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Abstract

The aim of the thesis is to propose and analyse a method for improving the
segmentation process based on Statistical Shape Models (SSM) by the means
of a model based on intensity profiles.

These profiles are sampled along the normals of each point of the surfaces
in the training-set that were used to build the Statistical Shape Model.

Once the profiles are sampled, they are normalised and then the profiles of
each data-set in the training-set is clustered separately using the Neighbour-
hood Expectation Maximisation (NEM) algorithm which unlike the regular EM
algorithm performs a spatial regularisation by taking neighbourhood informa-
tion into account which remove some noise, i.e. geometrical distance between
profiles is added to the profile comparison introducing local smoothing of the
obtained clusters.

Finally a fusion step is performed on the different clustering solutions to
merge clusters that are similar. This allows to drastically diminish the number
of different clusters and provide a statistical significance for the model.

The goal is to find zones where the profiles are similar on all of the surface in
the training set. This would enable to enhance the segmentation process with
the SSM. In fact, it could then deform the surface of the models in such a way
that these zones find their matching profiles in the segmented image.

To determine the optimal number of clusters, the Overlap Separation Index
(OSI) proposed by F. Chung was analysed. It turns out that the method isn’t
suited for the use on the posterior probabilities generated by the NEM algorithm
due to the sharpness of the resulting clusters. For future work I proposed to
compute the OSI on a fuzzy clustering initialised with the results of the NEM
algorithm.

An heuristic was developed to estimate the optimal parameter for the spa-
tial regularisation performed in the NEM algorithm. It proved to be rather
successful as it provided valid values for the parameter sought.

Before studying the merging of the clusters itself, attention was paid to
the measure that allows to compare two clusters and to finally decide if they
should be merged or not. The Jaccard index was used and although it gives
good results, its nature prevents to take into account big differences between
the means of two clusters as it is only based on the surface delimited by the
standard deviation around the mean.

The last step of the global algorithm was analysed too and it seems that
another method should be found to merge clusters as the one proposed by F.
Chung. In fact, merging clusters that are similar regarding their intensity values
only, can dramatically expand them spatially producing clusters that cover a
high percentage of the surface with small cluster memberships. As the goal is
to find zones with very high of such membership values, that particular point
should also be improved.

All in all, the method works quite well and the proposed improvements
should allow to move towards the realisation of a powerful intensity model which
could then lead to a better segmentation using Statistical Shape Models.



Introduction
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Introduction on Image Segmentation For the segmentation of 3D im-
age volumes, various methods do exist, covering a wide range of complexity.
The simplest method is manual segmentation which is user-dependent, tedious,
labour-intensive and thus time consuming. Semi-automatic methods reduce
both the user interaction and the aforementioned drawbacks. Meanwhile, fully
automated methods do exist which are based on shape priors. One possible class
of shape priors are the so called Statistical Shape Models (SSM). Such SSMs
were among others described by Cootes [1].

Statistical Shape Models The particularity of SSMs is that they are built
in such a way that they are both general (i.e. they are capable of generating
shapes that are not present in the training set) and specific, i.e. they only
generate shapes that can be encountered in the real world.

The main drawback of this method is that it cannot be used to describe
amorphous objects with high deformability. This is due to the necessity of
finding landmarks, i.e. points that can be found on the structure of every data
in the training set. These landmarks are used to establish a relationship between
points on the various shapes of the training set and eventually align and scale
them i.e. to perform registration. The surfaces are split in patches which have
a disc topology. This allows point-to-point correspondence between the surfaces
via a bijective mapping of their connectivity information.

The result of the creation of such a SSM as described in Section 1.1 is a mean
shape X and a set of shape modes di and their associated weights wi.

S(w) = X +
M∑
i=1

widi (1)

Segmentation using Statistical Shape Models As described in chap-
ter 1.2, the shape represented by the model has to be deformed to perform
segmentation of an image volume not included in the training set. This is done
according to cost functions and heuristic methods which determine whether or
not a vertex of the surface model should be moved or not.

Cootes et al. proposed a method called Active Shape Models [1] which de-
termines these cost functions for each point of the model by performing a PCA
on the intensity profiles, which are sampled along the surface normals of any
vertex for each 3D image volume in the data-set (see Fig. 1 and Fig. 2). This
allows to establish a characteristic profile for each sample point of the shape
model. It is then possible to compute the similarity between stored profiles and
those that are found within the image data to be segmented, by using a suitable
metric like the Mahalanobis distance, which takes the correlation between each
sample point of two profiles into account. This allows to move each point (and
thus the shape model boundary) along its normal to a new position where the
distance between its average profile and the profile sampled at the new position
is minimal. Once the distance has been minimised for each point, the parame-
ters of the model are recomputed to best fit the model to the new positions of
its sample points.
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Figure 1: Left: Plots of two different intensity profiles (X-axis sample points,
Y-axis intensity value). Right: MRI slice with the normals of the surface along
which the two profiles were extracted.

Figure 2: 3D surface (gold standard) obtained after manual segmentation. Nor-
mals to the surface at each vertex are displayed.

Limitations Using Active Shape Models allows to utilise a characteristic pro-
file at each sample point to establish a cost function in an automatic fashion.
However, the assumption is made that there is a correlation between the geome-
try of the shape and the intensity profiles i.e. corresponding points of the shape
in different data-sets have a similar intensity profile. This is often not the case
and introduces errors in the model.

It is however possible to evaluate the cost functions in a heuristically fashion
which gives very good results [2]. Since they are basically a set of formulae used
under certain conditions that can not be described as a single mathematical
function, they are very difficult to optimise, i.e. computation of derivatives is
not possible. Furthermore their efficiency is user-dependent and although they
do work for the image volumes in the training set, there is no guarantee that
they would give good results for new image data.
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In practise this works well in many cases as shown with [3] and [4] in the
MICCAI segmentation contests.

Goals of the Thesis The goal of this thesis is to propose and study a method
for generating a profile intensity model which could be used to create cost func-
tions in an automatic fashion for model-based segmentation.

The last limitation described above could be solved by using a method pro-
posed by F. Chung et al. which consists of performing a neighbourhood-aware
intensity profile clustering [5] to extract these typical profiles for regions of each
shape of the training set (instead of for each point. See Fig. 3). The method
is based on a Gaussian Mixture Model clustering optimised by a modified ver-
sion of the Expectation-Maximisation algorithm which was extended to take
the neighbourhood into account (it is thus called Neighbourhood EM or NEM ).
For each shape, the result is a smoothed, spatially regularised clustering of the
intensity profiles. In order to establish an intensity profile model, the method
is first run separately on each shape in the training set and then a fusion step
takes place where similar clusters are merged and where all points of a reference
shape are given a probability to belong to their respective classes.

This intensity model could then be used to determine cost functions automati-
cally. Some regions of the shape are likely to have a high probability of belonging
to a particular class. This information could be used to create a cost function
for these regions by comparing the result of a Principal Component Analysis
of the profiles in this class with the profile of the current point using a suited
distance measure. In the process of matching the entire shape using a SSM, the
regions with high class-membership probabilities could be more weighted than
those where the variance in intensity profiles was higher which would more or
less follow elastically (due to the bounded shape space).

The work presents the whole algorithm, discusses the key problems of its
implementation and proposes solutions to these.
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Figure 3: Left: 3D surface with 3 zones where the vertices have a high probabil-
ity to belong to one class respectively. Right: Typical profiles of the 3 classes.
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Introduction

This part briefly presents various concepts that are mandatory for the un-
derstanding of the presented work.

The chapter 1.1 describes one of the existing types of models based on shape
priors: Statistical Shape Models (SSM).

In chapter 1.2, it is explained how the SSMs are used to perform segmentation
of the object in unknown images.

Finally, chapter 2 introduces the Estimation-Maximisation (EM) algorithm
which will be modified as described in [6].
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Chapter 1

Statistical Shape Models

1.1 Building a Statistical Shape Model

In order to build the model, a training set X made of M meshes of N vertices
of the object of interest manually segmented in the M corresponding image data,
is used. It can be represented as a M × N matrix where each row xi (in this
document, any element that is not a scalar will be written in bold) contains the
coordinates of all vertices of mesh j in the training set:

X =


x11 x1j · · · x1N
xi1 xij · · · xiN
...

...
. . .

...
xM1 xMj · · · xMN

 (1.1)

For Rn there are actually n ×N values in a column, thus for R3 the matrix
has an actual size of M × 3N and looks like:

X =


x11 y11 z11 · · · x1j y1j z1j · · · z1N
xi1 yi1 zi1 · · · xij yij zij · · · ziN
...

...
...

...
...

...
...

. . .
...

xM1 yM1 zM1 · · · xMj yMj zMj · · · zMN

 (1.2)

However, the number of columns will be N in the following document. Once
the shapes are aligned, a Principal Component Analysis (PCA) is run on X in
order to extract the shape modes. For this purpose, a mean mesh (1 × N) is
created:

X =
1

M

M∑
i=1

xi (1.3)

Then the data is recomputed in the mean deviation form dX:

dxi = xi −X ∀i = 1, . . . ,M (1.4)

8



CHAPTER 1. STATISTICAL SHAPE MODELS

The M ×M covariance matrix S is computed:

S =
1

M − 1
dXdXT (1.5)

Then the matrix V that diagonalises S is computed:

V SV −1 = Λ (1.6)

Λ is the diagonal matrix of eigenvalues and V the orthogonal matrix (V −1 =
V T ) of eigenvectors:

Λ =



λ1 0 0 · · · 0
0 λ2 0 · · · 0

0 0 λi
. . . 0

...
...

. . .
. . . 0

0 0 · · · 0 λM

 (1.7) , V =



v11 v12 v1j · · · v1M
v21 v22 v2j · · · v2M

vi1 vi2 vij
. . . viM

...
...

. . .
. . .

...
vM1 vM2 vMj · · · vMM

 (1.8)

The eigenvalues and their associated eigenvectors are ordered so that λi > λi+1.

