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Abstract: Recently developed Concentric Tube Continuum Robots (CTCRs) are widely exploited in, for example in
minimally invasive surgeries which involve navigating inside narrow body cavities close to sensitive regions.
These CTCRs can be controlled by extending and rotating the tubes one inside the other in order to reach a
target point or perform some task. The robot must deviate as little as possible from this narrow space and avoid
damaging neighbouring tissue. We consider open-loop optimal control of CTCRs parameterized over pseudo-
time, primarily aiming at minimizing the robot’s working volume during its motion. External loads acting on
the system like tip loads or contact with tissues are not considered here. We also discussed the inclusion of
tip’s orientation in the optimal framework to perform some tasks. We recall a quaternion-based formulation
of the robot configuration, discuss discretization, develop optimization objectives addressing different criteria,
and investigate their impact on robot path planning for several numerical examples. This optimal control
framework can be applied to any backbone based continuum robot.

1 INTRODUCTION

Concentric Tube Continuum Robots (CTCRs), also
referred to as active cannulas, consist of concentric
hollow elastic tubes of different stiffness and pre-
curvatures. These tubes are usually made of shape
memory alloy such as Nitinol which can undergo
large elastic deformations, while avoiding plastic de-
formations. The concentric tubes of this robot are
constrained to take the shape of a common center-
line referred to as the backbone. This backbone is
a smooth curve in the space, that can be controlled by
sliding and rotating the tubes one inside the other. The
tip of the robot is equipped with an instrument and is
maneuvered by appropriate relative slides and twists
of the tubes at its root. The slim shape of CTCRs
motivated many researchers to utilize these devices in
confined spaces, such as in minimally invasive surg-
eries (Burgner et al., 2011; Burgner et al., 2013; Al-
falahi et al., 2020). The kinematic model describing
the equilibria of these CTCRs is presented by (Rucker
et al., 2010) using the Cosserat rod model.
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Medical applications require suitable path plan-
ning and control strategies for performing the tasks
with high precision. In surgical operations, dam-
aging tissue along the robot length by lateral mo-
tions that stretch or sever neighboring tissue should be
avoided. Therefore, paths with a minimum working
space, i.e., a minimum deviation from a mean curve,
are highly desirable. A follow-the-leader (FTL) strat-
egy, where the robot is deployed telescopically such
that the backbone always lies along the path traced
by prior tip locations, occupies a minimal working
space during its deployment and is an ideal solution
for this purpose. The design and control parameters
for achieving this deployment strategy are given by
(Gilbert et al., 2015; Garriga-Casanovas and y Baena,
2018). In the simpler setup for this deployment, the
unstressed tubes of the robot section must be either
in the shape of circular arcs or in the shape of heli-
cal arcs with equal torsions. The robot backbone then
assumes shape of a uniform curve like circular or he-
lical arc under certain sets of control parameters. The
sections are then extended along the curve’s tangent
such that the body traces its tip locus. This deploy-
ment fails when the constituent tubes are of unequal
torsions or when the robot tip is mounted to a non-
zero load. The working region must lie along this he-



lical curve, so that this FTL deployment can reach the
region, which is not the case in general. Some tasks
like cardiac ablation (Yip et al., 2017) require the tip
to move continuously to neighbouring points, neces-
sarily deviating from the FTL configuration. Working
just with FTL configurations limits the working space
and degrees of freedom of the robot.

Suitable control techniques are necessary to con-
trol these robots so that they complete the required
tasks in a minimal workspace or by deviating least
from the FTL configuration. The necessary flexibility
is usually given if the number of controls, i.e., lengths
and twists of the tubes, exceeds the number of con-
straints on the tip position. For example, the robot
tip can reach a point within reach for a wide range
of control parameters. Appropriate control parame-
ters should be chosen based on the complete motion
path of the robot. The purpose of the current work
is to investigate the impact of minimal working space
path planning by formulating it as an optimal control
problem. We also include the tip’s orientation in the
optimization framework to perform some tasks.

