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AN OPTIMAL CONTROL PROBLEM IN POLYCONVEX
HYPERELASTICITY∗

LARS LUBKOLL† , ANTON SCHIELA‡ , AND MARTIN WEISER†

Abstract. We consider an implant shape design problem arising in the context of facial surgery.
The aim is to find the shape of an implant that deforms the soft tissue of the skin in a desired way.
Assuming sufficient regularity, we introduce a reformulation as an optimal control problem where the
control acts as a boundary force. The solution of that problem can be used to recover the implant
shape from the optimal state. For a simplified problem, in the case where the state can be modeled as
a minimizer of a polyconvex hyperelastic energy functional, we show existence of optimal solutions
and derive—on a formal level—first order optimality conditions. Finally, preliminary numerical
results are presented for the original optimal control formulation.
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1. Introduction. Facial bones of patients with severe trauma or congenital
malformations are often partially replaced or augmented by implants. In contrast
to load-bearing implants such as knee or hip joint prostheses, facial bone implants
have a direct impact on the visual appearance of the patient and hence on social
acceptance. An important criterion for the shape design of facial bone implants is
therefore—besides a restoration of functionality—the resulting shape of the face.

For load-bearing and dental implants, mathematical topology and shape opti-
mization is quite common; see, e.g., [43, 19, 41]. In contrast, shape optimization for
facial bone implants has barely been considered [21]. Current medical practice is a
manual selection of the implant’s shape, which renders the postoperative outcome very
much dependent on the experience of the surgeon. An algorithmic inverse approach
deriving the implant shape from a desired result could improve this situation.

In the present work we consider this implant shape design problem. The facial
appearance is determined by the soft tissue deformation due to the implant. This
induces two major challenges: First, the deformation is, in principle, an obstacle
problem such that the optimization leads to a complex mathematical program with
equilibrium constraints (MPEC). Second, the relatively large deformations that the
soft tissue undergoes incur nonlinear elastomechanics, which is notoriously known for
its resistance to analytical treatment.

A simplified approach was proposed in [21], where a linearly elastic soft tissue
problem, with the facial surface fixed at the desired shape and natural boundary
conditions at the tissue-implant boundary, was solved. The implant shape is then
determined retrospectively from the soft tissue displacement at the tissue-implant
boundary. While easy and practical, this approach neglects material and geometric
nonlinearities as well as the fact that, in the real-life situation, very different bound-
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ary conditions hold. In particular, the normal stress vanishes at the tissue-implant
boundary but not on the skin surface, whereas in reality it is just the opposite.

In the current work, we consider a more realistic approach. In section 2 we re-
formulate the original MPEC as a simpler but equivalent control constrained optimal
control problem with the normal force exerted by the implant acting as a control
variable. Here too, the implant shape will be recovered from the soft tissue defor-
mation. Existence of an optimal solution is treated in section 3. Due to missing
boundary regularity, existence can only be shown for a slightly simplified problem
with dead loads. We focus the discussion on the widely accepted class of polyconvex
hyperelastic materials, which allow us to transfer Ball’s elegant existence proof for
deformations [6] to optimal solutions of the simplified shape design problem. To the
best of our knowledge, this is the first rigorous existence result in optimal control of
polyconvex elasticity.

Sections 4 and 5 are devoted to a formal derivation of first order optimality condi-
tions, illustrated for a compressible Mooney–Rivlin material. In general, hyperelastic
theory it is not even clear whether a local minimizer of the elastic energy functional
satisfies the weak form of the corresponding Euler–Lagrange equation (see [8, Prob-
lems 5 and 6] and [14, 31]). In section 4 we discuss conditions under which this is
the case, and the energy functional is well behaved, locally. However, the rigorous
derivation of first order optimality conditions to our optimal control problem cur-
rently appears to be out of reach and can only be performed in a formal way. The
main reason is, as always, the lack of rigorous regularity results for practically rele-
vant configurations. Despite being related to the regularity of minimizers [7, 27, 28],
polyconvexity and coercivity are not sufficient for the determination of such results.
Finally, a very preliminary numerical example for the original shape design problem
is presented in section 6.

Notation. By M
n we denote a set of n × n matrices equipped with the scalar

product F : G =
∑

i,j FijGij inducing the Euclidean norm ‖ · ‖M . For invert-

ible matrices F ∈ M
n the adjugate matrix is defined as adj(F ) = det(F )F−T . By

M
n
+ := {A ∈ M

n | det(A) > 0} we denote the cone of orientation-preserving deforma-

tion gradients. Derivatives will be indicated by subscripts throughout, i.e., Eu = ∂
∂u E .

2. Modeling. In this section, we will derive from medical requirements a precise
mathematical formulation of the implant shape design problem. First, we give a
short summary of the properties that must be reflected by material-specific stress-
strain relationships in biomechanics. Then, in section 2.2, we formulate the forward
problem of finding the facial shape induced by a given implant shape as an obstacle
problem. In section 2.3 we will see that the direct transcription of the forward problem
into the inverse problem of finding an optimal implant shape so as to approximate
a desired facial shape leads to a quite difficult optimization problem. Surprisingly, a
simple reformulation turns out to be a standard optimal control problem.

2.1. Soft tissue biomechanics. Stable configurations of biological soft tissues
are, in general, characterized as minimizers of an energy functional

(1) ES(u) =
∫
Ω

W (x, (I +∇u)(x)) dx =

∫
Ω

W (x,∇ϕ(x)) dx ,

where W is the stored energy function, u is the displacement, and ϕ = I + u is the
deformation. As soft tissues undergo comparatively large deformations, the energy
functional ES is nonquadratic for several reasons.
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First, there is the geometric nonlinearity that describes the relation between de-
formation and the resulting strains. Its neglection may lead to overestimation of
displacements (for an illustration, see Figure 4 in [45]). Another nonlinearity that is
related only to geometry results from pressure boundary conditions imposed on the
deformed domain. Using the Piola-transform in order to express this type of bound-
ary condition on the undeformed domain implies a nonlinear transformation of the
surface normal vectors which enters the problem formulation [6, 14] (see section 2.3).

