Books

  • M. Weiser
Inside Finite Elements. de Gruyter. 2016.

  • P. Deuflhard
  • M. Weiser
Adaptive numerical solution of PDEs. de Gruyter. 2012.

all...

Refereed Articles

  • L. Fischer
  • S. Götschel
  • M. Weiser
Lossy data compression reduces communication time in hybrid time-parallel integrators. Comput. Vis. Sci. , accepted 2017.

  • M. Weiser
  • B. Erdmann
  • S. Schenkl
  • H. Muggenthaler
  • M. Hubig
  • G. Mall
  • S. Zachow
Uncertainty in Temperature-Based Determination of Time of Death. Heat and Mass Transfer , 2018.

all...

Unrefereed Articles

  • J. Müller
  • S. Götschel
  • M. Weiser
  • C. Maierhofer
Thermografie mit optimierter Anregung für die quantitative Untersuchung von Delaminationen in kohlenstofffaserverstärkten Kunststoffen. In NDT.net Proc. DGZfP 2017. 2017.

  • S. Mitzscherling
  • E. Barth
  • S. Götschel
  • T. Homann
  • J. Prager
  • M. Weiser
Verbesserung und Qualifizierung der Ultraschallprüfung von Mischnähten im Primärkreis von KKW . In NDT.net Proc. DGZfP 2017. 2017.

all...

Preprints

  • M. Weiser
  • Y. Freytag
  • B. Erdmann
Optimal Design of Experiments for Estimating the Time of Death in Forensic Medicine. ZIB Report 18-08, 2018.

  • P. Deuflhard
  • U. Nowak
  • M. Weiser
Adaptive affine invariant Newton codes for discretized PDEs. ZIB Report 02-33, 2002.

all...

Theses

  • M. Weiser
Function Space Complementarity Methods for Optimal Control Problems. 2001.

  • M. Weiser
Newton-artige Iterationsverfahren zur Minimierung strikt konvexer Funktionale. Freie Universität Berlin 1995. P. Deuflhard

all...

Popular Science Articles

  • M. Weiser
Molekülbillard. In
  • K. Biermann
  • M. Grötschel
  • B. Lutz-Westphal
Besser als Mathe - Moderne angewandte Mathematik aus dem MATHEON zum Mitmachen. pp. 17-22, Vieweg+Teubner, 2010.

all...

Books

  • M. Weiser
Inside Finite Elements. de Gruyter. 2016.

All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered only as far as it gives insight into the construction of algorithms. In the exercises, a complete FE-solver for stationary 2D problems is implemented in Matlab/Octave.

  • A concise guide to algorithmic and implementation aspects of finite elements.
  • A complete FE-solver for 2D problems implemented in Matlab/Octave exercises.
  • Both advanced algorithmic concepts and application aspects are covered.

  • P. Deuflhard
  • M. Weiser
Adaptive numerical solution of PDEs. de Gruyter. 2012.

This book deals with the general topic “Numerical solution of partial differential equations (PDEs)” with a focus on adaptivity of discretizations in space and time. By and large, introductory textbooks like “Numerical Analysis in Modern Scientific Computing” by Deuflhard and Hohmann should suffice as a prerequisite. The emphasis lies on elliptic and parabolic systems. Hyperbolic conservation laws are treated only on an elementary level excluding turbulence.

Numerical Analysis is clearly understood as part of Scientific Computing. The focus is on the efficiency of algorithms, i.e. speed, reliability, and robustness, which directly leads to the concept of adaptivity in algorithms. The theoretical derivation and analysis is kept as elementary as possible. Nevertheless required somewhat more sophisticated mathematical theory is summarized in comprehensive form in an appendix. Complex relations are explained by numerous figures and illustrating examples. Non-trivial problems from regenerative energy, nanotechnology, surgery, and physiology are inserted.

The text will appeal to graduate students and researchers on the job in mathematics, science, and technology. Conceptually, it has been written as a textbook including exercises and a software list, but at the same time it should be well-suited for self-study.

  • Standard work on numerics of partial differential equations
  • Elementary and understandable presentation of the mathematical theory
  • Covers efficiency of numerical algorithms and scientific computing
  • Includes in-depth mathematical tools in the appendix

  • P. Deuflhard
  • M. Weiser
Numerische Mathematik 3. Adaptive Lösung partieller Differentialgleichungen. de Gruyter. 2011.

Dieses Lehrbuch behandelt das Thema Numerik partieller Differentialgleichungen, im Wesentlichen aufbauend auf dem Band Numerische Mathematik 1. Der Schwerpunkt liegt auf elliptischen und parabolischen Systemen; hyperbolische Erhaltungsgleichungen werden aber ebenfalls elementar behandelt.