The kinematics of the robot is described through a
set of ordinary differential equations (ODEs) in terms
of its arclength (Rucker et al., 2010). A special set
of control parameters lead to planar or uniform con-
figurations that can be represented as simple helical
curves (Gilbert et al., 2015). For the remaining cases,
a boundary value problem (BVP) must be solved in
order to obtain its state. We adopt a partially reduced
approach by describing the robot states in terms of
pseudo-time dependent control parameters, leading to
a path planning problem in these parameters.

The use of optimal control techniques in CTCRs
has been used for choosing design parameters based
on the available workspace and anatomical con-
straints (Bergeles et al., 2015). Derivative-free opti-
mization methods such as Nelder-Mead (Baykal et al.,
2015; Granna et al., 2016) or particle swarm meth-
ods are used extensively. Gradient based optimization
techniques are used only for simpler models (Lyons
et al., 2009; Flaßkamp et al., 2019) where analytical
derivatives are available. These methods lead to lo-
cal minima rather than to global minima. But, they
are computationally fast and useful in real-time op-
erations. Tasks such as moving to a nearby point
can usually be planned with local optimization meth-
ods. Recently, the use of nonlinear programming
methods for CTCR path planning has been proposed
by (Flaßkamp et al., 2019) in planar robots where
analytical representation of the robot states is avail-
able. Here, we combine a collocation discretization of
a quaternion-based kinematic description of CTCRs
with a collocation discretization of the equilibrium

equations (BVPs) and a nonlinear programming ap-
proach, such that non-planar robots are also covered.

The paper is organized as follows. In Section 2,
the kinematics of the CTCRs is briefly recalled and
formulated in a quaternion setting. Then the system
constraints and different objective functions are dis-
cussed in Sections 3 and 4. Discretization methods
for translating the optimal control problem into a non-
linear programming (NLP) problem are discussed in
Section 5. Finally, numerical examples making use of
the proposed framework are presented in Section 6.
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Figure 1: Schematic of the CTCR showing the notations
and controls.

2 Mechanical Model

The continuum robots addressed in this paper are as-
sumed to operate sufficiently slow, that the inertial ef-
fects are negligible. Therefore, the actual speed with
which the task performed is irrelevant and a quasi-
static model is used for the work. We assume per-
fectly elastic tubes, neglecting any possible hystere-
sis in the stress-strain relations. We also assume that
no external forces act on the robot along its length
or tip. A N-tubed CTCR consists of N concentric
tubes of lengths l1 ≥ ·· · ≥ lN , with the innermost tube
being the longest. The different lengths lk partition
any configuration into N segments Sk each of length
Lk := lk − lk+1 ≥ 0 with the property each Sk consist-
ing of k overlapping concentric tubes. The different
lengths lk partition the total length into N segments Sk
of length Lk = lk − lk+1 ≥ 0 such that Sk consists of k
concentric tubes for k = 1, . . . ,N as shown in Figure 1.
For computational simplicity, the tubes for s < 0 are
considered with the angular feeds at s = 0 and there-
fore, corresponds to the actual actuator feeds given by
the operator. The section SN is located at the proximal
end and S1 is present at the distal end. The inner-
most tube of length l1 with material frame in its refer-
ence state is considered as backbone reference for our
formulation and computations. The relative rotation
of the constituent tubes about the common tangent
is measured with respect to this reference. The con-
figuration of the CTCR backbone (i.e., the innermost
tube) is described as an orientable curve in 3D space
described as a function of the arclength s ∈ [0, l1] us-



ing a centerline r : [0, l1] → R3 and an attached or-
thonormal director frame

R(s) = [d1(s),d2(s),d3(s)] ∈ SO(3), (1)

where the axes of the moving frame called directors
di(s) ∈ R3 are the columns of R(s). We derive the
equilibria explicitly in terms of position vector r(s)
and quaternions q(s) as a system of ODEs in a simi-
lar manner of Hamiltonian Formulation of rods (Dich-
mann et al., 1996). Quaternions or Euler parameters
q(s)≡ (q1,q2,q3,q4) : [0, l1]→ S4 of unit length, i.e.,
|q(s)| = 1 are used in this model. They characterize
the director frame R(s) by

d1(s) =

q2
1 −q2

2 −q2
3 +q2

4
2(q1q2 +q3q4)
2(q1q3 −q2q4)