Then there are the material-dependent constitutive nonlinearities that possibly
must be taken into account. This is, to a great extent, a consequence of the dis-
tribution of collagen in most types of human soft tissue. As collagen is the main
load-bearing element and the most common protein in human soft tissue, with a par-
ticularly high concentration in the skin and, in contrast to other muscles, the facial
muscle tissue, it strongly determines the material behavior [20, 24, 25]. On the one
hand, the collagen distribution leads to a nonlinear stress-strain relationship, which
is mainly dependent on the collagen fiber morphology corresponding to the current
stress state. This observation is outlined in [24] and reflected by Fung-type mate-
rial laws [20]. On the other hand, the distribution of the collagen fibers endows the
material with directional properties; i.e., while the stiffness increases with muscle
contraction in direction of the collagen fibers, it remains constant in orthogonal direc-
tions [13, 24], thus leading to a strongly anisotropic behavior. This is complemented by
the observation that these fiber directions may change during the deformation. Thus
the accurate modeling of anisotropic effects is not trivial and requires the knowledge
of collagen fiber orientations and distributions in the considered tissues.

There also is a constitutive nonlinear inequality that is associated with limited
compressibility and takes the form

(2) det(∇ϕ(x)) = det((I +∇u)(x)) > 0.

In the case of ϕ ∈ C1, this inequality serves as a local “orientation-preserving” con-
dition that locally prevents self-penetration of the considered material (see [14] and
references therein).

Currently the most general class of stationary material laws that can incorporate
the mentioned nonlinearities and is accessible to mathematical analysis are hypere-
lastic constitutive laws given by polyconvex stored energy functions [6]. This class,
which will be considered in this paper, includes popular material laws for large strains
such as neo-Hookean, Mooney–Rivlin [33, 38], Ogden-type [36], and Arruda–Boyce
[3, 23] as well as carefully designed, possibly anisotropic, Fung-type material laws as
in [20, 18, 42, 24, 10, 9]. As polyconvexity is closely related to the Legendre–Hadamard
condition [16, 34], and thus to the stability of linearizations of the nonlinear problem,
and does not impose nonphysical restrictions on models for biological soft tissues,
it is widely accepted in both mathematical [14, 31, 16, 34, 32] and biomechanics
[42, 23, 46, 18, 10, 9, 26] communities. Modern constitutive relations are directly
constructed such that polyconvexity is guaranteed a priori.

2.2. Forward problem: Implant obstacle. The facial shape is determined by
the elastic deformation of the soft tissue. In contrast, bone and implant are considered
as rigid such that only the soft tissue domain Ω is considered.

In order to describe an implant’s influence on the soft tissue, we restrict the
discussion to implants of limited geometric complexity; i.e., we assume its manifold
shape to be parametrized over Γc as continuous normal displacement

(3) y �→ y + s(y)n(y) for y ∈ Γc,
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Fig. 1. Cross-section of the reference configuration (left) and the deformed state due to the
normal force gn defining the implant volume in gray (right).

where n(y) is the unit outer normal of Ω at y ∈ Γc and Γc is the part of the interior
soft tissue boundary where it normally is in contact with bone; see Figure 1. The
implant displaces the soft tissue, which can freely glide over the implant surface but
may not penetrate it. Hence, an obstacle condition has to be imposed on Γc. In a
ring Γb around the implant region Γc we assume the soft tissue to be attached to
the bone. Due to the quickly vanishing Green’s function of elastomechanics, the soft
tissue domain may be restricted to a bounded region in the vicinity of the implant
by introducing an artificial boundary Γd cutting the soft tissue. Here, transparent
boundary conditions [29] might be imposed. For simplicity, we just assume the tissue
to be fixed on Γd. On the skin surface Γt, natural boundary conditions hold.

Thus with (1) the forward problem leads to an optimization problem subject to
constraints given by the boundary conditions

(4a) min
u

ES(u)

subject to

u = 0 on Γd ∪ Γb,(4b)

n(y)T [x+ u(x)− y] ≥ s(y) for all x, y ∈ Γc with x+ u(x) ∈ y + Rn(y).(4c)

In particular, the global nonpenetration condition (4c) is difficult to address algorith-
mically, as a direct mapping from y to x in Γc depends on the solution, is potentially
multivalued, and is usually not readily available.

This problem can also be written in strong form if we introduce the first Piola–
Kirchhoff tensor σ(u) = σ̃(∇u), using the definition of hyperelasticity, i.e., the point-
wise relation

(5) σ̃(F ) =
∂W

∂F
(x, F ), x ∈ Ω, F ∈ M

3
+ .

Then we obtain as usual by formal partial integration,

− div(σ(u)) = 0 in Ω,(6a)

u = 0 on Γb ∪ Γd,(6b)

n(y)T [x+ u(x)− y] ≥ s(y) for all x, y ∈ Γc with x+ u(x) ∈ y + Rn(y).(6c)
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2.3. Inverse problem: Choice of design variable. Now the optimization
problem consists of finding an implant shape given by the normal displacement s(y)
such that a desired facial shape is well approximated. Again for simplicity, we will
consider the mismatch

J0(u) =
1

2
‖u− uref‖2L2(Γt)

of displacement u and a desired displacement uref on the facial surface Γt, which is
to be minimized subject to the obstacle problem (6). This formulation of the opti-
mization problem as an MPEC has two mathematical drawbacks: it is algorithmically
challenging, and the solutions are in general not unique (not even locally).

Theorem 5.3-1 in [14], as stated below in a simplified version, allows us to refor-
mulate the MPEC as an optimal control problem with unilateral control constraints.

Theorem 2.1. Let Ω be a domain in R
3, and let Γd,Γc be disjoint relatively open

subsets of Γ = ∂Ω such that vol({Γ− (Γd ∪ Γc)}) = 0 and vol(Γc) > 0. Let the set of
admissible solutions be of the form

Φ = {ψ : Ω̄ → R
3| det(∇ψ) > 0 in Ω̄, ψ = ϕ0 on Γd, ψ(Γc) ⊂ C},

where C is a given closed subset of R3, and let the total energy be defined by

I(ψ) =

∫
Ω

W (∇ψ) dx .

A smooth enough solution ϕ of the minimization problem

I(ϕ) = inf
ψ∈Φ

I(ψ)

is, at least formally, a solution of the boundary value problem

− div(σ(∇ϕ)) = 0 in Ω,

ϕ = ϕ0 on Γd,

ϕ(Γc) ⊂ C,

σ(∇ϕ(x))n(x) = 0 if x ∈ Γc and ϕ(x) ∈ C̊,

σ(∇ϕ(x))n(x) = g(x) adj(x+∇u(x))Tn(x) if x ∈ Γc and ϕ(x) ∈ ∂C

with g(x) ≤ 0.
Note that the inequality g ≤ 0 corresponds to the implant not being able to pull

the soft tissue. The lack of rigorous results on the regularity of solutions makes the
statement in this theorem a formal one.