Numerische Mathematik wird verstanden als Teilgebiet des Scientific Computing, zu Deutsch auch Wissenschaftliches Rechnen. Im Vordergrund steht hier die Effizienz von Algorithmen, d.h. Schnelligkeit, Verlässlichkeit und Robustheit, dies führt zu adaptiven Algorithmen. Die theoretische Herleitung und Analyse von Algorithmen ist in diesem Buch so elementar wie möglich gehalten; die benötigte etwas anspruchsvollere mathematische Theorie ist im Anhang zusammengefasst. Zahlreiche Abbildungen und Illustrationsbeispiele erläutern die komplexen Sachverhalte. Als nichttriviale Beispiele dienen Probleme aus Nanotechnologie, Chirurgie und Physiologie.

Das Buch richtet sich an Studierende sowie an bereits im Beruf stehende Mathematiker, Naturwissenschaftler und Ingenieure. Es ist als Lehrbuch konzipiert, aber auch gut für ein Selbststudium geeignet.

  • Band 3 des Standardwerkszur Numerik partieller Differentialgleichungen
  • Deckt Effizienz numerischer Algorithmen sowie Scientific Computing ab
  • Elementare und verständliche Darstellung der mathematischen Theorie
  • Vertieftes mathematisches Handwerkszeug in den Anhängen