 , (2a)

d2(s) =

 2(q1q2 −q3q4)
−q2

1 +q2
2 −q2

3 +q2
4

2(q2q3 +q1q4)

 , (2b)

d3(s) =

 2(q1q3 +q2q4)
2(q2q3 −q1q4)

−q2
1 −q2

2 +q2
3 +q2

4

 . (2c)

For brevity, the dependence of qi, i = 1, . . . ,4 on s
is omitted. The director d3-axis is aligned along the
tangent of the curve centreline for inextensible and
unshearable rods. The spatial evolution of the frame
with respect to the arclength s is described with the
help of the Darboux vector u : [0, l1]→R3 through the
relations di

′(s) = u(s)×di(s), i = 1,2,3, where × de-
notes the cross-product in R3. The strain components
u(s) ·d j(s)≡ u j(s) are obtained from the quaternions
q(s) through the relation

u j(s) = 2Bjq(s) ·q′(s), j = 1,2,3, (3)

where Bi are 4×4 skew symmetric matrices given by

B1 =

 0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,B2 =

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

B3 =

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


These matrices, acting on q ∈ R4, result in orthogo-
nal vectors for i ̸= j (i.e., Biq ·Bjq = 0) and give the
quaternion length when i = j as Biq ·Biq = ∥q∥2 = 1.
The tubes are considered to be uniform, inextensible,
unshearable and transversely constitutively isotropic
with stiffness matrix K[i] = diag(K[i]

11,K
[i]
11,K

[i]
33) and

precurvature û[i] =
[
û[i]1 , û

[i]
2 , û

[i]
3

]T
. Each concentric

tube has a constant stiffness matrix K[i] along its
length. As a notational convenience, we use a specific
step function K[k](s) to extend it to a zero function
beyond its length lk as

K[k](s) =

{
K[k], s ∈ [0, lk],
0, s ∈ (lk, l1].

(4)

Here, lk is the length of the k-th tube calculated from
s = 0 and is related to the lengths of the overlapping
regions Li as lk = ∑

N
i=k Li. Let α[i] : [0, li] → R, i =

2, . . . ,N be the relative angle of twist between the tube
i and the reference innermost tube (tube 1) and

Rz(α) :=

cosα −sinα 0
sinα cosα 0

0 0 1


be the rotation matrix about the variable tangent
d3-axis. The minimization of the total strain en-
ergy (Rucker et al., 2010) of the system of concentric
tubes yields the shape ũ ∈ R3 and effective stiffness
Keff of the CTCR backbone as

ũ(s) = Keff
−1(s)

N

∑
i=1

K[i](s)Rz(α
[i](s))T ǔ[i],

Keff(s) =
N

∑
i=1

K[i](s),

(5)

with ǔ[i] =
[
û[i]1 , û[i]2 , û[i]3 −α[i]′(s)

]T
. Finally, the

equilibrium configuration of the robot in terms of its
position vector r(s), quaternions q(s) and the relative
twist angle α[i](s) is given by the following set of first
order ODEs

r′(s) = d3(s), in ]0, l1[,

q′(s) =
3

∑
j=1

ũ j(s)
1
2

Bjq(s), in ]0, l1[,

α
[i]′(s) =

∑
i
j=2 β[ j](s)

K[1]
33 (s)

+
β[i](s)

K[i]
33(s)