Remark 2.1. The boundary condition on Γc can be expressed as a boundary
condition on the deformed boundary ϕ(Γc) [14, p. 214]:

σϕ(ϕ(x))nϕ(ϕ(x)) = 0 if x ∈ C̊,(7)

σϕ(ϕ(x))nϕ(ϕ(x)) = gϕ(ϕ(x))nϕ(ϕ(x)) if x ∈ ∂C(8)

with gϕ(x) ≤ 0. Thus “the unilateral boundary condition of place on Γc constitutes a
model of contact without friction with the obstacle ∂C. In this respect, the function
gϕ : ϕ(Γc) → R, which measures the intensity of the contact load, is nothing but the
Kuhn–Tucker multiplier associated with the constraint ϕ(Γc) ⊂ C” [14, p. 214].
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Using the normal force g as the control variable instead of the obstacle shape, we
obtain a control constrained optimization problem subject to the following equations
of elasticity in strong form:

(9a) min
u,g

J(u, g)

subject to − div(σ(u)) = 0 in Ω,(9b)

u = 0 on Γb ∪ Γd,(9c)

σ(u)n = −g adj(I +∇u)Tn, g ≥ 0 on Γc.(9d)

Due to the change of control variable from normal displacement s to normal force g, an
explicit mapping between different points in Γc as required in (4c) is no longer needed.
Eventually, from an optimal soft tissue displacement u solving (9), an implant shape
can be reconstructed by filling the gap between the reference and deformed inner soft
tissue boundary. Again it is parametrized over Γc, but now in the form

(10) x �→ x+ u(x) for x ∈ Γc.

In this formulation, it is easy to satisfy additional medical requirements. For instance,
no gaps should occur between the soft tissue and the implants since voids tend to be a
source of infection. The retrospective construction of the implant shape by (10) obvi-
ously meets this requirement. In contrast, imposing it in the obstacle formulation (6)
is quite involved.

Moreover, stresses large enough to damage the soft tissue or hurt the patient are
undesirable. As, at least heuristically, the occurring stresses are essentially determined
by the forces exerted on the soft tissue, we add a simple control penalization term to
the cost functional:

(11) J(u, g) :=
1

2
‖u− uref‖2L2(Γt)

+
α

2
‖g‖2L2(Γc)

.

Note that the applied penalization coincides with the well-known Tikhonov regular-
ization for inverse problems.

In the following, for the sake of clarity, we will denote the parts of the boundary
where homogeneous Dirichlet boundary conditions are imposed by Γd = Γd ∪ Γb.

2.4. Simplification via dead loads. Although the problem (9) is already much
more comprehensible than the original model, it is still untractable from an analytic
point of view. The main difficulty lies in the boundary condition (9d). If we consider
g as fixed, then it is not clear whether the corresponding boundary value problem has
a solution u. For this, one would need a corresponding hyperelastic energy functional
for which u is a minimizer.

Thus, of necessity, there must be an energy functional that corresponds to the
equilibrium of forces, imposed at the boundary, which reads in our case as

(12) σn = −g adj(I +∇u)Tn.
Unfortunately, except for the case of spatially constant control g(x) = const on Γc (so-
called pressure boundary conditions), a conservative formulation of these boundary
conditions is in general not available [6, 12], leaving it as an open issue to model these
conditions correctly.
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For this reason, we will switch to a simplified setting; namely, we will replace (12)
by one of the following two dead load boundary conditions:

σn = −gn, g : Γc → R,(13)

σn = −g, g : Γc → R
3.

Both conditions naturally enter linearly into the energy functional (see (17)) and can
be augmented by a positivity constraint such as g ≥ 0 in the first case or gTn ≥ 0 in
the second case.

A comparison of (12) and (13) shows that our simplification is reasonable if
adj(I + ∇u) ≈ I. In this case, from a practical point of view, one can expect that
a solution of the simplified problem will yield an implant form that is suboptimal
with respect to the original problem but still reasonable. Of course, if dead loads are
assumed, and the new implant form is reconstructed by the computed displacements,
as above, then the computed soft tissue and the computed implant will not be in
equilibrium physically because (13) and not the required (12) holds.

3. Existence of solutions. Our first step in the analysis of problem (9) is the
study of existence of optimal controls g and corresponding deformations u for our
simplified problem with dead loads.

In the context of nonlinear elasticity this is already a delicate issue, since there
is hardly more analytical structure available than polyconvexity of the stored energy
function and thus weak lower semicontinuity of the energy functional [6, 14, 31, 37].
To render the discussion precise, we state a list of standard assumptions in nonlinear
elasticity that will be used throughout this paper.

Assumption 3.1.

1. Ω is a bounded Lipschitz-domain, and ∂Ω = Γd ∪ Γt ∪ Γc, |Γc| > 0, |Γt| > 0,
is a measurable partition of its boundary.

2. The space of admissible deformations is contained in

U := {u ∈ W1,p(Ω) : adj(I +∇u) ∈ Lq(Ω), det(I +∇u) ∈ Lr(Ω)},
where p ≥ 2, q ≥ p/(p− 1), and r > 1.

3. On Γd, Dirichlet boundary conditions are imposed:

u|Γd
= u0 ∈ W

p−1
p ,p(Γd).

4. The stored energy function W : Ω×M
3 → R∪{+∞} exhibits the following

properties.
Polyconvexity. For almost all x ∈ Ω there exists a convex lower semicontinuous

function

W(x, ·, ·, ·) : M3 ×M
3 ×R → R∪{+∞}

such that

W (x, F, adj(F ), det(F )) =W (x, F ) for all F ∈ M
3
+,

and

W(·, F,H, δ) : Ω → R∪{+∞}
is measurable for all (F,H, δ) ∈ M

3 ×M
3 ×]0,∞[.
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Nonself penetration. For almost all x ∈ Ω it holds that

(14) lim
det(F )→0+

W (x, F ) = +∞

and

(15) W (x, F ) = +∞ for all F ∈ M
3 \M3

+ .

Coercivity. There exist constants α > 0, β ∈ R
3 such that

(16) W (x, F ) ≥ α (‖F‖pM + ‖ adj(F )‖qM + | det(F )|r) + β

for all F ∈ M
3
+ and almost all x ∈ Ω.