An important note concerns the relationship between the “set size over el-
ement size” ratio and the number of modes. In fact, if M is strictly greater
than N , there are P = N shape-modes where in the other case, there are only
P = M − 1 modes. This is illustrated on the Fig. 1.1.

In the specific case of the Statistical Shape Models, it is likely that there will
be much more vertices (N) than meshes in the training set (M) thus leading to
P = M − 1 modes..

The shape-modes D = {di}i=1,...,P are computed:

D = V dX (1.9)

Finally the training data of mesh l can be recomputed as X̂l so that

X̂ l = X +wlD (1.10)

wherewl is the vector of size P of weights of the corresponding shape-modes.

Since the eigenvectors are ordered in descending eigenvalue order, the first
one has the biggest variance where the last one has the smallest. This allows to
select only some modes and still be able to describe the data sufficiently since
each supplementary mode adds fewer information. It is possible to measure the
percentage of variance explained E when selecting p < P modes:

E =

∑p
i=1 λi∑P
i=1 λi

(1.11)
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CHAPTER 1. STATISTICAL SHAPE MODELS

Figure 1.1: The left figure shows 2 points in R2 (thus M = 2 and N = 2).
Running a PCA would choose the black line as the new axis, clearly showing
that the two points would be described by the sum of the mean point (magenta
cross) and a weighted contribution of the only mode (shown as the magenta
arrow). The right figure shows 3 points in R2 (thus M = 3 and N = 2).
Doing the same as above, it is shown that now, there as many modes as space
dimensions.

1.2 Segmentation Using Statistical Shape Mod-
els

Once the model is built, it can be used to perform segmentation of shapes
inherently present in medical image data. In case the training set is represen-
tative, a similar shape of a new object can be represented as:

S(w, T ) = T

(
X +

P∑
p=1

wpdp

)
(1.12)

As described above, w is the vector of the weights assigned to each mode of
the model, dp are the shape-modes and T is a linear transformation applied to
the entire shape.

First, the average shape as described by the model (wp = 0 ∀p ∈ [1, P ]) is
aligned in a suitable initial position within a given data-set [7]. This is the first
iteration k of the segmentation process and is thus denoted S(w(k), T (k))|k = 0.

Then, the shape is deformed to match image features such as high gradients,
matching of a stored intensity profile with an actual one,... Typically this is
done in a direction normal to the tangential plane of the respective point using
a cost function. Points along the displacement direction are each given a cost
that represents the probability to move the current point to them. The costs,
for instance, can be the inverse of the gradient at a particular location of the
profile. It is then possible to implement a heuristic method that determines,
through the use of tests and conditions, whether or not the current point should
be moved.

This deformation can be expressed for each point of the shape as a vector
∆xj ∈ R3 such as the new shape is given by:
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CHAPTER 1. STATISTICAL SHAPE MODELS

X̂(k) = S(w(k), T (k)) + ∆X (1.13)

In order to represent the deformed shape as good as possible with respect to
the shape space of the training set, the weights and the transformation of the
deformable shape are recomputed by solving the optimisation problem:

(w(k+1), T (k+1)) = arg min
w,T

∣∣∣X̂(k) − S(b, T )
∣∣∣2 (1.14)

The process is iterated (k ← k + 1) until shape convergence i.e. while:∣∣∣S(w(k), T (k))− S(w(k+1), T (k+1))
∣∣∣ > 3Nε (1.15)

The model thus serves as a guide to constrain the resulting shape in the world
of plausible shapes as described by the model [8] i.e. to constrain each wi to its
respective boundary values found in the training set to prevent the generation
of unrealistic shapes (not covered by the given shape space).

In case the SSM is not able to fully cover the shape inherently being given by
the image data, a ’free form’ deformation step allows a final adjustment of the
geometry to the image data [2].
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Chapter 2

Clustering of Data Using
the EM Algorithm

The algorithm described in [6] is based on a modified version of the Expectation-
Maximisation (EM) optimisation algorithm applied to the Gaussian Mixture
Models. The purpose of this chapter is to briefly explain how it works in order
to make the explanation of the modifications easier.

This chapter rephrases parts of [6] and [9] in an attempt to unify it with my
work and maybe to clarify some points.

2.1 Gaussian Mixture Models

A Gaussian Mixture Model is made of various components:

data X : M independently and identically distributed (i.i.d.) observed vari-
ables xi (for i = 1, . . . ,M) in Rd from a mixture of K normal distributions
fk.
This is referred to as the incomplete data.

mixture weights: K probabilities πk that satisfy 0 < πk < 1∀k ∈ [1,K] and∑K
k=1 πk = 1)

distribution parameters: K sets θk of parameters consisting of the mean
µk and the covariance matrix Σk of each distribution fk of the mixture.

Often, one other component is defined for clarity’s sake:

mixture parameter: Φ = (π1, πk, . . . , πK ,θ1,θk, . . . ,θK)

Each observation xi in the data thus follows the distribution:

f(xi|Φ) =
K∑
k=1

πkfk(xi|θk) =
K∑
k=1

πkfk(xi|µk,Σk) (2.1)

and the density for all the samples is:

12
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f(X|Φ) =
N∏
j=1

f(xi|Φ) = L(Φ|X ) (2.2)

which is also called the likelihood L(Φ|X ) of the parameters considering the
data. This quantity should be maximised in order to describe the data X as
good as possible.

While X being fixed, the only parameter which can be optimised to find the
biggest likelihood is Φ:

Φ∗ = arg max
Φ
L(Φ|X ). (2.3)

In the case of the Gaussian Mixture Model, this is not immediate and
methods exist that enable this calculation. One of these is the Expectation-
Maximisation algorithm.

2.2 Expectation-Maximisation Algorithm

In addition to the incomplete data X , another variable is defined:

unobserved data Y: M i.i.d. unobserved variables yi (for i = 1, · · · ,M).
Together with X , it forms the complete data Z = (X ,Y). This variable
is also considered as i.i.d. since it is unknown, random and probably
following an underlying distribution.

A joint density function f(Z|Φ) is assumed such as:

f(Z|Φ) = f(X ,Y |Φ) = f(Y|X ,Φ)f(X|Φ). (2.4)

It is thus possible to define a complete-data likelihood function:

L(Φ|Z) = L(Φ | X ,Y) = f(X ,Y |Φ). (2.5)

In order to make analytical resolution of the maximisation easier, the com-
plete-data log-likelihood L(Φ|Z) is used:

L(Φ|Z) = log (L(Φ|Z)) = log

(
M∏
i=1

f(zi|Φ)

)
=

M∑
i=1

log f(zi|Φ). (2.6)

The EM algorithm is an iterating process consisting of 2 steps.

The first one is called Expectation Step (or E-Step) because its goal is to find
the expected value Q(Φ) of L(Φ|Z) with the current estimate of the parameter

Φ(s−1):

Q
(
Φ,Φ(s−1)

)
= E

[
log f(X ,Y |Φ) | X ,Φ(s−1)

]
(2.7)

where X and Φ(s−1) are fixed for this step and Y follows the distribution

f
(
y | X ,Φ(s−1)

)
. This allows to rewrite the right side of equation (2.7) as:

13
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E
[
log f(X ,Y|Φ) | X ,Φ(s−1)

]
=

∫
y∈Υ

f
(
y | X ,Φ(s−1)

)
log f(X ,Y |Φ)dy

(2.8)
where Υ denotes the space of the values y can take.

It is now possible to perform the second step, the Maximisation-Step (or

M-Step), where Q
(
Φ,Φ(s−1)

)
is maximised:

Φ(s) = arg max
Φ
Q
(
Φ,Φ(s−1)

)
. (2.9)

The process is iterated as long as needed and, for each step, the log-likelihood
monotonically increases:

L
(
Φ(s+1)

)
≥ L

(
Φ(s)

)
. (2.10)

2.3 Using the EM Algorithm to Estimate Mix-
ture Parameters

For the case of the Gaussian Mixture Model, the equation (2.2) can be
written as:

log (L(Φ|X )) = log

M∏
i=1

f(xi|Φ) =

M∑
i=1

log

(
K∑
k=1

πkfk(xi|θk)

)
(2.11)

Because of the sum in the logarithm, this function is really difficult to opti-
mise and that is where the “trick” of posing Y happens.

If Y follows a K-dimensional categorical distribution (which requires yik ∈
[0, 1] ∀k ∈ [1,K] and

∑K
k=1 yik = 1), the value of yi indicates which one of the

K density functions of the mixture “generated” the sample.

Using equations (2.4) and (2.6) comes:

log(L(Φ | X ,Y)) = log(f(X ,Y |Φ)) =
M∑
i=1

log(f(xi|yi)f(yi)) (2.12)

=
M∑
i=1

log(fyi
(xi|θyi

)πyi
)) (2.13)

14
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Since πyi
can be seen as the prior probabilities of each component of the

mixture, it is possible to use the Bayes’s rule to write:

f
(
yi|xi,Θ

(s−1)
)

=
f(yi)fyi

(
xi|θ(s−1)yi

)
f
(
xi|Θ(s−1)

) =
π
(s−1)
yi

fyi

(
xi|θ(s−1)yi

)
K∑
k=1

π
(s−1)
k fk

(
xi|θ(s−1)k

) (2.14)

and thus:

f
(
y|X ,Θ(s−1)

)
=

M∏
i=1

f
(
yi|xi,Θ

(s−1)
)

(2.15)

which is the marginal density function needed in equation (2.8).