+ û[i]3 (s)− û[1]3 (s), in ]0, li[,

β
[i]′(s) =

K[i]
11(s)û

[i]
1 (s)

∑
i
j=2 K[ j]

11 (s)
·(

i

∑
j=1

K[ j]
11 (s)û

[ j]
1 sin

(
α
[i](s)−α

[ j](s)
))

,

in ]0, li[,

(6)

for the i = 2, . . . ,N outer tubes. The term α[1](s) = 0
by definition. The last two terms are the result of
Euler-Lagrange equations on the total elastic strain



energy of the system and β[i] is the canonical momen-
tum conjugate to α[i]′ and it gives the twist moment in
the i th tube. The boundary conditions are specified
in terms of alignment of the innermost tube frame and
relative rotation of the other tubes at the root as

r(0) = 0, q(0) = [0,0,sinθ1,cosθ1],

α
[i](0) = α

[i]
o , β

[i](li) = 0, i = 2,3, ..N,
(7)

where the conditions on β[i] corresponds to the
natural boundary conditions. The tube k is not
present for s > lk and hence it has no contribution for
the deformation of the backbone for s ∈ [lk, l1]. The
d1 − d2 plane of the reference tube (inner tube) at
the root (s = 0) coincides with the fixed laboratory
e1 − e2 plane. The angle θ1 corresponds to the
angle of rotation of the reference frame of inner tube
about e3 ≡ d3-axis at s = 0 and is controlled by the
user. The shape (r,q) must be continuous across the
boundary between the sections without any kinks.
The robot is controlled by varying the lengths Li
of the segments, i.e., the feed of the tubes, and by
varying the initial conditions on α

[i]
o , i.e., the rotation

of the tubes at the root. Note that any discretization
needs to take the coefficient discontinuities at the
segment boundaries li into account for achieving the
nominal approximation order, e.g. by positioning grid
points at the segment boundaries or by formulating
the boundary value problem as a sequence of smaller
boundary value problems coupled by appropriate
boundary conditions. The latter approach is followed
here.

By solving the boundary value problem (6)–(7),
the equilibrium configuration of the robot i.e., its
r(y;s) and q(y;s) are obtained as a function of control
parameter vector y which is defined as

y := [L1, . . . ,LN ,θ1, . . . ,θN ] ∈ R2N .

Here, θi = θ1 +α
[i]
o , i = 2, . . . ,N is the angle of rota-

tion of the i-th tube. Thus, a CTCR with N tubes has
2N controls parameters determining its spatial config-
uration.

3 System Kinematics

In the path planning task, the motion of the robot
is parameterized over pseudo-time t ∈ T := [0,1],
since the actual speed of the motion is not relevant
in a quasi-static model. The control parameters y
at time t are written as y(t). A control rate vector
v(t) = [u1(t), . . . ,uN(t),γ1(t), . . . ,γN(t)] and an initial

value y0 are introduced to describe the system dynam-
ics defined as

ẏ(t) = v(t), y(0) = y0. (8)

The rates vi : T → R and γi : T → R model the tra-
verse and rotational velocities of each tube, respec-
tively. The system dynamics (8) ensures the continu-
ity of control parameters on the whole time interval
T . The control parameters corresponding to the rota-
tion of the tubes, i.e., θi, i = 1, . . . ,N can take any real
value (being 2π-periodic), whereas the feed parame-
ters Li, i = 1, . . . ,N can take only non-negative values
and are bounded by the maximum length of the tubes
Li,max resulting in the inequality constraint,

0 ≤ Li(t)≤ Li,max ∀t i = 1, . . . ,N. (9)

Elastic instabilities like snapping can occur in these
CTCRs resulting in the sudden release of elastic strain
energy (Gilbert et al., 2016). Such situations are
avoided by using tubes shorter than a critical length
Lcrit .

4 Objective Functions

The task of navigating a robot in the best way is quan-
tified in terms of some objective function to be mini-
mized. Here, we consider prototypical objective func-
tions describing simple tasks.