The elastic strain energy is given by

ES(u) =
∫
Ω

W (x, I +∇u(x)) dx ,

and there exists at least one admissible deformation u such that ES(u) <∞.
Remark 3.1. While the usual definition of polyconvexity considers dom(W ) = M

3
+

and ran(W ) = R+ we chose an equivalent formulation that allows the use of the
extended real numbers in the image space. This reduces the length of the fol-
lowing proofs, as we do not have to examine the orientation-preserving condition
det(I +∇u) > 0 a.e. explicitly. Instead, this property is a direct consequence of the
assumption E(u, g) <∞.

The above assumptions do not impose nonphysical restrictions (as long as we
choose meaningful material parameters). Thus classical models for rubber-type ma-
terials such as neo-Hookean, Mooney–Rivlin [33, 38], Ogden-type [36], and Arruda–
Boyce [3, 23] models satisfy these assumptions. Modern constitutive relations for
biological soft tissues are constructed such that violation of these assumptions can be
ruled out a priori [9, 10, 18, 23, 32, 42].

In view of section 2 we will impose the following assumptions on the control and
the objective functional.

Assumption 3.2.

1. The control g is taken to be an element of G = L2(Γc) and enters the total
elastic energy functional via

(17) E(u, g) = ES(u)− EΓc(u, g)

with EΓc(u, g) =
∫
Γc
g(s)u(s) ds .

2. The cost functional J(u, g) : U ×G→ R is weakly lower semicontinuous, and
there exist a constant αJ > 0 such that

(18) J(u, g) ≥ αJ‖g‖2G.
Remark 3.2. Note that the above assumptions include mixed displacement-

traction as well as pure traction problems. With respect to the latter, adequate
choices of the cost functional may remove the “indeterminacy up to rigid transla-
tions” [14, 15].

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Then the optimal
control problem

(19) min
(u,g)∈U×G

J(u, g) subject to u ∈ argmin
v∈U

E(v, g)
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has at least one solution.
Before turning to the proof of this theorem, we will first state two important

lemmas that will be required therein. We start with a result on compensated com-
pactness, which has been stated in [6, section 6] and, in a clearer version, in [14,
Chapter 7]. It can be viewed as the main step in the proof of existence of energy
minimizers in nonlinear elasticity.

Lemma 3.2. Let Φ ∈ W1,p(Ω), p ≥ 2, and r, q > 0 such that r−1 = p−1+q−1 ≤ 1.
Then the following implication holds:

ϕk ⇀ ϕ in W1,p(Ω), p ≥ 2

adj(∇ϕk)⇀ ρ in Lq(Ω),
1

p
+

1

q
≤ 1

det(∇ϕk)⇀ δ in Lr(Ω), r ≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⇒
{
ρ = adj(∇ϕ),
δ = det(∇ϕ).

Proof. See [14, Thm. 7.6-1].
Using the above result and the theorem of Mazur, one can prove the sequential

weak lower semicontinuity of ES with respect to sequences uk for which ES remains
bounded (see [14, Proof of Thm. 7.7-1]). This result can be extended in the following
way.

Lemma 3.3. Let Assumptions 3.1 and 3.2 hold. Consider a weakly converging
sequence (uk, gk)⇀ (ũ, g̃) in U ×G such that

uk ∈ argmin
v∈U

E(v, gk),

and E(uk, gk) is bounded from above. Then

(20) lim
k→∞

E(uk, gk) = E(ũ, g̃) = min
v∈U

E(v, g̃).

Proof. First, we show the weak lower semicontinuity of E for sequences that leave
the energy bounded from above.

Weak lower semicontinuity of the first part ES with respect to uk follows as in
[14, Proof of Thm. 7.7-1] from Lemma 3.2 and convexity of the functional W with
respect to its arguments. The second part

EΓc(uk, gk) =

∫
Γc

ukgk ds

is even weakly continuous. This follows via compactness of the trace mapping
W1,p(Ω) ↪→ L2(Γc) by strong convergence uk|Γc → ũ|Γc in L2(Γc) and weak con-
vergence gk ⇀ g̃ in L2(Γc). In summary, we can conclude weak lower semicontinuity
of E :

E(ũ, g̃) ≤ lim inf
k→∞

E(uk, gk),

and, if u is fixed,

lim
k→∞

E(u, gk) = E(u, g̃).

Next, by the minimizing property of uk, we obtain E(uk, gk) ≤ E(ũ, gk) and
lim sup
k→∞

E(uk, gk) ≤ lim sup
k→∞

E(ũ, gk) = lim
k→∞

E(ũ, gk) = E(ũ, g̃),
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implying

lim sup
k→∞

E(uk, gk) ≤ E(ũ, g̃) ≤ lim inf
k→∞

E(uk, gk),

and thus

lim
k→∞

E(uk, gk) = E(ũ, g̃).

The fact that ũ is again an energy minimizer of E(·, g̃) follows from the minimizing
property of uk and the established convergence result. To this end let ū be a minimizer
of E(·, g̃). Then

E(ū, g̃) ≤ E(ũ, g̃) = lim
k→∞

E(uk, gk) ≤ lim
k→∞

E(ū, gk) = E(ū, g̃).

Observe the two structural properties that make this proof work: First, linearity
of EΓc with respect to g, and second, compactness of the trace mapping W1,p(Ω) ↪→
L2(Γc). Our proof extends to any EΓc with the same abstract properties.

Proof of Theorem 3.1. First, we show that we can apply Lemma 3.3. Then,
using the weak lower semicontinuity of J , we will show that there exists an admissible
minimizing sequence (uk, gk)k∈N converging weakly in U ×G to a minimizer (ũ, g̃) of
the optimal control problem. Eventually exploiting the coerciveness of E will lead to
the admissibility of the weak limit (ũ, g̃), i.e.,

adj(∇ũ) ∈ Lq(Ω) and det(I +∇ũ) ∈ Lr(Ω).

Existence of a weakly convergent subsequence. As has been shown in [6, Thms. 7.3
and 7.6], [14, Thm. 7.7-1], for every gk ∈ G there exists a displacement uk ∈ U such
that uk ∈ argminv∈U E(v, gk). Thus, as the energy functional J(u, g) is bounded from
below, there exists a minimizing sequence (uk, gk)k∈N of J with gk ∈ G, uk ∈ U , and
uk being a minimizer of E(·, gk). From (18) we deduce that the sequence {gk}k∈N

is bounded in G by some constant Cg, and by reflexivity of G there exists a weakly
convergent subsequence, which will again be denoted as {gk}k∈N with weak limit
g̃ ∈ G.