Refereed Articles in Journals and Conference Proceedings

    • L. Fischer
    • S. Götschel
    • M. Weiser
    Lossy data compression reduces communication time in hybrid time-parallel integrators. Comput. Vis. Sci. , accepted 2017.
    • M. Weiser
    • B. Erdmann
    • S. Schenkl
    • H. Muggenthaler
    • M. Hubig
    • G. Mall
    • S. Zachow
    Uncertainty in Temperature-Based Determination of Time of Death. Heat and Mass Transfer , 2018.
    • N. Tierney
    • A. Mira
    • J. Reinhold
    • M. Weiser
    • R. Burkart
    • C. Benvenuti
    • A. Auricchio
    Novel relocation methods for automatic external defibrillator improve out-of-hospital cardiac arrest coverage under limited resources. Resuscitation 125: 83-89, 2018.
    • M. Weiser
    • S. Ghosh
    Theoretically optimal inexact SDC methods. Comm. Appl. Math. Comp. Sci. 13 (1): 53-86, 2018.
    • M. Weiser
    • S. Scacchi
    Spectral Deferred Correction methods for adaptive electro-mechanical coupling in cardiac simulation. In
    • G. Russo
    • V. Capasso
    • G. Nicosia
    • V. Romano
    Progress in Industrial Mathematics at ECMI 2014. pp. 321-328, Springer, 2017.
    • L. Lubkoll
    • A. Schiela
    • M. Weiser
    An affine covariant composite step method for optimization with PDEs as equality constraints. Optim. Meth. Softw. 32 (5): 1132-1161, 2017.
    • J. Müller
    • S. Götschel
    • C. Maierhofer
    • M. Weiser
    Determining the material parameters for the reconstruction of defects in carbon fiber reinforced polymers from data measured by flash thermography. In AIP Conference Proceedings. pp. 100006, 2017.
    • S. Schenkl
    • H. Muggenthaler
    • M. Hubig
    • B. Erdmann
    • M. Weiser
    • S. Zachow
    • A. Heinrich
    • F. Güttler
    • U. Teichgräber
    • G. Mall
    Automatic CT based Finite Element Model Generation for Temperature based Death Time Estimation: Feasibility Study and Sensitivity Analysis. Int. J. Legal Medicine 131 (3): 699-712, 2017.
    • G. Sagnol
    • H.-C. Hege
    • M. Weiser
    Using sparse kernels to design computer experiments with tunable precision. In
    • A. Colubi
    • A. Blanco
    • C. Gatu
    Proceedings of COMPSTAT 2016. pp. 397-408, 2016.
    • M. Weiser
    Faster SDC convergence on non-equidistant grids with DIRK sweeps. BIT Numerical Analysis 55 (4): 1219-1241, 2015.
    • S. Götschel
    • C. von Tycowicz
    • K. Polthier
    • M. Weiser
    Reducing Memory Requirements in Scientific Computing and Optimal Control. In
    • T. Carraro
    • M. Geiger
    • S. Körkel
    • R. Rannacher
    Multiple Shooting and Time Domain Decomposition Methods. pp. 263-287, Springer, 2015.
    • S. Götschel
    • M. Weiser
    Lossy Compression for PDE-constrained Optimization: Adaptive Error Control. Comput. Optim. Appl. 62 (1): 131-155, 2015.
    • D. Moualeu
    • M. Weiser
    • R. Ehrig
    • P. Deuflhard
    Optimal control for a tuberculosis model with undetected cases in Cameroon. Comm. Nonlin. Sci. Num. Sim. 20 (3): 986-1003, 2015.
    • L. Lubkoll
    • A. Schiela
    • M. Weiser
    An optimal control problem in polyconvex hyperelasticity. SIAM J. Control Opt. 52 (3): 1403-1422, 2014.
    • S. Götschel
    • N. Chamakuri
    • K. Kunisch
    • M. Weiser
    Lossy Compression in Optimal Control of Cardiac Defibrillation. J. Sci. Comp. 60 (1): 35-59, 2014.
    • A. Günther
    • H. Lamecker
    • M. Weiser
    Flexible shape matching with finite element based LDDMM. International Journal of Computer Vision 105 (2): 128-143, 2013.
    • S. Götschel
    • M. Weiser
    • C. Maierhofer
    • R. Richter
    • M. Röllig
    Fast Defect Shape Reconstruction Based on the Travel Time in Pulse Thermography. In
    • O. Büyüköztürk
    • M. Taşdemir
    • O. Güneş
    • Y. Akkaya
    Nondestructive Testing of Materials and Structures. pp. 83-89, Springer, 2013.
    • M. Weiser
    On goal-oriented adaptivity for elliptic optimal control problems. Opt. Meth. Softw. 28 (13): 969-992, 2013.
    • P. Deuflhard
    • A. Schiela
    • M. Weiser
    Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia. Acta Numerica 21: 307-378, 2012.
    • S. Götschel
    • M. Weiser
    • A. Schiela
    Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox. In
    • A. Dedner
    • B. Flemisch
    • R. Klöfkorn
    Advances in DUNE. pp. 101-112, Springer, 2012.
    • M. Weiser
    • S. Götschel
    State Trajectory Compression for Optimal Control with Parabolic PDEs. SIAM J. Sci. Comp. 34 (1): A161-A184, 2012.
    • A. Günther
    • H. Lamecker
    • M. Weiser
    Direct LDDMM of Discrete Currents with Adaptive Finite Elements. In
    • X. Pennec
    • S. Joshi
    • M. Nielsen
    Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability. pp. 1-14, 2011.
    • A. Schiela
    • M. Weiser
    Barrier methods for a control problem from hyperthermia treatment planning. In
    • M. Diehl
    • F. Glineur
    • E. Jarlebring
    • W. Michiels
    Recent Advances in Optimization and its Applications in Engineering (Proceedings of 14th Belgian-French-German Conference on Optimization 2009). pp. 419-428, Springer, 2010.
    • M. Weiser
    • M. Röllig
    • R. Arndt
    • B. Erdmann
    Development and test of a numerical model for pulse thermography in civil engineering. Heat Mass Transf. 46 (11-12): 1419-1428, 2010.
    • M. Ranneberg
    • M. Weiser