Target position: The primary goal for most robot
tasks is to maneuver the robot such that its tip reaches
a target point rtar and orientation qtar at the final time
t = 1. Obtaining a configuration simultaneously satis-
fying the position and orientation requirements is not
always possible, especially with a small number of
tubes, say, N ≤ 3. This requirement is best included
in the objective as a final time penalty:

M1(y) := ∥r(y(1), l1)− rtar∥2

+λ∥q(y(1), l1)−qtar∥2,
(10)

where λ is the weighing term useful for pri-
oritizing between tip’s position and orientation
with ∥ · ∥ the Euclidean norm. The robot state
r(y(t);s, t),q(y(t);s, t) is obtained after solving the
boundary value problem (6)–(7) with control parame-
ters y(t). Alternatively, reaching the target position
and orientation could be specified as equality con-
straints, but since many combinations of position and
orientation are not exactly achievable, this would ren-
der the optimization task infeasible. Thus, relaxing
this requirement in form of a deviation penalty in the
objective is an attractive strategy. An alternative tar-
get requirement is to specify only the desired tangent



of the tip, i.e., d3(y(1), l1), instead of the whole ori-
entation. In this case, the condition is imposed only
on a single director instead of all three director axes,
leaving the freedom of rotations around the robot tip
tangent. As the directors are normalized, this can be
formulated as minimizing the scalar product of the di-
rector and a given target direction:

M1(y) := ∥r(y(1), l1)− rtar∥2 −λd3(y(1), l1)· (11)

Path tracing: Some applications may require the
tip to follow a prescribed curve rpath(t) and orienta-
tion npath(t). These problems are dealt by including a
Lagrange term in the objective function as

J1(y) :=
∫ 1

0

(
∥r(y(t), t)− rpath(t)∥2

−λd3(y(t), l1) ·npath(t)
)

dt.
(12)

Covered volume: Minimizing the working volume
of the robot i.e., the space traversed by it when per-
forming a task, is another quantity of interest. There
are several ways in which the working volume could
be quantified. One possible solution is the accumu-
lated deviation from the reference Follow the Leader
configuration r(yFTL,s). To perform or initiate any
task, the robot tip has to reach an initial point through
a FTL strategy with control parameters yFTL and
move form this position to trace a desired path. We
take the r(yFTL,s) configuration as a reference and
measure the robot’s deviation from this configuration,
which yields a rough measure of the working volume.
The smaller the deviation from the reference is, the
lower the robot’s interference with the neighboring
tissues. The corresponding objective is

J2(y) :=
∫ 1

t=0

∫ l1(t)

s=0
d
(
r(yFTL,s),r(y(t),s)

)
dsdt,

(13)

where d(r̂,r(s)) is the distance of r(s)) from the ref-
erence configuration r̂. This is defined as the distance
to the arclength projection, i.e.,

d(r̂,r(s))= ∥r̂(s′)−r(s)∥ with
∫ s′

σ=0
r̂′(σ)dσ= s.

(14)
Note that in the FTL configuration the innermost tube
can be assumed to have an infinite length, such that
the FTL arclength always exceeds s and the projec-
tion (14) is well-defined. A closely related, but quan-
titatively different means to quantify the working vol-
ume of the robot is the area swept by the robot during
its navigation, which is given by

J2(y) :=
∫ 1

t=0

∫
ΣLi(t)

s=0
r′(s, t)× ∂

∂t
r′(s, t)dsdt. (15)

Regularization: In addition, the square of the L2-
norm of the v(t) vector is included as a regularization
term in the objective function to avoid high-frequent
instabilities,

J3(v) :=
∫ 1

t=0
∥v(t)∥2 dt.

Furthermore, the solution can also be subjected to
path constraints of the form

gl ≤ g(Y, t)≤ gu, (16)

where g ∈ Rg is some objective function depending
on the robot’s state and control parameters. One pos-
sible example is maintaining bounds on the robot tip
orientation in a task.