Since Υ can only take a discrete set of values, it comes:

Q
(
Φ,Φ(s−1)

)
=
∑
y∈Υ

f
(
y | X ,Φ(s−1)

)
log f(X ,Y |Φ) (2.16)

=
∑
y∈Υ

M∑
i=1

log(πyi
fyi

(xi|θyi
))

M∏
l=1

f
(
yl|xl,Θ

(s−1)
)

(2.17)

which after a few intermediates steps (described in [9]) gives:

Q
(
Φ,Φ(s−1)

)
=

K∑
k=1

M∑
i=1

log(πkfk(xi|θk))f
(
k|xi,Θ(s−1)

)
(2.18)

=
K∑
k=1

M∑
i=1

log(πk)f
(
k|xi,Θ(s−1)

)
+

K∑
k=1

M∑
i=1

log(fk(xi|θk))f
(
k|xi,Θ(s−1)

)
(2.19)

This is the function that we want to estimate for the current estimation of Φ
in the E-step and then maximise in the M-step.

The E-step computes the terms of (2.19) that do not depend on Φ that is to

say f(k|xi,Θ(s−1)). This term is the probability for a sample xi to belong to

class k and will further be referred to as c
(s)
ik given by:

c
(s)
ik =

π
(s−1)
k fk

(
xi|µ(s−1)

k ,Σ
(s−1)
k

)
f
(
xi|Φ(s−1)

) (2.20)
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The M-step computes Φ(s) that maximises (2.19). As it can be observed,
each term of (2.19) can be maximised separately since πk and θk do not depend
on each other.

Using Lagrange multipliers (cf. [9]) the following expressions can be derived
for the new estimation of the mixing coefficient, mean vector and covariance
matrix of class k:

π
(s)
k =

1

N

M∑
i=1

c
(s−1)
ik (2.21)

µ
(s)
k =

M∑
i=1

xic
(s−1)
ik

M∑
i=1

c
(s−1)
ik

(2.22)

Σ
(s)
k =

M∑
i=1

c
(s−1)
ik

(
xi − µ(s)

k

)(
xi − µ(s)

k

)T
M∑
i=1

c
(s−1)
ik

(2.23)

These values can be used as parameter estimates of the next E-step.

The process is iterated until the value of the log-likelihood converges.

2.4 Using the EM Algorithm as a Fuzzy Clus-
tering Method

It has been shown (cf. [6], [10]) that optimising GMMs with the EM algo-
rithm is equivalent to an iterative 2-steps optimisation of the following function:

D(c,Φ) =
K∑
k=1

M∑
i=1

cik log(pkfk(xi|θk))−
K∑
k=1

M∑
i=1

cik log(cik) (2.24)

The function is optimised alternatively for the classification matrix c and
mixture parameter set Φ.

As described in [6], the result of the optimisation of c

c(s) = arg max
c
D
(
c,Φ(s−1)

)
(2.25)

is equivalent to the E-Step in (2.20) thus:

cik =
π
(s−1)
k fk

(
xi|µ(s−1)

k ,Σ
(s−1)
k

)
f
(
xi|Φ(s−1)

) (2.26)
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CHAPTER 2. CLUSTERING OF DATA USING THE EM ALGORITHM

The result of the optimisation of the mixture parameters set Φ

Φ(s) = arg max
Φ

D
(
c(s),Φ

)
(2.27)

is also equivalent to the former M-Step since in

D
(
c(s),Φ

)
= Q

(
Φ,Φ(s−1)

)
−

K∑
k=1

M∑
i=1

c
(s)
ik log

(
c
(s)
ik

)
(2.28)

the last term is independent of Φ.

The result is thus an optimised clustering solution consisting of K classes with
their respective means µk and covariance matrices Σk as well as the mixing
coefficients πk. Moreover a fuzzy classification of the data is also obtained
through the classes membership probabilities ci of each data sample xi.
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Chapter 3

Material

Sixty MRI image volumes of the proximal head of left and right femurs
were used. In addition, each image was associated with the surface of its femur
segmented by hand. This segmentation is considered as ground truth. This
data will further be referred as the training-set.

To implement the algorithm and run tests, I was allowed to work on the source
code of an advanced software called Amira R©. It is developed at the Konrad Zuse
Zentrum für Informationstechnik Berlin were I had the great opportunity to do
a training during the summer of 2010.

This allowed me to implement the algorithm really quickly as Amira R© offers
a great variety of existing data-structures (meshes, matrices, vectors,. . .), effi-
cient algorithms (singular value decomposition of matrices, volume rendering,. . .)
and the associated visualisation tools.
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Chapter 4

General Overview of the
Algorithm

The algorithm to create a Multimodal Prior Appearance Model as described
in [5] yields 2 steps:

1. The profiles extracted per vertex from each data-set are clustered sepa-
rately using a Gaussian Mixture Model optimised by the Neighbourhood
Expectation-Maximisation algorithm.

2. Some clustering solutions are possibly merged together to create a unique
prototype of all profile classes found in the training data. If the set is
large enough, the assumption can be made that it describes many profile
clusters that could be encountered.

The following chapters describe respectively the first and the second step.
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Chapter 5

NEM Clustering of
Intensity Profiles

5.1 Data Extraction and Pre-Processing

A histogram normalisation should be performed on each image I in order to
map the intensity range of the image to [0; 255] as shown in Eq. 5.1.

I ′ =
I − Imin

Imax − Imin
× 255 (5.1)

It is possible though that this simple normalisation can be rather inefficient
because the presence of noise in some images causes the intensity range to be
very wide although most of the image information is located in a small intensity
range (see Fig. 5.1). The normalisation would thus flatten most of their profiles
too much (see Fig. 5.2).

Figure 5.1: Original histogram of an image. Green: relative histogram of in-
tensity values. Red: cumulative histogram. The presence of noise stretches the
histogram although it is clear that all interesting values are located before 600.

Imax is thus chosen so that 99.5% of the pixels in the image has an intensity
value lower or equal to it. After normalisation, all the pixels with a value greater
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Figure 5.2: The normalisation of the histogram of Fig. 5.1 has failed since the
interesting data has been compressed to much because of the noise in the original
image.

than 255 are squashed to this limit. This removes the noise and ensures that
there is no information loss due to this phenomenon.

Figure 5.3: Taking the intensity value under which 99.5% of the pixels have
their value, removes noise and allows to avoid loss of information.

As already described in the introduction, the intensity profiles are sampled
along the normals of the vertices of the oriented surface associated with each
image from the data-set. There are 3 main types of profiles that can be ex-
tracted:

Outward profiles: The profiles are sampled starting from the point on the
surface along the normal at this point towards the outside.

Inward profiles: Same as above but the profiles are sampled in the other di-
rection, pointing towards the inner part of the object.

Centred profiles: The centre of the profile is positioned on the surface point
and it is sampled both in and outwards the object.

Of course, profiles sampling is not restricted to these 3 types. The choice
depends on the object that is studied and on the image modality that was used
to acquire the volume. For example, in the case of MR images of the femur
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Figure 5.4: Left: Outward profiles. Middle: Inward profiles. Right: Centred
profiles. Bottom: Corresponding profiles.

that were used, the inner part of the bones is almost completely and uniformly
black and thus does not give any particular information so the profiles could
have been sampled only outwards.

In order to generate a model with enough statistical significance, the data-set
must contain more than one surface. F. Chung proposes to perform clustering
on each image separately for 2 different reasons:

1. In doing so, it is not necessary to perform accurate registration between
all image volumes. In fact, for the clustering of all images at once to
make sense, the points where the profiles are extracted should correspond
precisely.

2. In case an image is added to or removed from the training set, the whole
clustering process has to be performed again. As it is very time and
resource consuming, separate clusterings followed by clustering solutions
fusion are more efficient in this case.

Some profile samples may be partially outside the image volume bounding
box when the surface of the object is too close to the image boundaries (see
Fig. 5.5). In [5], F. Chung describes a method for coping with such missing
profiles. Since it wasn’t really clear how this had to be done, those profiles were
simply completely removed from the clustering.

The chosen approach for clustering the intensity profiles is a Gaussian Mix-
ture Model optimised by a modified version of the Expectation-Maximisation
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CHAPTER 5. NEM CLUSTERING OF INTENSITY PROFILES

Figure 5.5: The figure shows an incomplete profile. The point where the profile
is centred is too close to the image boundaries and some samples (red) are thus
outside the image volume bounding box.

algorithm. The process of the said clustering with the regular EM algorithm is
described in Chapter 2. The modified version is described hereunder.

5.2 Neighbourhood Expectation-Maximisation Al-
gorithm

In order to obtain a spatially smoothed clustering, [6] proposes to add a new
term G to the function D in (2.24):

G(c) =
1

2

K∑
k=1

M∑
i=1

M∑
j=1

cikcjkvij (5.2)

vij are the elements of the neighbourhood matrix V. Its value must be
positive otherwise it would penalise spatial regularity:
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vij =

{
α > 0 if i and j are neighbours

0 otherwise
(5.3)

α can either be a constant value or depend on the pair of points. For example,
the correlation between the two points could be used. This would allow to apply
spatial regularisation only on profiles that are correlated.

The new function U to optimise is thus:

U(c,Φ) = D(c,Φ) + βG(c) (5.4)

where D(c,Φ) is described in Eq. (2.24) and β is the parameter that controls
the magnitude of the spatial regularisation. Its determination will be discussed
in Section 8.

Since G does not depend on Φ, the M-Step remains unchanged and the up-
dated E-Step yields:

c
(s)
ik =

π
(s−1)
k fk

(
xi|µ(s−1)

k ,Σ
(s−1)
k

)
e
β

K∑
j=1

c
(s)
jk vij

K∑
l=1

π
(s−1)
l fl

(
xi|µ(s−1)

l ,Σ
(s−1)
l

)
e
β

K∑
j=1

c
(s)
jl vij

(5.5)

As it can be seen, c
(s)
ik depends on itself and thus the E-Step becomes iterative

itself. As always, the iterative process stops when the value of c
(s)
ik converges.

5.3 NEM Algorithm Initialisation

The Gaussian Mixture Model has to be initialised properly. The EM al-
gorithm is in fact known to be sensitive to its initialisation. If it is not good
enough, the algorithm could converge towards a local suboptimal solution.