First, we have to show that the sequence {E(uk, gk)}k∈N is bounded from above.
Setting ‖ · ‖U := ‖ · ‖W1,p(Ω), ‖ · ‖G := ‖ · ‖L2(Γc) and using Hölder’s inequality and the
continuity of the trace operator, we get an estimate for the sensitivity of the elastic
energy functional with respect to changes in the Neumann boundary conditions:

(21) E(u, gk)− E(u, 0) =
∫
Γc

u(0− gk) ds ≤ ‖u‖U‖gk‖G ≤ Cg‖u‖U .

Thus as uk minimizes E(·, gk), the boundedness of {E(uk, gk)}k∈N is a consequence of
(21), inserting u = u as defined at the end of Assumption 3.1:

E(uk, gk) ≤ E(u, gk) ≤ Cg‖u‖U + E(u, 0) <∞.

Now the boundedness of {uk}k∈N follows from the coercivity of E ; i.e., there exist
constants γ̃ > 0, β̃ ∈ R such that

γ̃‖uk‖pU ≤ E(uk, gk) + β̃ ≤ Cg‖u‖+ E(u, 0) + β̃.

Again reflexivity implies the existence of a subsequence uk ⇀ ũ in U .
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Admissibility of (ũ, g̃). Now we can apply Lemma 3.3 to get

lim
k→∞

E(uk, gk) = E(ũ, g̃) = min
v∈U

E(v, g̃).

Thus the pair (ũ, g̃) is an admissible candidate for a minimizer of J and a weak limit
of the minimizing sequence (uk, gk) of J . As J is weakly lower semicontinuous, (ũ, g̃)
indeed minimizes J . Moreover, the coercivity inequality (16) in combination with
Lemma 3.2 guarantees that

adj(I +∇ũ) ∈ Lq(Ω) and det(I +∇ũ) ∈ Lr(Ω),

and condition (15) ensures that det(I +∇ũ) > 0 a.e. in Ω.

4. Weak formulation. In the following, we discuss weak formulations corre-
sponding to the energy minimization problem minu∈U E(u, g). This means that we
derive first order necessary optimality conditions for the constraint of the optimal
control problem under consideration. For the sake of clarity from now on we will sup-
press the dependence on x; i.e., we will assume that the material under consideration
is homogeneous. The derived results also hold for heterogeneous materials.

As noted in the introduction, it is, in general, not clear whether a local minimizer
of the elastic energy functional satisfies the weak formulation (see [8, Problems 5
and 6])

E ′(u, g)h = 0 for all h ∈ C∞(Ω).

In the context of compressible material laws, the main difficulties are caused by con-
dition (14). While being necessary in order to avoid local self-penetration and to
model the observed material behavior in a qualitatively correct way, the introduced
singularity leads to severe analytical difficulties.

In particular, it implies for the strain energy, that

ES(u) =
∫
Ω

W (∇ϕ) dx = ∞

on a dense subset of W1,p(Ω) for any p < ∞ and thus also on a dense subset of U ;
i.e., for every u ∈ U with E(u, g) <∞ one can construct a sequence uk → u in U such
that

E(uk, g) = ∞ for all k ∈ N.

Thus, we cannot expect differentiability in spaces weaker than W1,∞(Ω).
To make this discussion concrete, in the following we consider a compressible

Mooney–Rivlin material law. This widely used constitutive relation is a special case
of a compressible Ogden-type material. It is polyconvex and isotropic and may be
written in terms of the (right) Green–St.Venant strain tensor

E(u) =
1

2

(∇uT +∇u+∇uT∇u)
and the deformation gradient ∇ϕ = I +∇u:

W (u) = a tr(E) + b (tr(E))
2
+ c tr(E2) + Γ (det(∇ϕ)) + f
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and lims→0+ Γ(s) = ∞. Setting α = a − 2b, β = −c, W can be represented in the
following way:

W (∇ϕ) = α

2
‖∇ϕ‖2 + β

2
‖ adj∇ϕ‖2 + Γ (det(∇ϕ)) + e.

Popular choices for Γ take the form (see [35, 36])

(22) Γ(t) =
1

2
dt2 − e ln(t) or Γ(t) =

1

2
dt2 +

e

k
t−k, k > 0.

Remark 4.1. In both cases the first summand t2 guarantees, with α > 0, β > 0,
d > 0, the validity of the coerciveness inequality (16) with p = q = r = 2. Moreover,
for small strain, the material behaves like a St.Venant–Kirchhoff material. Thus,
near E = 0 the stored energy function W should be a second order approximation of
the stored energy function of a St.Venant–Kirchhoff material. In the case of Γ(t) =
dt2 − e ln(t) it is always possible to determine α > 0, β > 0, d > 0, e > 0 such that
this is the case [14, Thm. 4.10-2]. This property comes at the expense of the model’s
quality, restricting its validity to rather academic questions. Thus we will focus on
a nonlogarithmic form as proposed in [35]. In this case the choice of parameters is
dependent on the Poisson ratio ν = λ

2(λ+μ) . More precisely, the inequality

(23) k < −1 +
1

1− 2ν
⇔ ν >

k

2(k + 1)

restricts the possible range for k for given ν and vice versa; i.e., k ≥ 9 requires ν > 0.45,
thus possibly implying the risk of constitutive locking (Poisson locking [11]). While
being independent of Young’s modulus, this inequality becomes less restrictive with
growing ν.

With respect to the weak formulation, we first focus on the energy minimization
problem

(24) min
u∈U

E(u, g) for given fixed g ∈ G.

In the following we study the derivatives of E with respect to u, starting with a
pointwise computation of the derivatives of W at nonsingular F in direction δF :

W ′(F )δF = αF :δF + β adjF :adj′(F )δF + Γ′(detF ) (adjF :δF ) .(25)

Here we used the differentiation rule det′(F )δF = adjF : δF . Further, we may also
compute the second derivative:

W ′′(F )(δF1, δF2)

= αδF1 :δF2 + β adj′(F )δF1 : adj′(F )δF2 + β adjF : adj′′(F )(δF1, δF2)

+ Γ′(detF )
(
adj′(F )δF1 :δF2

)
+ Γ′′(detF ) (adjF :δF1)(adjF :δF2) .