In total, we define the objective as a linear com-
bination of the individual contributions discussed
above,

J(y,v) = λ0M1(y)+λ1J1(y)+λ2J2(y)+λ3J3(v).

Depending on the application, some of the objective
terms can be more important than others, and may
be emphasized by a corresponding selection of the
weights λi. Thus, we obtain the optimal control prob-
lem

min
y∈H1(T ),v∈L2(T )

J(y,v) (17)

subject to equality constraints (8) and inequality con-
straints (9) and (16).

5 Discretization

Solving the optimal control problem numerically re-
quires a combination of discretization and optimiza-
tion methods. We follow the discretize-then-optimize
approach, also known as the direct method, and dis-
cretize the optimal control problem (17) in pseudo-
time t and arclength s in order to translate the problem
into a Non-linear Programming (NLP) problem to be
solved (Nocedal and Wright, 2006; Betts, 2010). We
divide the time interval [0,1] into m sub-intervals at
time points 0 = t0 < t1 · · · < tm = 1, in the simplest
case with equidistant steps of length ti+1−ti = 1

m . The
objective function is then approximated on these time
intervals using the trapezoidal rule as

Jm = λ0M1 +
1
m

(
1
2

j̄(0)+
m−1

∑
i=1

j̄(ti)+
1
2

j̄(1)

)
,

where j̄(t) = λ1J1 +λ2J2 +λ3J3. The state r(s),q(s)
of the robot is obtained for the controls y(tk) at the
time points tk by discretizing and solving the bvp



Table 1: Parameters of the CTCR used in the examples.

Option Tube 1 Tube 2 Tube 3

Bending Stiffness K[i]
11 (×104N.mm2) 1.0 1.2 1.4

Torsion Stiffness K[i]
33 (×104N.mm2) 1.0/1.3 1.2/1.3 1.4/1.3

Precurvature vector (mm−1) [1/200,0,0] [1/125,0,0] [1/100,0,0]
Maximum Length (mm) 330 220 110

problem (6), (7) using suitable collocation methods
(Kierzenka and Shampine, 2008) converting the in-
finite dimensional problem to an algebraic equation
system. From the robot state, the objective func-
tions j(tk) are computed, where the integrals along the
robot’s length arising in (13) are approximated again
using the trapezoidal rule. The ODEs (8) in the sys-
tem dynamics are approximated using central differ-
ences as

yi(tk+1)−y1(tk)
tk+1 − tk

= vi(tk+1/2) (18)

for i = 0, . . . ,m− 1 in terms of the pseudo-velocities
vi(tk+1/2). The direct discretization results in a non-
linear program with 4Nm variables and 2Nm equal-
ity constraints. This NLP problem can be solved nu-
merically using a variety of available methods. Di-
rect methods use gradient-based techniques for solv-
ing the NLP and they require the gradient information
of the objective function and constraints. As some
of the objective terms are functions of solutions of
the bvp, analytical derivatives are not readily avail-
able. Instead, derivatives can be obtained by algorith-
mic differentiation or approximated by simple finite
differences (Griewank and Walther, 2000). For sim-
plicity of implementation, we use forward difference
schemes. The gradients are computed using IVP fi-
nite difference scheme in a similar manner as that in
(Rucker and Webster, 2011) and then supplied in the
sub-routines.

6 Numerical examples

We demonstrate the proposed optimal control frame-
work using a 3-tube CTCR. The mechanical prop-
erties of the constituent tubes are given in Table 1.
We consider tasks like guiding the robot tip to a pre-
scribed point and guiding it to a prescribed orienta-
tion. These numerical examples are solved with Mat-
lab’s fmincon which uses an interior point algorithm
(Nocedal and Wright, 2006).

