Zeigen Sie dieses mit Hilfe des Horner-Schemas. Lässt sich das Polynom auch als Produkt von Linearfaktoren schreiben?
- c) Sie haben in der Schule gelernt, wie man die Nullstellen von quadratischen Polynomen berechnet. Wie lautet die Zerlegung in Linearfaktoren von $x^2 2x 2$?

Aufgabe 4: (Rationale Zahlen) Gibt es eine rationale Zahl $x \in \mathbb{Q}$, die die Gleichung $x^3 = 126$ löst? Schauen Sie sich dazu den Artikel bei Wikipedia zu der "Irrationalität der Wurzel aus 2 (Euklid)" an und versuchen Sie, in dem Artikel den einen relevanten Hinweis zum Beantworten dieser Aufgabe zu finden.

Viel Erfolg!