For this purpose, several solution exists. The most common is an initialisation
using the unsupervised K-Means clustering algorithm. However, due to its fuzzy
nature, it could also be initialised with the fuzzy counterpart of the K-Means,
the Fuzzy C-Means (FCM).

In the first case, after the clustering has converged, the hard partitioning P
can be used to initialise the classes’ membership matrix:

Let 1 < Pi ≤ K be the class to which xi was attributed,

Then ciPi
= 1.0 and cij = 0.0 ∀j ∈ [1,K], j 6= Pi

and then, the M-Step can be performed one time to initialise the mixing
coefficients, classes means and covariances matrices.
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In the latter, the result of the clustering, γ the classes’ membership matrix and
m the classes’ means, can directly be used to compute the parameter estimates
for the E-Step:

c = γ (5.6)

π
(s)
k =

1

N

M∑
i=1

γik (5.7)

µk =

M∑
i=1

xiγik

M∑
i=1

γik

(5.8)

Σk =

M∑
i=1

γik (xi −mk) (xi −mk)
T

M∑
i=1

γik

(5.9)

Recently, Hu et al. proposed a new initialisation method conceived on pur-
pose for the NEM algorithm (cf. [11]). The idea is to run the regular initialisation
methods but on an “augmented” data-set x′ where each sample xi is adjoined
the mean value of its neighbours µxi:

µxi =

M∑
j=1

vijxi

M∑
j=1

vij

(5.10)

x′i = [xi, α
µxi] (5.11)

where α is a parameter that controls the weight given to the neighbours.

In doing so, the samples that are neighbours and thus are likely to belong to
the same class, will have a similar µxi. This means that in term of distance,
they will be closer to each other than profiles which have a different neighbours’
mean.

It is also possible to use hierarchical clustering with different metrics and
linkage criterions.

5.4 Determining the number of clusters

In unsupervised clustering, the selection of the number of clusters is a com-
plex problem that has been studied for a long time. It is often impossible to
determine it a priori and a common way to achieve the selection is to perform
the clustering several times with an increasing number of clusters and then select
the optimal solution. This selection is done by using a criterion which should
be able to penalise over and under-fitting.
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Over time many of such criteria were proposed among which the Bayesian In-
formation Criterion (BIC) and the Akaike Information Criterion (AIC) (cf. [12]
for a review of many criteria). They are often prone to over-fitting which in the
case of the Intensity Profiles Model is absolutely to avoid as it will only make
the fusion step harder.

In [5], F. Chung describes a new criterion named Overlap Separation Index
(OSI). It only uses the posterior probabilities cik and penalises clusters overlap
while encouraging their separation. It is computed as the ratio of the amount of
overlap C1 over the minimum separation between all clusters C2. αi and βi are
the clusters which have respectively the highest and second highest probabilities
for profile i to belong to:

αi = arg max
k

cik ∀k ∈ [1,K], i ∈ [1,M ] (5.12)

βi = arg max
k 6=αi

cik ∀k ∈ [1,K], i ∈ [1,M ] (5.13)

C1 =
M∑
i=1

2
ciβi

ciβi + ciαi

(5.14)

Skl =
∑

∀i∈[1,M ]|αi=k

2
cil

cik + cil

+
∑

∀i∈[1,M ]|βi=l

2
cik

cil + cik
∀k, l ∈ [1,K] (5.15)

C2 = min
k,l

Skl ∀k, l ∈ [1,K] (5.16)

OSI =
C1

C2
(5.17)

To select the optimal number of clusters, the clustering is run several times
with an increasing amount of clusters. Only after that, the optimal solution can
be selected by finding the one for which the OSI is the best.
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Chapter 6

Fusion of the Clustering
Solutions

6.1 Introduction

In order to obtain some statistical significance, the model has to be built on
a large training set. There are three possible options :

1. Run the clustering on the whole training set at once i.e. all profiles ex-
tracted from all volumes are pooled,

2. Run the clustering on each data-set Dp (p = 1, . . . , P ) of the training
set individually and each clustering solution is then projected as is on a
reference mesh,

3. Run the clustering on each data-set Dp (p = 1, . . . , P ) of the training set
individually and then perform a fusion step to merge similar clusters and
reduce the complexity of the model before projecting the solutions on a
reference mesh.

The first one would be the easiest to achieve since there is no fusion step
afterwards. However, it also means that each data-set has to contain exactly
the same number vertices associated with intensity profiles and that it should
be possible for any point to find its corresponding points in every other data-set
of the training set.

When clustering the complete data, the neighbourhood matrix should be
adapted too. In fact, the corresponding points in two data-sets should be con-
sidered as neighbours and the neighbours of one of the points should be neigh-
bours of the other one as shown on Fig. 6.1. However, it is not easy to find such
correspondence especially in soft tissues and each time a new data-set is added
to the training set, the whole clustering process has to be run again.

The second option solves the problem of the correspondence between data-
sets, allows to use meshes with varying resolution and allows that each solution
can have a different and adapted number of clusters. It is also possible to add
a data-set to the training set and then simply reconstruct the intensity profiles
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Figure 6.1: The figure shows two corresponding points (in red) on the surfaces
of two different data-sets (in green and yellow). The neighbourhood relationship
between the left point and its neighbours is shown by the cyan lines.

model quickly. It is very similar to the third solution and only differs from it, in
that the complexity of the model sharply increases with the number of data-sets
in the training set (in fact, if the training set is made of 60 data-sets and each
data-set is clustered in 5 clusters, the total number of clusters in the resulting
intensity profiles model is 300!).

As pointed out above, the third solution solves the problem of the complexity
by performing a fusion of similar clusters. In fact, if all images in the data-set
are of the same nature, there will probably be many clusters that are similar
and that could therefore be merged.

The following sections addresses the problématique raised by this process:

• How can one measure the similarity between clusters?

• How should the merging graph be constructed such that it does not de-
nature the clusters?

• How does one merge the clusters’ means, variance matrices and member-
ship matrices?

• How should these new values be projected on a reference mesh?

6.2 Similarity between two clusters

In order to decide whether two clusters should be merged or not, it is nec-
essary to determine the similarity between them. In [5], F. Chung proposes to

use the Jaccard Index J (p,q)
(k,l) defined as the ratio of the intersection between two
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Figure 6.2: The figure shows the clustering process for three data-sets: 1st col-
umn: image volumes, 2nd column: segmentation of the structure of interest in the
image volume, 3rd column: intensity profiles extraction and 4th column: NEM
clustering of the intensity profiles.

clusters Cpk and Cql over their union where q and p refer to data-sets from the
training set and k and l to one of their clusters respectively:

J =
|Cpk ∩ C

q
l |

|Cpk ∪ C
q
l |

(6.1)

It is proposed to compute it using the surfaces delimited by the mean and

standard deviation µpk ± σ
p
k (where σpk =

{√
(Σp

k)
ii

}
i=1,...,N

) as shown on

Fig 6.3.
When both clusters are identical, J amounts 1.0 whereas it amounts 0.0

when they are disjoint.

6.3 Construction of the merging graph

To construct the merging graph, the Jaccard index is computed for each
possible pair of clusters (Cpk , C

q
l ) for k = 1, . . . ,Kp, l = 1, . . . ,Kq (Ki is the

number of clusters associated with data-set i) and p, q = 1, . . . , P . An example
of the resulting table if given at Table 6.3.

The table is then thresholded in order to decide which clusters should be
merged together. An example, is shown at Table. 6.3. In [5], F. Chung states
that clusters from a same data-set should not be merged together. However,
this is not possible since it often happens that the thresholded table contains
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Figure 6.3: Top-Left: First cluster with mean (light red) and region spanned
by standard deviation (dark red). Top-Right: Second cluster with mean (light
green) and region spanned by standard deviation (dark green). Middle: Both
clusters superimposed. Bottom-Left: Intersection between the two clusters.
Bottom-right: Union between the two clusters.

such cases where one cluster A is to be merged with 2 other clusters B and C
from another data-set. It would be then necessary to either not merge the A
with one of B or C, or to create two new clusters : A + B and A + C. Since
this would not help to reduce the number of classes, it is probably not a good
solution. In fact, it is also a hint that something could be wrong somewhere in
the process:

Normalisation: if it has not been done properly, one data-set could have such
higher profiles than the others, that these ones would all be considered as
equivalent as shown on Fig. 6.4.

Model Order Selection: if the cluster count is too high, the clusters could
only differ from each other by slight and possibly uninteresting differences.
On the other hand, if the cluster count is too low, the clusters would have
a high variance and thus an wide surface in the Jaccard index computa-
tion. It would be then possible for some pair of clusters to have wider
intersection an a smaller union which could make the Jaccard index reach
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1 2
1 2 3 4 5 1 2 3 4

1

1 1 0.79 0.80 0.45 0.60 0.33 0.88 0.56 0.33
2 0.79 1 0.78 0.47 0.52 0.32 0.47 0.56 0.33
3 0.80 0.78 1 0.35 0.52 0.91 0.89 0.51 0.38
4 0.45 0.47 0.35 1 0.37 0.20 0.18 0.33 0.16
5 0.60 0.52 0.52 0.37 1 0.29 0.34 0.44 0.89

2

1 0.33 0.32 0.91 0.20 0.29 1 0.59 0.38 0.54
2 0.88 0.47 0.89 0.18 0.34 0.59 1 0.59 0.61
3 0.56 0.56 0.51 0.33 0.44 0.38 0.59 1 0.41
4 0.33 0.33 0.38 0.16 0.89 0.54 0.61 0.41 1

Table 6.1: The table shows the Jaccard index computed for each pair of mode of two data-sets with respectively
4 and 5 classes.

the threshold.

Similarity criterion between clusters: it is of course also possible that the
Jaccard index might not be the most appropriate criterion to compare
clusters.

