Institut für Mathematik Freie Universität Berlin Dr. K. Fackeldey & Dr. M. Weiser

5. Übung zur Vorlesung ANALYSIS II SoSe 2012

Abgabe: 22.05.2012, 14:00 Tutorenfächer

Selbsteinschätzung: Bitte geben Sie zu jeder Aufgabe an, wie viele Punkte Sie Ihrer Meinung nach für die Lösung verdienen!

 ${\bf 1.~Aufgabe}~Gewöhnliche~Differentialgleichungen~(4~Punkte)$ Gegeben sei das Anfangswertproblem

$$y'(t) = -\epsilon y(t) + \sin(\omega t), \quad y(0) = 0$$

mit $\epsilon, \omega > 0$.

- 1. Geben Sie eine analytische Lösung an.
- 2. Diskutieren Sie den Einfluß von großen ϵ und ω auf Auswirkungen von Störungen $y(0)=\delta$ auf die Lösung.
- **2. Aufgabe** Globale Eigenschaften von DGL (4 Punkte) Zeigen Sie Existenz und Eindeutigkeit der Lösung von

$$y'(t) = \cos(y(t)), \quad y(0) = 0$$

für alle $t \in \mathbb{R}_+$.

3. Aufgabe Malen nach Normen (4 Punkte)

Die Einheitsspähre bzgl. einer Norm $\|\cdot\|$ auf dem Verktorraum \mathbb{R}^n ist definiert durch

$$S := \{ x \in \mathbb{R}^n; ||x|| = 1 \}.$$

Man skizziere die durch die l_1 -Norm, euklidische Norm und die l_∞ - Norm erzeugten Einheitspähren in \mathbb{R}^2 .

Desweiteren skizziere man Einheitspähren in \mathbb{R}^2 für die folgenden gewichteten Normen, wobei $x=(x_1,x_2)^T$:

- a) gewichtete l_1 -Norm: $||x||_{\omega_1} := |x_1| + 2|x_2|$,
- b) gewichtete l_2 -Norm: $||x||_{\omega_2} := (|x_1|^2 + 2|x_2|^2)^{1/2}$ (verbessert!),
- c) ewichtete l_{∞} -Norm: $||x||_{\omega_{\infty}} := \max(|x_1|, 2|x_2|),$
- **4.** Aufgabe Bekanntes in höhere Dimensionen übertragen (4 Punkte) Beweisen Sie den Satz 3.1 (Satz von Cauchy und Satz von Bolzano-Weierstrass) aus den Vorlesungsunterlagen. (Hinweis: Schauen Sie sich zunächst diese Beweise nochmal in Ihren Analysis I Unterlagen an)