6.1 Minimum working volume

In the first example, we consider maneuvering the
robot tip to a specified point rtar. Here, the orien-
tation and the path of the tip rpath(t) are not impor-
tant and not accounted for in the overall objective
i.e., λ = 0 in (10) and λ1 = 0. The effectiveness of
the proposed minimum deviation objective in reduc-
ing the working volume is examined by comparing
the cases with λ2 = 0,50 and 200. Fixed values of
λ0 = 400 and λ3 = 5 are used throughout this sub-
section. The curve corresponding to the follow-the-
leader configuration with controls yFTL = [0.5,0.5+
π,0.5+ π,0.4,0.6,0.5] is used as reference or mean
curve, and for calculating the objective (13). An ini-
tial configuration corresponding to the control param-
eters y(0) = [0.5,3.64,3.84,0.4,0.6,0.5] is used for
all the examples and a target rtar = (−0.4,0.0,1.0)
are chosen. No path constraints (16) are considered
in this task. The solution consisting of states cor-
responding to the control parameters y(0) is given
as initial guess at all time steps tk ∈ [0,1]. The op-
timization is carried out using these parameters and
states. The evolution of the robot configurations and
its control parameters y(t) in the time interval [0,1]
are shown in Figure 2.

When the coefficient of the minimum deviation
measure J2, i.e. λ2 is zero, the objective is to reach the
target rtar with the minimum regularization energy.
As a result, the control parameters are obtained as
a linear function in the time interval [0,1] as can be
seen in Figure 2b. It appears qualitatively in Figure
2a that the robot occupies minimum working space
during a maneuver task for higher values of λ2 and is
supported by the corresponding values of the devia-
tion measure shown in Table 2. When the penalty for
the deviation term is non-zero, the robot navigated
with a minimum deviation path by reducing its length
in the period of its maneuver and extending its length
in the final period. These optimal solutions contin-
uously depend on the solution at initial time t = 0.
The obtained optimal solutions depend on the ini-
tial guess and they vary if another initial guess is used.
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Figure 2: (a) 3D views of the robot evolution with its tip rtar from rint with different penalization of volume minimization
objectives. The robot’s sections are shown in different colours with black, red and blue corresponding to sections with 3, 2,
and 1 tube, respectively. The trace of the tip is shown in green, magenta and cyan. The initial and final states of CTCR are
shown in solid lines whereas the intermediate states are shown in dotted lines. (b) The evolution of control parameters y(t)
for different λ2. The curves of rotation parameters θi(t) for all cases of λ almost coincide. The markers correspond to the
mesh used for the computations. The control parameters at t = 1 for all three cases are different, but correspond to the same
tip point.

Table 2: Effect of the penalizing term λ2 on the deviation
term (as calculated in (13) and the objective

λ2 Deviation term value J2 Objective J

0 0.0544 20.4121
50 0.0220 21.8843
100 0.0162 22.8030
200 0.0107 23.9423

The effect of using sweep area (15) as a minimum
volume measure is examined by comparing its values
for different penalizing terms in Table 3. Increase of
the penalizing terms resulted in the decrease of the
sweep area measure J2, demonstrating the effective-
ness of the optimization framework.

Table 3: Effect of the penalizing term λ2 on the sweep area
and the objective.

λ2 Sweep area J2 Objective J

0 0.4586 20.4121
5 0.2716 22.9218

10 0.2117 24.0679
20 0.1712 25.2532

6.2 Maintaining fixed tip orientation

In this example, we include the tip orientation as well
as the target path rpath(t) in the optimal problem. The
goal is to maneuver the robot tip close to a prescribed
path rpath(t) with a restriction on the tip’s orienta-