1 2
1 2 3 4 5 1 2 3 4

1

1 1 0 1 0 0 0 1 0 0
2 0 1 0 0 0 0 0 0 0
3 1 0 1 0 0 1 1 0 0
4 0 0 0 1 0 0 0 0 0
5 0 0 0 0 1 0 0 0 1

2

1 0 0 1 0 0 1 0 0 0
2 1 0 1 0 0 0 1 0 0
3 0 0 0 0 0 0 0 1 0
4 0 0 0 0 1 0 0 0 1

Table 6.2: The table shows the previous table thresholded: J > 0.8.

The table 6.3 can also be represented as a graph (Fig. 6.5) where it is easier to
see which clusters will be merged together and which ones won’t. An important
issue is the choice of how to handle clusters that are indirectly connected like
shown with clusters (1, 1) and (2, 1). In fact, merging them all at once could
lead to a cluster with a very high variance which is not desirable in our case.

There are thus two options:

1. Merge all the connected clusters together as shown left on Fig. 6.6.

2. Create two new clusters where only directly connected clusters are merged
in, as shown right on Fig. 6.6.
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Figure 6.4: The figure shows clusters where the normalisation was not successful.
Except the red cluster, all others have been too flattened and all look alike.
These clusters will erroneously be merged together.

Figure 6.5: The figure shows the merging graph with links between the classes
to be merged.
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Figure 6.6: The figures show the merging graph after merging. In the left one,
the chosen strategy was to merge all clusters together in a new cluster α even if
they are only indirectly connected (for example (1, 1) and (2, 1)). In the right
one, the two new clusters α and ζ are the result of the fusion of the directly
connected clusters in the graph.
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6.4 Fusion of clusters

Once the decision has been taken to merge some clusters, the model has to be
built. The clusters that are not merged with another one can simply be included
in the model without any further processing. For the others, it is necessary to
recompute their means µµκ and variance matrices µΣκ (κ = 1, . . . , R is the
index of the new cluster). F. Chung proposes to do it like that:

µµκ =

P∑
p=1

∑
∀k∈[1;Kp]|η(p,k)=κ

M∑
i=1

cpikµ
p
k

P∑
p=1

∑
∀k∈[1;Kp]|η(p,k)=κ

M∑
i=1

cpik

(6.2)

µΣκ =

P∑
p=1

∑
∀k∈[1;Kp]|η(p,k)=κ

(
M∑
i=1

cpik(xpi − µ
p
k)(xpi − µ

p
k)T
)

P∑
p=1

∑
∀k∈[1;Kp]|η(p,k)=κ

M∑
i=1

cpik

(6.3)

Along with these new cluster parameters comes an equivalence table η(p, k)
that indicates to which new cluster κ the original cluster k of data-set p belongs.

6.5 Projection of the posterior probabilities onto
the reference mesh

The last step consists in projecting the cluster memberships onto a reference
mesh M∗ of M∗ vertices. To achieve this, first a reference mesh is defined and
each original mesh Mp is registered to it and then the cluster memberships of
each mesh are projected and re-sampled on the reference mesh using a closest
point approach. To ensure that every clustering information of the separate
data-sets are correctly transferred toM∗ it is necessary that M∗ >= maxp(M

p)
(Mp is the number of vertices of mesh Mp).

Finally, the posterior probabilities γi are normalised for each vertex xi of
the reference mesh:

γiκ =

P∑
p=1

∑
∀k∈[1;Kp]|η(p,k)=κ

cik

R∑
k=1

γik

(6.4)

for each i = 1, ...,M∗.
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Chapter 7

NEM Algorithm
Initialisation

Three methods were investigated to initialise the NEM algorithm:

1. Fuzzy C-Means

2. Spatially Aware Fuzzy C-Means

3. Hierarchical Clustering with Ward’s Criterion

The first two were tested by exporting the data from Amira R© to the R en-
vironment (http://www.r-project.org/) to avoid implementing the methods
and then importing the results back into Amira R©.

To enable the use of the Fuzzy C-Means (FCM) algorithm, the library e1071

available on was installed http://cran.r-project.org/web/packages/e1071/

index.html using the simple command install.packages(’e1071’) in the R-
console.

The package provides a method called cmeans which is really simple to use
as it possible to start with only two parameters : the data to cluster and the
desired number of clusters (the default distance is the euclidean distance and the
fuzzification parameter is set to 2). It returns an object which contains among
others: the cluster centres, a membership matrix and a vector yielding a hard
partitioning of the data (the cluster with the highest membership coefficient is
chosen for each point). The cluster centres and membership matrix can then be
used to initialise the EM algorithm. The initialisation of the NEM algorithm
with these informations was however not implemented because of lack of time.
The hard partitioning returned by the R algorithm was only useful in that it was
thus possible to compare visually this result with the Hierarchical Clustering
which was implemented in Amira R©.

The two first methods only differ in that each row of the data matrix of
the latter contains an extra three values which are the spatial coordinates of
the associated point. In order to wheighten the contribution of these and the
intensity values of the profile, a parameter α is used (as explained in Section 5.3).
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CHAPTER 7. NEM ALGORITHM INITIALISATION

If α yields 0, the second method is the same as the first one and, as it increases,
the distance between two data samples comes down to a simple distance between
the two points. An appropriate value as thus to be chosen in order to spatially
smooth the clustering without denaturating it.

The algorithm was carried out several times with different values of α. The
code can be found in Appendix A.

A hierarchical clustering algorithm was implemented in Amira R© and used the
Ward’s criterion and the euclidean distance. This is the algorithm used for the
rest of the present work.

The various solutions were compared visually as shown on Figures 7.1, 7.2,
7.3, 7.4 and 7.5.

Figure 7.1: 6 different initialisations displayed on an anterior view of the distal
head of the femur. The colours represent the 4 clusters (black indicates that
the point was not used in the clustering) and the colour of the cluster which has
the highest cluster membership was assigned to each vertex respectively.
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Figure 7.2: 6 different initialisations displayed on a lateral view of the distal
head of the femur. The colours represent the 4 clusters (black indicates that
the point was not used in the clustering) and the colour of the cluster which has
the highest cluster membership was assigned to each vertex respectively.

Figure 7.3: 6 different initialisations displayed on a posterior view of the distal
head of the femur. The colours represent the 4 clusters (black indicates that
the point was not used in the clustering) and the colour of the cluster which has
the highest cluster membership was assigned to each vertex respectively.
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Figure 7.4: 6 different initialisations displayed on a medial view of the distal
head of the femur. The colours represent the 4 clusters (black indicates that
the point was not used in the clustering) and the colour of the cluster which has
the highest cluster membership was assigned to each vertex respectively.

Figure 7.5: 6 different initialisations displayed on an inferior view of the distal
head of the femur. The colours represent the 4 clusters (black indicates that
the point was not used in the clustering) and the colour of the cluster which has
the highest cluster membership was assigned to each vertex respectively.
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As it can be observed, the biggest difference between the various initialisa-
tions with the Fuzzy C-Means algorithm is between the instances with α = 2.5
and α = 5.0 suggesting that the optimal value of α that balances spatial smooth-
ing and clustering denaturation can be found between those two values.

The instances of the algorithm with α = 5.0 and α = 10 are clearly unin-
teresting since it can be seen that the weight given to the spatial data is too
important which results in a clustering of the position of the vertices only.

It can be noticed that in such cases (especially on Figures 7.3, 7.1 and 7.4), the
spatial smoothing has created clusters that are almost contiguous. This is due
to the metric which was used to compute the distance between data samples
(intensity values and position coordinates). The result could probably have
been improved if this metric was different. A short list of possible improvements
can be found below:

• Use another distance measure, for example the geodesic distance which
takes the shape of the surface into account to measure a distance between
two points,

• Use a relative distance instead of an absolute distance. This way, profiles
that are at the same distance from a reference point are considered as
close to each other even though they might not be close to each other
considering a regular distance,

• Normalise intensity values and position coordinates (and preferably sepa-
rately) to allow an easier weighting,

• Use different distance measures for the intensity values and the position
coordinates.

Since these algorithms were not implemented in Amira R©, it was not possible
to evaluate the benefits of using the initialisation based on the Fuzzy C-Means
algorithm (with and without spatial regularisation) instead of the Hierarchical
Clustering using Ward’s criterion.

However, an obvious advantage of the FCM is that it returns a fuzzy clustering
of the data and that the (N)EM algorithm is based on such a clustering. More-
over, the spatial regularisation seems to be a good approach since it fuzzifies
the clustering thus spatially expanding the clusters wiping out some noise (see
Fig. 7.6). Sadly it doesn’t always work as desired and sometimes the clusters
are only fuzzified without being spatially expanded (see Fig. 7.7).
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Figure 7.6: Fuzzy representation of the second cluster (red) of the same cluster-
ing as in Figures 7.1, 7.2, 7.3, 7.4 and 7.5. Blue is assigned to “no cluster”, green
to a membership value of 0.0, yellow to ≈ 0.5 and red to 1.0. The left figure
shows the membership values of the first cluster with α = 0.0 and the right one
with α = 2.5. It can be noticed in the red frame, that the green zone on the
condyle in the left figure becomes yellow in the right thanks to the fuzzification.

Figure 7.7: Fuzzy representation of the third cluster (white) of the same clus-
tering as in Figures 7.1, 7.2, 7.3, 7.4 and 7.5. Blue is assigned to “no cluster”,
green to a membership value of 0.0, yellow to ≈ 0.5 and red to 1.0. The left
figure shows the membership values of the first cluster with α = 0.0 and the
right one with α = 2.5. It can be noticed that this time, there is apparently no
green gap filled with yellow thus no wiping-out of noise but only a fuzzification
of the cluster which doesn’t bring anything.
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Spatial Regularisation
Parameter Evaluation

Apart from the initialisation of the NEM algorithm, another parameter that
has to be determined is the spatial regularisation coefficient β. In [5], F. Chung
states that it can be observed that, as β increases, the likelihood of the clustering
significantly drops when the weight given to spatial smoothing becomes to high.

It was in fact possible to see this drop and a heuristic algorithm was developed.
As each point in the two-dimensional space “β-likelihood” represents the result
of one run of the NEM algorithm which takes about 45 seconds to perform, it is
not possible to finely sample the beta-space. This disables to simply compute
the derivative of the curve.