(26)

The validity of the above pointwise formulae follows, for F ∈ M
3
+, δF1, δF2 ∈ M

3,
directly from the definitions of det, adj, and Γ. Having stated differentiability prop-
erties of W as a nonlinear function of the matrix F ∈ M

3, we now turn to their study
as superposition operators.

To this end, we consider the space Lp(Ω) of p-integrable matrix valued functions
F : Ω → M

3, insert the matrix valued function F ∈ Lp(Ω) pointwise into W , and
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consider the result in another Lp-space. For this purpose we first need some properties
of adj,Γ and an additional assumption on local minimizers of the energy functional
E .

Lemma 4.1. Let F ∈ Lp(Ω). Then the mapping

(27) adj′(F ) : Lp
′
(Ω) → L1(Ω)

is linear and continuous for p−1 + (p′)−1 ≤ 1. Moreover, the mapping

(28) adj′′(F ) : Ls1(Ω)× Ls2(Ω) → L1(Ω)

is independent of F and bilinear and continuous for s−1
1 + s−1

2 ≤ 1. For N > 2 we

have adj(N) = 0.
Proof. The assertion follows from the observation that adj is a second order

polynomial in the entries of F and from Hölder’s inequality.
Definition 4.1. Let ϕ ∈ W1,p(Ω) with p ≥ 1. We call ϕ nondegenerate if there

exists a constant ε > 0 such that

(29) det(∇ϕ) ≥ ε a.e. in Ω.

In the context of elasticity theory we also call the displacement u ∈ U nondegenerate
if ϕ = Id+u is nondegenerate.

Remark 4.2. In the similar framework of barrier regularizations, examples can be
given where the violation of an analogue to nondegeneracy in the above sense yields
minimizers that do not satisfy the formal optimality conditions [39].

Suppose there exists a local minimizer u ∈ U of Eg that is degenerate; i.e., there
exists a sequence

(xk)k∈N
⊂ Ω, xk → x ∈ Ω such that det(I +∇u(xk)) → 0.

Physically this corresponds to a deformation that becomes singular at x ∈ Ω, and thus
is reasonable only in the modeling of cutting or piercing processes. In these cases other
effects, such as plasticity, become dominant. In the context of applications like implant
shape design, the elastic behavior is predominant, thus justifying the nondegeneracy
assumption on minimizers of E .

Lemma 4.2. Assume that F ∈ Lp(Ω) is nondegenerate, adjF ∈ Lq(Ω), and
detF ∈ Lr(Ω). Assume that the integrability indices si ∈ [1,∞], i = 1, . . . , N , satisfy

N = 1 : s−1
1 ≤ 1− (r−1 + q−1),

N = 2 : s−1
1 + s−1

2 ≤ 1−max(r−1 + p−1, 2q−1),

N = 3 : s−1
1 + s−1

2 + s−1
3 ≤ 1−max(r−1, p−1 + q−1, 3q−1),

which is possible only if the expressions on the corresponding right-hand sides are
nonnegative.

Then, for the choice

δFi ∈ Lsi(Ω), si ∈ [1,∞], i = 1, . . . , N,

we obtain

dN

dFN
Γ(detF )(δF1, . . . , δFN ) ∈ L1(Ω), N = 1, 2, 3.
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Proof. Differentiating Γ from (22), we get

Γ′(t) = t− t−(k+1), Γ′′(t) = 1 + (k + 1)t−(k+2),

Γ′′′(t) = −(k + 1)(k + 2)t−(k+3).

Thus under our assumption of nondegeneracy it follows that d
dF Γ(detF ) grows lin-

early in detF and that d2

dF 2Γ(detF ) is bounded independently of detF . Then, using
Hölder’s inequality, inspection of the relevant terms in (25) and (26) yields our results
for N = 1 and N = 2. For N = 3, we compute

d3

dF 3
Γ(detF )(δF1, δF2, δF3) = Γ′(detF )(adj′′(F )(δF1, δF2) : δF3)

+ 3Γ′′(detF )(adj′(F )δF1 : δF2)(adjF : δF3)

+ Γ′′′(detF )(adjF : δF1)(adjF :δF2)(adjF :δF3)

and use again Hölder’s inequality.
Now we can turn to the study of the derivatives of W .
Proposition 4.3. Assume that F ∈ Lp(Ω) is nondegenerate, adjF ∈ Lq(Ω), and

detF ∈ Lr(Ω). (In the following, we take si ∈ [1,∞] and assume that the inequalities
for the si are nonvoid.)

If 0 ≤ s−1
1 ≤ 1− (q−1 +max(r−1, p−1)), then

W ′(F )δF ∈ L1(Ω) for all δF ∈ Ls1(Ω),

and W ′(F ) is linear and continuous in δF .
If 0 ≤ s−1

1 + s−1
2 ≤ 1−max(2p−1, r−1 + p−1, 2q−1), then

W ′′(F )(δF1, δF2) ∈ L1(Ω) for all δFi ∈ Lsi(Ω), i = 1, 2,

and W ′′(F ) is bilinear and continuous in (δF1, δF2).
If 0 ≤ s−1

1 + s−1
2 + s−1

3 = 1−max(r−1, p−1 + q−1, 3q−1), then

W ′′′(F )(δF1, δF2, δF3) ∈ L1(Ω) for all δFi ∈ Lsi(Ω), i = 1, 2, 3,

and W ′′′(F ) is trilinear and continuous in (δF1, δF2, δF3).
Proof. The assertion follows from inspection of the particular terms in (25) forW ′

and in (26) for W ′′. ForW ′′′ a similar term can be computed. Well-definedness of the
derivatives of Γ in suitable Lp-spaces has been shown in Lemma 4.2; the remaining
terms are second and fourth order polynomials in the coefficients of F . With this in-
formation, our result follows from repeated application of the Hölder inequality.

Finally, we can study conditions under which the formal directional derivatives
of the strain energy

ESu(u)v1 :=

∫
Ω

W ′(I +∇u)∇v1 dx ,(30)

ESuu(u)(v1, v2) :=
∫
Ω

W ′′(I +∇u)(∇v1,∇v2) dx ,(31)

ESuuu(u)(v1, v2, v3) :=
∫
Ω

W ′′′(I +∇u)(∇v1,∇v2,∇v3) dx(32)

are well defined. Moreover, we have to verify whether the remainder terms vanish, i.e.,
under which conditions the defined functionals really are the directional derivatives
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of the strain energy. For given u ∈ W1,2(Ω) this is a delicate issue. Fortunately, the
coerciveness inequality (16) retains that adj(I+∇u) ∈ L2(Ω) and det(I+∇u) ∈ L2(Ω)
if u is a minimizer of E . Therefore we have the following.