tion d3(y(t), l1). The straight line between the ini-
tial point rinit and the target rtar is specified as tar-
get path as rpath(t) = (1 − t)rinit + trtar ∀t ∈ [0,1].
The tip’s tangent of the initial state (t = 0) is taken as
ntar for this example. Therefore, the goal is to move
to the target rtar with minimum deviation of its tip’s
tangent from ntar. The penalization of the tip orien-
tation deviation is considered by using different val-
ues of λ. The minimum deviation objective J2 is not
considered here: since the tip is constrained to move
along a path rpath(t), its effect would be negligible.
λo = 5, λ1 = 400, λ2 = 0, λ3 = 5 are used in this ex-
ample. The time interval [0,1] is discretized into 10
equal intervals and 10 points on the straight line are
obtained. The evolution of robot and the angle be-
tween its tip tangent and the ntar for different values
of λ are plotted in Figure 3. However, not all specified
target points can be reached without violating the ori-
entation constraints. For such points, the robot does
not reach the specified point rtar. It gets to a posi-
tion as closer to rtar while satisfying the orientation
restriction.

6.3 Changing the tip orientation
without changing its position

In the final example, we consider a task where the
robot tip is guided to a prescribed orientation ntar
without changing its position. For this purpose, the
prescribed path in (12) is specified as a single point,
i.e., rpath(t) = rtar. The optimization is carried out
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Figure 3: (a) The evolution of the CTCR as its tip moves from an initial point rinit to a target rtar = [−0.01,0.12,0.78]. The
tip is constrained to move along the straight line connecting rinit and rtar by penalizing the deviation of the tip from the path.
The robot tip is guided closely to the specified target vector ntar by using non-zero penalization terms λ in (12). The traces of
the tip for different values of λ are shown. These traces are very close to each other. (b) The plots of the angle Θ between the
tip and the target vector ntar during the robot’s navigation for different values of λ.
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Figure 4: Example illustrating the maneuver of robot with its tip staying close to the initial tip point rinit ≡ rtar and the tip
tangent (in magenta) approaching the specified target ntar = [0,0,1]T (in black). The enlarged view of the region around the
tip is shown clearly indicating the tangents of the tip and the target ntar. The tip deviates slightly from the rtar during this
process. There is a slight difference of 5° angle between the tip’s tangent of the final state and the ntar at the final time (t = 1).

by penalizing the deviation of the robot tip from the
target rtar. The penalizing terms λ0 = 400, λ1 = 100,
λ2 = 0 and λ3 = 5 are used for the implementation.
The configurations of the robot as its tip changes its
orientation to the target ntar = [0,0,1]T , while its po-
sition staying close to the target rtar, are shown in
Figure 4. The tip’s orientation might not reach ev-
ery specified target orientation as configurations with
such orientation are not feasible. In such cases, the tip
just gets closer to the ntar and does not reach it.

7 Conclusions

Our work has presented a mathematical model for
guiding the robot in its workspace using optimal con-

trol techniques. The robot’s navigation is modelled
as a constrained optimal control problem and a suit-
able numerical strategy for its solution is described.
The numerical results suggest the usefulness of this
approach and show its potential for the application in
optimization based navigation tasks. The proposed
objectives, especially the minimum deviation objec-
tive, achieved the desired tasks and behaved qualita-
tively as expected. These objectives have conflicting
aims in some situations, where they were penalized
and degraded accordingly. The quaternion based state
equations are given in the simple compact form of the
first order ODEs and are useful for implementation
in any numerical package. The tip orientation has so
far been rarely considered in the literature, but ap-
pears to be useful for designing and planning more



complex tasks. In the current study, only unloaded
robots are considered. The given methodology can
be extended from zero load to loaded cases after us-
ing the state equations from the geometrically exact
model (Rucker et al., 2010). The presented objectives
may have less conflicting effect on each other when
highly flexible CTCRs with more tubes are used. In
such situations, they have multiple configurations for
any required objective and the conflicting objectives
could find a compromise solution satisfying the re-
quirements. However, it is computationally complex
to solve problems with more than three tubes. Obsta-
cle avoidance can be considered by including the ob-
jective function (Lyons et al., 2009; Flaßkamp et al.,
2019) to the presented framework.
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