Also, as there is no knowledge of how big the sought gap in the likelihood
between two β, it is not possible to start from the the left (β = 0) and scan the
likelihood values till the gap is found.

The proposed solution is to define an initial range where a coarse sampling
of β will be performed. If the range is big enough, it will be possible to define
a representative range for the likelihood values.

Then the angle formed by three successive points in the β-likelihood space is
computed for the whole range. Therefore, the values of β and likelihood are first
normalised with respect to their, now known, boundaries. Then two vectors are
defined: v1 describes joins the first point and the second one and the other, v2,
joins the second and third points. The angle between v1 and v2 is computed
relatively to v1 as shown on Fig. 8.1.

This enables to make two interesting measurements:

1. The likelihood gap between two successive samples,

2. The angle between three successive points.

If the gap is big enough (i.e. greater than a certain threshold for example
τ = 0.2 ∗ likelihoodRange) and the angular value too (for example > 60◦), the
sought gap can be considered as found.

43



CHAPTER 8. SPATIAL REGULARISATION PARAMETER
EVALUATION

Figure 8.1: The figure shows two different sets of 6 samples of the likelihood
for β = 0, . . . , 10. Starting at the third point, the angle between this point and
its 2 predecessors is computed. The angle between the two vectors defined by
these 3 points is shown in dark.

However the simple case illustrated on the figure above is not the most com-
mon. More often, the first samples show values of likelihood that seem aligned
and it is thus not possible to find the gap so easily. This is shown on Fig. 8.2

That is the reason why an iterative process takes place where the beta range
will be re-sampled more finely. In order to avoid to re-sample the whole range
(which is time-consuming), the algorithm searches two values of beta between
which the gap might be located.

The first β value can be found when there is whether a rather big gap (i.e.
|secondPointLikelihood−firstPointLikelihood| ≥ 0.1 ∗ likelihoodRange) or a big
angular value (θ > 40◦) between the three current points.

• if the gap was big enough when the first beta was found but the next gap
is too small, then the second β value is the one of the next sample since
the assumption is made that the likelihood curve stabilises after a gap,

• if the angle was big enough but not the gap and a big enough gap is found
in the next step then the second beta value is found since the assumption
is made that the gap started just after the former big angle.

Once the new boundaries for β have been found, the beta increment is refined
and the NEM algorithm is run for these new betas as shown on Fig. 8.3.

After a few iterations, the likelihood-gap between successive values of β will
be too small to ever fulfil the conditions and the optimal β would only be refined
due to the conditions on the angle. This is why a limited number of iterations
as been set.
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Figure 8.2: The figure shows a set of 6 samples of the likelihood for β = 0, . . . , 10
where the points are almost aligned and no clear gap can be seen.

Moreover, the loose conditions constrain the search for the optimal β in a
range of low values which is positive. In fact, even if a gap that satisfies all
conditions exists for a higher value of β, the quality of the clustering would
probably be poor since it would mainly depend on whether points are neighbours
or not.

Plots of the results of this algorithm applied on some data-sets from the
training-set can be found below. The commented C++ source of the algorithm
can be found in Appendix B.

As it can be observed, most of the time, the algorithm succeeds in finding
the appropriate value of β. When it fails, the optimal β is always greater than
the chosen one. This desirable to avoid to denature the clustering.

The likelihood curve is sometimes severely non-monotonic and I wasn’t yet
able to find the reasons of such a behaviour (for example in Fig. 8.4 for cluster
count = 3 and 5).
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Figure 8.3: The figure shows the same plot as above but with a range of β values
that was re-sampled more finely. The gap is thus visible.
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Figure 8.4: The figure shows the β samples and their likelihood values necessary
to determine the optimal β (red line) for different number of clusters (2-5) in
the 20th data-set of the training set. The range of the likelihood values was
rescaled to [0; 10].
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Figure 8.5: The figure shows the β samples and their likelihood values necessary
to determine the optimal β (red line) for different number of clusters (2-15) in
the 21th data-set of the training set. The range of the likelihood values was
rescaled to [0; 10].
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Chapter 9

Selection of the Number of
Clusters

The Overlap Separation Index proposed by F. Chung in [5] and described
in Section 5.4 was implemented and tested. In the paper it is stated that the
algorithm has to be performed with an increasing number of clusters and then
the solution with the highest OSI has to be chosen.

Thanks to its nature, the criterion should ensure that the optimal number of
clusters would not always be the highest that was tested. However, looking at
the curve described by the OSI when the cluster count rises, it can be seen that
the situation is not that simple as shown on Fig. 9.1.

Figure 9.1: The figure shows the OSI plotted against the cluster count for the
25th data-set (left) and for the 10th data-set (right). The curves are strongly
non-monotone and there is no sign of an asymptote.

One possible explanation for this behaviour is that the OSI is not suited for
use with the posterior probabilities that the NEM algorithm outputs.
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In fact, as it can be observed on Fig. 9.2, the posterior probabilities of all
clusters are almost crisp, i.e. each intensity profile has a probability to belong
to one of the clusters ≈ 1.0. Only a small surrounding area (1 or 2 vertices) of
each cluster has a cluster membership that is not equal to 1.0.

Figure 9.2: The figure shows a zoom on the surface of a mesh where the cluster
membership values of a particular cluster were drawn for each vertex (white to
red = 0.0 to 1.0). Only a small area around the cluster is plotted in pink where
the cluster membership value amounts 0.5.

It is then obvious that the OSI index is not suited at all. In fact, it is computed
as the ratio of the amount of overlap between two clusters C1 over the minimum
separation between all clusters C2.

In Eq. 5.14, most of the vertices have a ciβi ≈ 0.0 (βi is the cluster to which
vertex i has the second highest probability to belong to) and thus C1 → 0.

In the first sum of Skl in Eq. 5.15, i only refers to vertices whose highest
cluster membership is for cluster k, so cik ≈ 1.0 and thus cil ≈ 0.0 and the first
sum is thus ≈ 0.0.

In the second sum of the same equation, j refers to vertices whose second
highest cluster membership corresponds to cluster l. Therefore, some terms in
the sum could be not null if for those vertices cik ≈ 1.0 but as C2 (Eq. 5.16) is
the minimum of all Skl, it will probably also tend to 0.0.

The value of the OSI thus probably depends on the number of vertices whose
intensity profile has been assigned in each cluster.

However, this doesn’t mean that the OSI is not interesting at all. It shouldn’t
be used on such crisp clustering like the results of the EM algorithm. A possible
solution would be to use the cluster means and variances to recompute distances
from each profile to the clusters (for example the Mahalanobis distance, see
Fig. 9.3) thus restoring a fuzzy classification on which the OSI could be used.
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Figure 9.3: The figure shows two different views of the distal femur. Top-left:
the cluster membership values of one cluster are shown on each vertex of the
mesh (white to red = 0.0 to 1.0). Top-right: each vertex is attributed a colour
that reflects its Mahalanobis distance to the cluster (white is closest, red middle
and yellow far. The values are not given because they were not normalised).
Bottom: Same as above but with another cluster.
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Comparison of two clusters

To compare two clusters and decide whether they should be merged or not,
F. Chung proposes to use the Jaccard index as described in Section 6.2.

Three clustering solution were compared with 4, 5 and 7 clusters respectively
and the results of the Jaccard index are visible in Table 10.1.

A few representative plots (among the 120 possible plots) of the clusters’ mean
profiles with their respective standard deviations are shown below in Fig. 10.1
with the associated Jaccard Index value.

Although this distance measure is not meaningless, some clusters who could
be considered as equivalent are not. For example, in Fig. 10.1, the bottom-left
plot shows two clusters who could be considered as equivalent.

The opposite situation has also been seen. Due to the use of the standard
deviation to delimit the surface around the mean, the comparison of two clusters
doesn’t take differences between the means themselves very much into account.
For example, in the next chapter on Fig. 11.1, although the surfaces are similar,
the means are similar and the question arises: are these clusters really equivalent
and should they be merged?

It would maybe be possible to compare the derivative of the profiles instead
of the profiles themselves or even, after adaptation, use other techniques to
compare the profiles like the ones that are used to align protein sequences [13].
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Figure 10.1: The figure shows 4 different comparisons of respectively 2 clusters.
The plots are ordered by increasing Jaccard Index value from top-left to bottom-
right. The two plots on the right show opposite situations for clusters in the
same clustering solution. In the upper-one, the two profiles are really different
whereas in the lower-one they are almost identical.
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Chapter 11

Cluster Merging

The clustering solutions to be merged were chosen randomly between all data-
sets in the training-set and as well as the number of clusters because, as Chap-
ter 9 explains, the OSI could not be used to determine the optimal number of
clusters. The following discussion thus only focuses on studying the Cluster
Merging as described by F. Chung in [5].

As described in Section 6.3, it was possible to use two strategies. Only the
first one, described by F. Chung, was tested. The results would of course have
been different. For example, in Table 11.1, (0, 2) and (0, 3) are almost identical
except that (0, 2) is also merged with (2, 5). This would have resulted in 2
different cluster with the second strategy presented in Section 6.3 but all the
three of them would have been merged into a single cluster if the first strategy
was used.

There was not enough time to implement both strategy and to compare the
results hence only the first one was used.

The algorithm was tested as described in Section 6.4. The same 3 clustering
solutions as in the previous chapter were used and the Table 10.1 was thresh-
olded with a value of 0.65 resulting in Table 11.1.

The result of the fusion step with this threshold was 9 clusters. They were
created as indicated below:

New cluster 0: merging of clusters (0, 0) and (2, 0). See Fig. 11.1.

New cluster 1: original cluster (0, 1).

New cluster 2: merging of clusters (0, 2), (0, 3), (2, 1), (2, 5) and (2, 6). See
Fig. 11.2.

New cluster 3: original cluster (0, 4).