Corollary 4.4. Assume that u ∈ U is nondegenerate and ES(u) is finite. Then
ESu(u) and ESuu(u) are well defined in W1,∞(Ω), resp., W1,∞(Ω)×W1,∞(Ω).
If, further,

• adj(I +∇u) ∈ L∞(Ω), then (30) is well defined for v1 ∈ W1,2(Ω) and (32)
for vi ∈ W1,∞(Ω), i = 1, 2, 3;

• u ∈ W1,∞(Ω), then (30), (31), and (32) are well defined for vi ∈ W1,si(Ω)
with

∑
s−1
i = 1, respectively.

Proof. By coercivity of ES we conclude that p = 2, q = 2, r = 2. Thus, we can
apply Proposition 4.3 for si = ∞ to obtain our first result for (30), (31).

If q = ∞, then s = 2 is admitted for (30), and Proposition 4.3 yields
∑
si ≥ 0

for (32).

Since adj and det are polynomials, it follows from u ∈ W1,∞(Ω) and nondegen-
eracy that p = q = r = ∞ such that

∑
s−1
i = 1 can be chosen.

Proposition 4.5. If u ∈ U is nondegenerate and u ∈ W1,∞(Ω), then ES is
directionally differentiable for each δu ∈ W1,∞(Ω) with derivative given by (30). The
corresponding remainder term is uniform in δu.

Moreover, ES is twice directionally differentiable with second derivative given by
(31). For sufficiently small ‖δu‖W1,∞(Ω) the corresponding remainder term can be
estimated by

r2(u, δu) ≤ c‖δu‖W1,∞(Ω)‖δu‖2W1,2(Ω).

Proof. In order to prove the statement we consider for δu ∈ W1,∞(Ω) the re-
mainder term

|E(u+ δu, g)− E(u, g)− Eu(u, g)δu| = 1

2

∣∣Euu(u+ ξδu, g)(δu)2
∣∣

≤ 1

2
‖ Euu(u + ξδu, g)‖‖δu‖2W1,∞(Ω).

By Corollary 4.4 we know that Euu(u, g)(δu)2 is finite, and since Euu is continuous at
u in W1,∞(Ω), Euu(u + ξδu, g)(δu)2 is bounded.

The proof for the second derivative runs analogously, using the properties of
W ′′′.

Remark 4.3. Let us point out the following subtlety.1 The question arises of
whether for u �∈ W1,∞(Ω) a similar result can be achieved. To this end, continuity
of Euu at (u, g) with respect to perturbations δu ∈ W1,∞(Ω) would be required.
Since Euu has a singularity in det(I + ∇u), we need for its continuity the uniform
continuity of the mapping F → detF , even at a nondegenerate point and even for
δu ∈ W1,∞(Ω). Since detF in R

3×3 is a third order polynomial in the entries of F ,
this property holds only on bounded subsets of R3×3 so that u ∈ W1,∞(Ω) is really
needed.

The combination of these results allows us to prove the main theorem of this
section.

1The authors are indebted to Dipl. Math. Simon Rösel, who communicated this issue to us and
found a flaw in a preliminary version of this paper.



1418 LARS LUBKOLL, ANTON SCHIELA, AND MARTIN WEISER

Theorem 4.6. Let u ∈ U be a nondegenerate local minimizer of E with E(u) <∞
and u ∈ W1,∞(Ω). Then it satisfies the following weak formulation:

(33) Eu(u, g)δu = 0 for all δu ∈ W1,∞(Ω).

If, in turn, u ∈ W1,∞(Ω) satisfies (33), and Euu(u, g)v2 ≥ δ‖v‖2W1,2(Ω) for all v ∈
W1,∞(Ω), then for sufficiently small δu ∈ W1,∞(Ω) and some ε > 0 we have the
growth condition

E(u+ δu) ≥ E(u) + ε‖δu‖2W1,2(Ω).

In particular, u is a W1,∞(Ω)-local minimizer of E.
Proof. The proof is standard. To show that Eu(u, g)δu = 0, we compute

Eu(u, g)(±δu) = lim
t→0

E(u± tδu, g)− E(u, g)
t

≥ 0,

since u is a local minimizer of E .
For our second assertion, we note that

E(u + δu)− E(u) = 1

2
Euu(u, g)δu2 + r(δu)

≥ δ

2
‖δu‖2W1,2(Ω) + r(δu).

Due to Proposition 4.5,

r(u, δu) ≤ c‖δu‖W1,∞(Ω)‖δu‖2W1,2(Ω)

so that, for ‖δu‖W1,∞(Ω) → 0, we obtain

E(u + δu)− E(u) ≥
(
δ

2
− c‖δu‖W1,∞(Ω)

)
‖δu‖2W1,2(Ω) ≥ ε‖δu‖2W1,2(Ω).

5. Formal first order optimality conditions. Next, we discuss first order
optimality conditions of our optimal control problem. As we have seen above, dif-
ferentiability of the equality constraints Eu(u, g) = 0 requires the choice of W1,∞(Ω)
(or stronger) as a topological framework. Thus we have to restrict our discussion to
a formal level, as on the one hand, we lack an existence result in this space, and on
the other hand, existing regularity results do not admit the application of the implicit
function theorem in order to show that the set Eu(u, g) = 0 is a smooth manifold.
Its application requires continuous invertibility of the linearized weak formulation in
suitable spaces. One possible framework would be to consider

Euu : W2,p(Ω) → Lp(Ω)

for W2,p(Ω) ↪→ W1,∞(Ω) (cf., e.g., [14, Chapter 6]). However, the class of problems
for which suitable regularity results hold is small.