New cluster 4: original cluster (1, 0).

New cluster 5: merging of clusters (1, 1), (1, 2) and (1, 3). See Fig. 11.3.
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0 1 2
0 1 2 3 4 0 1 2 3 0 1 2 3 4 5 6

0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

2

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1
6 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1

Table 11.1: The table shows the previous table thresholded: J > 0.65. There
are thus 9 clusters remaining.

New cluster 6: original cluster (2, 2).

New cluster 7: original cluster (2, 3).

New cluster 8: original cluster (2, 4).

Each new cluster is shown below with the original clusters that were merged
to create it (Fig 11.1, Fig 11.2 and Fig 11.3.
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Figure 11.1: The figure shows the 2 original clusters’ mean profile and standard
deviation in green and the resulting cluster 0 in red.
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Figure 11.2: The figure shows the 5 original clusters’ mean profile and standard
deviation in green and the resulting cluster 2 in red.
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Figure 11.3: The figure shows the 3 original clusters’ mean profile and standard
deviation in green and the resulting cluster 5 in red.
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The resulting cluster membership of each cluster and their associated profile
are shown below in Fig. 11.4, Fig. 11.5, Fig. 11.6, Fig. 11.7, Fig. 11.8, Fig. 11.9,
Fig. 11.10, Fig. 11.11 and Fig. 11.12.

As, in this case, there was a point-to-point correspondence between all meshes
in the training-set, it was not necessary to perform the projection step and the
posterior probabilities were simply normalised per vertex.

It is interesting to see that there is a clear cluster associated with the condyle
(see Fig. 11.4). It is of course not completely smooth because the number of
different clustering solutions that was used is too low.

For example, in one of the clustering, the tibia bone almost touches the femur
which causes the profiles to be very different at this place. It is an interesting
information that is not well taken into account due to this few number of used
clustering.

The ideal result would be a spatially smooth cluster for the whole condyle
when the tibia doesn’t touch the femur and another cluster for when it is the
case. It probably depends on how the patient lays when the exam is performed
and with a sufficient number of data-sets in the training-set, this information
could be taken into account.

This also the case for the lateral sides of the femur which are almost always
clustered together in the individual data-sets and also merged into one cluster
(see Fig. 11.6. Probably the corresponding cluster of two of the three original
clustering solutions are merged together and one is slightly different and can
was merged into cluster 5 in Fig. 11.9).

A general overview of the results shows that the clusters tend to grow spatially
and smoothen with respect to their memberships when merged together. As the
goal is to find zones on the surface where there is an high probability to find
one particular type of clusters, this is not good.

Possible improvements include another way of merging cluster together. In
fact, instead of just focusing on the intensity data, it should be possible to
fragment the clusters in order to find zones in which there is a strong correlation
between the intensity profiles associated to their points but also to the ones
associated to corresponding points throughout the data-sets in the training-set.
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Figure 11.4: The figure shows the resulting cluster 0 with its membership values
for each vertex of the surface. The colour map coding is the following: white
= 0.0, blue = 0.25, magenta = 0.5 and red = 0.75.

Figure 11.5: The figure shows the resulting cluster 1 with its membership values
for each vertex of the surface. The colour map coding is the following: white
= 0.0, blue = 0.25, magenta = 0.5and red = 0.75.
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Figure 11.6: The figure shows the resulting cluster 2 with its membership values
for each vertex of the surface (2 different views). The colour map coding is the
following: white = 0.0, blue = 0.25, magenta = 0.5and red = 0.75.
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Figure 11.7: The figure shows the resulting cluster 3 with its membership values
for each vertex of the surface. The colour map coding is the following: white
= 0.0, blue = 0.25, magenta = 0.5and red = 0.75.

Figure 11.8: The figure shows the resulting cluster 4 with its membership values
for each vertex of the surface. The colour map coding is the following: white
= 0.0, blue = 0.25, magenta = 0.5and red = 0.75.
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Figure 11.9: The figure shows the resulting cluster 5 with its membership values
for each vertex of the surface. The colour map coding is the following: white
= 0.0, blue = 0.25, magenta = 0.5and red = 0.75.

Figure 11.10: The figure shows the resulting cluster 6 with its membership
values for each vertex of the surface. The colour map coding is the following:
white = 0.0, blue = 0.25, magenta = 0.5and red = 0.75.
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Figure 11.11: The figure shows the resulting cluster 7 with its membership
values for each vertex of the surface. The colour map coding is the following:
white = 0.0, blue = 0.25, magenta = 0.5and red = 0.75.

Figure 11.12: The figure shows the resulting cluster 8 with its membership
values for each vertex of the surface. The colour map coding is the following:
white = 0.0, blue = 0.25, magenta = 0.5and red = 0.75.
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The goal of this thesis was to propose and study a method for generating
a profile intensity model which could be used to create cost functions in an
automatic fashion for model-based segmentation.

The results have shown that it is in fact possible, in individual clustering
solutions, to find zones where the intensity profiles are similar and spatially
homogeneously distributed. For example, clusters associated with the condyles
of the femur and with its lateral sides were found in the clustering of many
data-sets.

The heuristic developed to determine the optimal parameter for the spatial
regularisation in the NEM algorithm has proven to be quite good as it found
the expected sudden drop in the likelihood value when the parameter was too
high and suggested an acceptable value when it was not possible to find it.

There are however a lot of possible improvements at different levels of the
process and ideas to explore which could be used to exploit the information
given by these intensity profiles. Hereunder is a list of these ideas which popped
up during the research and analysis of the results.

When sampling the data, not only intensity information could be used but
also, for example, curvatures or any other type of morphological data that could
enrich the model.

The different initialisation methods should be tested to compare their in-
fluence on the final result of the NEM algorithm. For the method that was
specifically developed for the NEM algorithm, a proper normalisation of the
intensity and spatial data should be found in order to enable the determination
of the spatial regularisation parameter.

Although it works quite well, the heuristic for determining the spatial reg-
ularisation parameter β could be improved or replaced by a more efficient or
precise method.

In order to determine the optimal number of clusters to use during the NEM
clustering, the behaviour of the OSI should be further studied and probably
applied to a real fuzzy clustering and not to the hard clusters produced by the
EM algorithm.

As it was mentioned prior to the fusion step the clusters have to be compared
and this step should be improved as well. In fact, the use of the surface delimited
by the standard deviation around the mean hides some essential differences
between clusters.

Most of the improvements should probably be made on the merging step. It
was observed that the clusters tend to grow spatially and posterior probabilities
diminish. Another method for merging the clusters should be developed which
would allow to spatially fraction the clusters to create zones that are as large as
possible whilst having high posterior probabilities for the points that are in it.
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CHAPTER 11. CLUSTER MERGING

The intensity models could in fact provide information that could be used to
improve the segmentation process with the Statistical Shape Models by guiding
the deformation of their surface. This could be done because the intensity model
would provide the typical profiles that can be encountered for specific zones of
the SSM and the deformation could tend to move the points in these zones in
order for them to match this profile.

To guide the deformation and match the profiles of the model with those
found in the image that is being segmented, a suited distance should be found.
Although a simple distance like the Mahalanobis distance could be used, more
sophisticated algorithms could be used. For example if instead of matching the
profile itself, it was transformed in a sequence of tokens that describes it, an
algorithm could be used for matching multiple sequences as used in the field of
genetic.
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Appendix A

R Code for Fuzzy C-Means
Initialisation of the NEM
Algorithm

1 library(”e1071”)
2
3 load(”˜/EnhancedProfileScalarField.Rdata”)
4
5 data <− array(EnhancedProfileScalarField.am, dim=c(60, 15172, 44))
6
7 trainingSetID <− 2
8
9 tData <− data[trainingSetID,,]

10 nRows <− dim(tData)[1]
11 nCols <− dim(tData)[2]
12
13 alpha <− 2.5
14
15 tData[,42:44] <− alpha ∗ tData[,42:44]
16
17 # Remove rows which contain NaN values
18 removedRows <− array(dim=c(0,1))
19 newData <− array(dim=c(0,nCols))
20
21 for (i in 1:nRows) {
22 NANFound <− FALSE
23 for (j in 1:nCols) {
24 if(is.na(tData[i,j])) {
25 NANFound <− TRUE
26 break
27 }
28 }
29
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APPENDIX A. R CODE FOR FUZZY C-MEANS INITIALISATION OF
THE NEM ALGORITHM

30 if(NANFound) {
31 removedRows <− rbind(removedRows, c(i))
32 } else {
33 newData <− rbind(newData, tData[i,])
34 }
35 }
36
37 newRows <− dim(newData)[1]
38 remRows <− dim(removedRows)[1]
39
40 # Perform clustering using c−means algorithm
41 # with euclidean distance and 4 clusters
42 clust <− cmeans(newData, 4)
43
44 # Save hard partitioning to file by redirecting output
45 sink(”˜/R−output−clust−enh.txt”)
46
47 nI = 1
48 rI = 1
49 for(i in 1:nRows) {
50 if(rI <= remRows && removedRows[rI] == i) {
51 print(−1)
52 rI <− rI + 1
53 } else {
54 print(clust$cluster[nI]−1)
55 nI <− nI + 1
56 }
57 }
58
59 sink()
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Appendix B

C++ Code for the
Evaluation of the Spatial
Regularisation Parameter

1 /∗ Number of samples for beta ∗/
2 unsigned int nbrSamples = 6;
3 /∗ Value range for beta. If nbrSamples == 6 and
4 ∗ the range is [0, 10], then the 6 samples for
5 ∗ beta are: 0.0, 2.0, 4.0, 6.0, 8.0, 10.0
6 ∗ The range is chosen very wide in order to have
7 ∗ an scale for the values of the likelihood
8 ∗/
9 double betaStart = 0.0;