Formally, the first order optimality conditions of (19) can be derived via the
Lagrangian function

L(u, g, p) = J(u, g) + p(Eu(u, g)).
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Computing the formal derivatives of L with respect to u, g, and p yields the system

Ju(u, g) + Euu(u, g)∗p = 0 in U∗,(34a)

Jg(u, g) + Eug(u, g)∗p = 0 in G∗,(34b)

Eu(u, g) = 0 in U∗.(34c)

If J is the sum of a measure of the error and a Tikhonov regularization term, i.e., if J
is of the form J(u, g) = Jerr(u)+ α

2 ‖g‖2L2(Γc)
, where α is the Tikhonov regularization

parameter (see (9a)), then these conditions can be written explicitly:

Jerru (u) + Euu(u, g)∗p = 0 in U∗,(35a)

αg(x) +
(
adj(I +∇u)Tn) p(x) = 0 a.e. on Γc,(35b)

Eu(u, g) = 0 in U∗.(35c)

Elimination of g via (35b) reduces system (35) to

Jerru (u) + Euu(u)∗p = 0,(36a)

Eu
(
u,−

(
adj(I +∇u)Tn) p

α

)
= 0.(36b)

6. Numerical results. In order to perform first numerical experiments, we con-
sider the cost functional

(37) J(u, g) =
β

2
‖u− uref‖2L2(Γt)

+
α

2
‖g‖2L2(Γc)

,

where the additional parameter β ∈]0, 1] is introduced in order to establish a numerical
continuation scheme β → 1. In a direct approach, the occurring nonlinearities would
lead to too small Newton steps in the solution of the nonlinear problem for β = 1.

Then, setting ñ = adj(I +∇u)Tn, the reduced optimality system reads∫
Ω

W ′′(∇ϕ)∇p∇v dx +

∫
Γt

β(u− uref)v ds = 0 for all v ∈ U ,(38a) ∫
Ω

W ′(∇ϕ)∇w dx +

∫
Γc

ñp

α
ñw ds = 0 for all w ∈ U .(38b)

Further, in view of possibly large values for Young’s modulus E, we perform a rescaling
of the problem via

(39) W �→ E
−1W and α �→ E

2α.

This is a problem formulation that is invariant with respect to Young’s modulus. This
is of advantage, because in the presence of large E, appropriate Tikhonov parameters
satisfy α ∼ E

−2 (see [30]) and thus may become very small. This in turn affects
the condition number of the Newton matrix and thus the numerical accuracy of the
Newton steps. As the coefficients of W depend linearly on Young’s modulus, the
application of the transformations (39) is equivalent to setting E = 1.

In summary, we solve a sequence of problems

(40) (Pk)

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

W ′′(∇ϕ)∇p∇v dx +

∫
Γt

βk(u − uref)v dx = 0,∫
Ω

W ′(∇ϕ)h dx +

∫
Γc

ñp

α
ñh ds = 0
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with 0 < β0 < · · · < βN ≤ 1, N > 0, E = 1. The second material parameter of
linearized elasticity, the Poisson ratio ν, is close to 1

2 in order to correspond to a
quasi-incompressible material, as encountered in soft tissue models. As constitutive
locking is a commonly observed phenomenon for ν → 1

2 [5, 11] that should be excluded
in order to monitor the influences of the nonlinearities, we set ν = 0.45. This choice
keeps the risk of constitutive locking small while staying reasonable from a modeling
point of view. In general, in order to allow the Poisson ratio to attain all values in the
admissible range [0, 0.5[, mixed formulations, and/or adjusted discretization schemes
for the forward problem of elastostatics [4, 40, 44] must be used and adapted to the
optimal control problem.

As noted in section 4, a logarithmic dependence of Γ on the volume change is not
sufficient to accurately model the soft tissue’s behavior. For the sake of numerical
simplicity, we nevertheless choose the logarithmic penalty term Γ(s) = s2 + log(s).

The systems (Pk) have been discretized on the cuboid [−1, 1]× [−1, 1]× [−0.1, 0.1]
with the finite element toolbox Kaskade7 [22] using linear elements. The resulting
finite dimensional, nonlinear equations are solved with a covariant damped Newton
method as presented in [17, Chapter 3]. For the solution of the arising linear systems
of equations, we use the distributed multifrontal solver MUMPS [1, 2]. First numerical
results are given in Figure 2.

(a) Computed deformation. (b) Comparison between computed solution and
desired deformation (lighter areas).

Fig. 2. Numerical results for α = 0.1.

7. Conclusion. In this work, basic analytical and numerical results for the
mathematical treatment of an implant design problem have been established. Since
the direct approach in section 2.2 appears very difficult to handle, a structurally much
simpler optimal control reformulation, where the boundary forces act as a control is
proposed in section 2.3. The shape of the implant is reconstructed in a second step
from the computed deformation of the soft tissue. This can be motivated by a classical
theorem [14, Thm. 7.9-1]: under the reasonable assumption of sufficient regularity
of the soft tissue deformation, the solutions of the optimal control problem also solve
the obstacle problem between soft tissue and implant.

Due to the well-known intricacies of nonlinear hyperelasticity, the analytical treat-
ment of the optimal control problem is still quite challenging. Even for proving the
existence of an optimal solution we had to resort to a simplified problem setting either
using a dead load or allowing tangential forces. Currently, stronger results such as
uniqueness or continuity of solutions with respect to parameters appear out of reach.

From a numerical point of view, the dead load simplification is not necessary,
and the original optimal control problem can be addressed directly. However, our
numerical experience indicates that the problem is quite challenging, and refined
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algorithmic ideas are necessary to treat the nonlinear implant shape problem to full
satisfaction. This includes on the one hand globalization techniques for the nonlinear
solver, and on the other hand adaptivity and iterative solution techniques for the
linear systems.
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tizitätstheorie, 4th ed., Springer, Berlin, 1992.

[12] H. Bufler, Pressure loaded structures under large deformations, Z. Angew. Math. Mech., 64
(1984), pp. 287–295.

[13] M. Chabanas, V. Luboz, and Y. Payan, Patient specific finite element model of the face
soft tissues for computer-assisted maxillofacial surgery, Medical Image Analysis, 7 (2003),
pp. 131–151.

[14] P.G. Ciarlet, Mathematical Elasticity Vol. I: Three-dimensional Elasticity, North–Holland,
Amsterdam, 1988.

[15] P.G. Ciarlet, An Introduction to Differential Geometry with Applications to Elasticity,
Springer, Dordrecht, 2005.

[16] B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd ed., Springer, New York,
2008.

[17] P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive
Algorithms, Springer-Verlag, Berlin, 2004.

[18] A.E. Ehret and M. Itskow, A polyconvex hyperelastic model for fiber-reinforced materials in
application to soft tissues, J. Mater. Sci., 42 (2007), pp. 8853–8863.

[19] P.R. Fernandes, R.B. Ruben, and J. Folgado, Bone implant design using optimization
methods, in Biomechanics of Hard Tissues: Modeling, Testing, and Materials, A. Öchsner
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