10 double betaStop = 10.0;
11 double betaRange = betaStop − betaStart;
12 /∗ In each loop the beta−space will be sampled
13 ∗ more precisely. After 6 iterations, the
14 ∗ increment between successive values of beta
15 ∗ will be 2ˆ(1−i) with i = 6 thus 0.03125
16 ∗ This is the finest step that is allowed.
17 ∗/
18 unsigned int loopID = 0, maxLoops = 6;
19
20 /∗ Current increment for the values of beta ∗/
21 double betaInc = (betaRange) /
22 (double)(nbrSamples − 1);
23
24 /∗ Array of results. The NEMData object contains:
25 ∗ − the parameters for the execution of the NEM algorithm (data matrix,
26 ∗ neighbourhood matrix, number of clusters, beta and the initial
27 ∗ values of the cluster membership matrix)
28 ∗ − the results of the NEM algorithm (mean and variance matrices of the
29 ∗ clusters, likelihood,...)
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APPENDIX B. C++ CODE FOR THE EVALUATION OF THE SPATIAL
REGULARISATION PARAMETER

30 ∗/
31 Array<NEMData∗> results;
32
33 /∗ First runs of the NEM algorithm for the initial
34 ∗ beta range.
35 ∗/
36 for(unsigned int i = 0; i < nbrSamples; i++) {
37 /∗ Current value of beta ∗/
38 double beta = betaStart + i ∗ betaInc;
39
40 NEMData ∗ nemdata = new NEMData(dataMatrix,
41 neighbourhoodMatrix, clusterStart, beta,
42 clusterMembershipMatrix);
43
44 NEMClusterAlgorithm algo(nemdata);
45
46 /∗ Performs the NEM algorithm and store
47 ∗ the result in the array of results.
48 ∗/
49 results[i] = algo.compute();
50 }
51
52 /∗ This value indicates whether the optimal was
53 ∗ found or not.
54 ∗/
55 bool found = false;
56
57 /∗ The likelihood values extend this range. ∗/
58 double range = abs(results[nbrSamples − 1]−>likelihood − results[0]−>likelihood);
59
60 /∗ Optimal value of beta ∗/
61 double optimalBeta = 0.0;
62
63 /∗ Main loop: finishes if the number of iterations is too high or if
64 ∗ the optimal beta value was found (see corresponding break statement
65 ∗ below).
66 ∗/
67 while(loopID < maxLoops) {
68 /∗ Indicates whether the new boundary values
69 ∗ for were found or not. The range is refined
70 ∗ at each iteration.
71 ∗/
72 bool tmpFoundFirst = false, tmpFoundLast = false;
73 /∗ IDs of the NEMData objects corresponding
74 ∗ to the betas of the new boundaries.
75 ∗/
76 unsigned int firstID = 0, lastID = 0;
77 /∗ Indicates wether the difference there was a rather
78 ∗ big gap between two successive points.
79 ∗/
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APPENDIX B. C++ CODE FOR THE EVALUATION OF THE SPATIAL
REGULARISATION PARAMETER

80 bool hasBeenHigher = false;
81
82 /∗ Browse the results of the current beta range. ∗/
83 for(unsigned int i = 2; !tmpFoundLast && i < nbrSamples − 1; i++) {
84 NEMData∗ lastNEMData = results[i];
85 NEMData∗ middleNEMData = results[i − 1];
86
87 /∗ First search the new left boundary value of beta. ∗/
88 if(!tmpFoundFirst) {
89 NEMData∗ firstNEMData = results[i − 2];
90 NEMData∗ afterlastNEMData = results[i + 1];
91
92 /∗ The goal is to compute the angle between two vectors
93 ∗ defined by successive points in the beta−likelihood plane.
94 ∗ So first compute firstVector which has two coordinates. Its
95 ∗ coordinates are normalised with respect to the global range
96 ∗ if both variable (beta and likelihood) and then the vector
97 ∗ itself is normalised.
98 ∗/
99 Vector2D<double> firstVector;

100 firstVector.x = (middleNEMData−>beta − firstNEMData−>beta) /
101 betaRange;
102 firstVector.y =
103 (middleNEMData−>likelihood − firstNEMData−>likelihood) /
104 range;
105 firstVector.normalize();
106 /∗ Same thing, except that the likelihood value has
107 ∗ been smoothed by taking the mean of the two points
108 ∗ right of the middleNEMData.
109 ∗/
110 Vector2D<double> secondVector(2);
111 secondVector.x = (
112 lastNEMData−>beta
113 − middleNEMData−>beta
114 ) / betaRange;
115 secondVector.y = (
116 lastNEMData−>likelihood / 2.0
117 + afterlastNEMData−>likelihood / 2.0
118 − middleNEMData−>likelihood
119 ) / range;
120 secondVector.normalize();
121
122 /∗ The angle between the two vectors will be computed
123 ∗ relative two the first vector. This will enable to
124 ∗ see if the second vector has an higher slope than
125 ∗ the first.
126 ∗ Therefore, the
127 ∗/
128 double projX = firstVector.dot(secondVector);
129 Vector2D<double> tmp = secondVector − 1.0 ∗ projX ∗ firstVector;
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APPENDIX B. C++ CODE FOR THE EVALUATION OF THE SPATIAL
REGULARISATION PARAMETER

130 double projY = tmp.norm();
131 double theta = atan2(projX, projY) ∗ 180 / PI;
132
133 /∗ Gap between the ”last” and ”first” value of the
134 ∗ likelihood.
135 ∗/
136 double gap = abs(lastNEMData−>likelihood − firstNEMData−>likelihood);
137
138 /∗ If there is a big gap and a hard angle, the
139 ∗ optimal value of beta is considered as found.
140 ∗/
141 if(theta < −60 && gap > 0.2 ∗ range) {
142 found = true;
143 optimalBeta = middleNEMData−>beta;
144
145 break;
146 }
147
148 /∗ If either the gap or the angle is big,
149 ∗ the left bound is found.
150 ∗/
151 if(theta < −40 || gap > 0.1 ∗ range) {
152 if(gap > 0.1 ∗ range)
153 hasBeenHigher = true;
154
155 tmpFoundFirst = true;
156 firstID = i − 2;
157 }
158 }
159
160 /∗ Then search the new right boundary.
161 ∗ If during the search, there was already a rather
162 ∗ big gap but the next one is to small, this is the
163 ∗ second boundary.
164 ∗/
165 if(tmpFoundFirst && hasBeenHigher &&
166 lastNEMData−>likelihood − middleNEMData−>likelihood < 0.1 ∗ range
167 ) {
168 tmpFoundLast = true;
169 lastID = i + 1;
170 optimalBeta = middleNEMData−>beta;
171
172 break;
173 }
174 /∗ If during the search, there wasn’t a rather big gap
175 ∗ (if the angle was big enough) but now, one has been
176 ∗ found, this is the second boundary.
177 ∗/
178 else if(tmpFoundFirst && !hasBeenHigher &&
179 lastNEMData−>likelihood − middleNEMData−>likelihood > 0.1 ∗ range
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APPENDIX B. C++ CODE FOR THE EVALUATION OF THE SPATIAL
REGULARISATION PARAMETER

180 ) {
181 tmpFoundLast = true;
182 lastID = i + 1;
183 optimalBeta = middleNEMData−>beta;
184
185 break;
186 }
187 }
188
189 /∗ If the gap was found, stop searching ! ∗/
190 if(found) {
191 break;
192 }
193
194 /∗ If either the first boundary or the second one or
195 ∗ both weren’t found, simply refine almost the entire
196 ∗ initial beta range.
197 ∗/
198 if(!tmpFoundFirst) {
199 lastID = nbrSamples − 2;
200 }
201
202 if(!tmpFoundLast) {
203 lastID = nbrSamples − 1;
204 }
205
206 /∗ If the maximum number of iterations wasn’t reach,
207 ∗ it’s time to refine the new beta samples range.
208 ∗/
209 if(loopID < maxLoops − 1) {
210 /∗ Array where the results that are in the new
211 ∗ beta range are kept to avoid recomputing them.
212 ∗/
213 Array<NEMData∗> tmpResults;
214
215 /∗ Search for such results, delete the others. ∗/
216 for(unsigned int i = 0; i < nbrSamples; i++) {
217 if(i >= firstID && i <= lastID)
218 tmpResults.append(results[i]);
219 else
220 delete results[i];
221 }
222
223 /∗ Clear the result array ∗/
224 results.clear();
225
226 /∗ Resize it, there are always two times more new
227 ∗ samples.
228 ∗/
229 nbrSamples = 2 ∗ (tmpResults.size() − 1) + 1;

77
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230 results.resize(nbrSamples);
231
232 /∗ Replace the elements of tmpResults in the current
233 ∗ result array.
234 ∗/
235 for(unsigned int i = 0; i < tmpResults.size(); i++) {
236 results[2 ∗ i] = tmpResults[i];
237 }
238
239 /∗ New beta range and increment. ∗/
240 betaStart = results[0]−>beta;
241 betaStop = results[nbrSamples − 1]−>beta;
242 betaRange = betaStop − betaStart;
243 betaInc = (betaRange) / (double)(nbrSamples − 1);
244
245 /∗ If the beta range is zero, something went wrong
246 ∗ or the value was found.
247 ∗/
248 if(betaRange == 0) {
249 beta = betaStart;
250 break;
251 }
252
253 #pragma omp parallel for
254 for(unsigned int i = 1; i < nbrSamples; i += 2) {
255 double beta = betaStart + i ∗ betaInc;
256
257 NEMData ∗ nemdata = new NEMData(dataMatrix,
258 neighbourhoodMatrix, clusterStart, beta,
259 clusterMembershipMatrix);
260
261 NEMClusterAlgorithm algo(nemdata);
262
263 /∗ Performs the NEM algorithm and store
264 ∗ the result in the array of results.
265 ∗/
266 results[i] = algo.compute();
267 }
268 }
269 /∗ Maximum number of iterations was reached, select
270 ∗ the third beta in the beta range.
271 ∗/
272 else {
273 beta = results[firstID + 2]−>beta;
274 }
275
276 loopID++;
277 }
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