    • M. Weihrauch
    • V. Budach
    • J. Gellermann
    • P. Wust
    Regularized Antenna Profile Adaptation in Online Hyperthermia Treatment. Medical Physics 37: 5382-5394, 2010.
    • M. Weiser
    • S. Zachow
    • P. Deuflhard
    Craniofacial Surgery Planning Based on Virtual Patient Models. Inform. Techn. 52 (5): 258-263, 2010.
    • M. Weiser
    Optimization and Identification in Regional Hyperthermia. Int. J. Appl. Electromagn. and Mech. 30: 265-275, 2009.
    • M. Weiser
    Pointwise Nonlinear Scaling for Reaction-Diffusion Equations. Appl. Num. Math. 59 (8): 1858-1869, 2009.
    • O. Schenk
    • A. Wächter
    • M. Weiser
    Inertia Revealing Preconditioning For Large-Scale Nonconvex Constrained Optimization. SIAM J. Sci. Comp. 31 (2): 939-960, 2008.
    • M. Weiser
    • T. Gänzler
    • A. Schiela
    A control reduced primal interior point method for a class of control constrained optimal control problems. Comp. Opt. Appl. 41 (1): 127-145, 2008.
    • S. Zachow
    • M. Weiser
    • P. Deuflhard
    Modellgestützte Operationsplanung in der Kopfchirurgie. In
    • W. Niederlag
    • H. Lemke
    • J. Meixensberger
    • M. Baumann
    Modellgestützte Therapie. pp. 140-156, Health Academy, 2008.
    • A. Schiela
    • M. Weiser
    Superlinear convergence of the Control Reduced Interior Point Method for PDE Constrained Optimization. Comp. Opt. Appl. 39 (3): 369-393, 2008.
    • U. Prüfert
    • F. Tröltzsch
    • M. Weiser
    The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comp. Opt. Appl. 39 (2): 183-218, 2008.
    • R. Griesse
    • M. Weiser
    On the Interplay Between Interior Point Approximation and Parametric Sensitivities in Optimal Control. Journal of Mathematical Analysis and Applications 337: 771-793, 2008.
    • M. Weihrauch
    • P. Wust
    • M. Weiser
    • J. Nadobny
    • S. Eisenhardt
    • V. Budach
    • J. Gellermann
    Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR-HT system. Medical Physics 34 (12): 4717-4725, 2007.
    • M. Weiser
    • P. Deuflhard
    • B. Erdmann
    Affine conjugate adaptive Newton methods for nonlinear elastomechanics. Opt. Meth. Softw. 22 (3): 413-431, 2007.
    • M. Weiser
    • P. Deuflhard
    Inexact central path following algorithms for optimal control problems. SIAM J. Control Opt. 46 (3): 792-815, 2007.
    • J. Gellermann
    • M. Weihrauch
    • C. Cho
    • W. Wlodarczyk
    • H. Fähling
    • R. Felix
    • V. Budach
    • M. Weiser
    • J. Nadobny
    • P. Wust
    Comparison of MR-thermography and planning calculations in phantoms. Medical Physics 33: 3912-3920, 2006.
    • P. Deuflhard
    • M. Weiser
    • S. Zachow
    Mathematics in Facial Surgery. Notices Amer. Math. Soc. 53: 1012-1016, 2006.
    • T. Gänzler
    • S. Volkwein
    • M. Weiser
    SQP methods for parameter identification problems arising in hyperthermia. Opt. Meth. Softw., Special Issue on Parameter Estimation and Experimental Design 21 (6): 869-887, 2006.
    • M. Weiser
    • A. Schiela
    • P. Deuflhard
    Asymptotic Mesh Independence of Newton's Method Revisited. SIAM J. Num. Anal. 42 (5): 1830-1845, 2005.
    • M. Weiser
    Interior point methods in function space. SIAM J. Control Opt. 44 (5): 1766-1786, 2005.
    • I. Horenko
    • M. Weiser
    • B. Schmidt
    • C. Schütte
    Fully Adaptive Propagation of the Quantum-Classical Liouville Equation. J. Chem. Phys. 120 (19): 8913-8923, 2004.
    • I. Horenko
    • M. Weiser
    Adaptive integration of molecular dynamics. J. Comput. Chem. 24 (15): 1921-1929, 2003.
    • S. Volkwein
    • M. Weiser
    Affine Invariant Convergence Analysis for Inexact Augmented Lagrangian-SQP Methods. SIAM J. Control Opt. 41 (3): 875-899, 2002.
    • P. Deuflhard
    • M. Weiser
    • M. Seebaß
    A New Nonlinear Elliptic Multilevel FEM Applied to Regional Hyperthermia. Comput. Vis. Sci. 3 (3): 115-120, 2000.
    • M. Weiser
    • G. Powell
    The View Template Library. In First Workshop on C++ Template Programming, Erfurt. 2000.
    • P. Deuflhard
    • M. Weiser
    Global inexact Newton multilevel FEM for nonlinear elliptic problems. In
    • W. Hackbusch
    • G. Wittum
    Multigrid Methods V. pp. 71-89, Springer, 1998.
    • P. Deuflhard
    • M. Weiser
    Local inexact Newton multilevel FEM for nonlinear elliptic problems. In
    • M.-O. Bristeau
    • G. Etgen
    • W. Fitzgibbon
    • J.-L. Lions
    • J. Periaux
    • M. Wheeler
    Computational science for the 21st century. pp. 129-138, Wiley, 1997.

Unrefereed Articles in Journals and Conference Proceedings

    • J. Müller
    • S. Götschel
    • M. Weiser
    • C. Maierhofer
    Thermografie mit optimierter Anregung für die quantitative Untersuchung von Delaminationen in kohlenstofffaserverstärkten Kunststoffen. In NDT.net Proc. DGZfP 2017. 2017.
    • S. Mitzscherling
    • E. Barth
    • S. Götschel
    • T. Homann
    • J. Prager
    • M. Weiser
    Verbesserung und Qualifizierung der Ultraschallprüfung von Mischnähten im Primärkreis von KKW . In NDT.net Proc. DGZfP 2017. 2017.
    • M. Hammerschmidt
    • M. Weiser
    • X. Garcia Santiago
    • L. Zschiedrich
    • B. Bodermann
    • S. Burger
    Quantifying parameter uncertainties in optical scatterometry using Bayesian inversion. In Proc. SPIE. pp. 10330, 2017.
    • S. Götschel
    • C. Maierhofer
    • J. Müller
    • N. Rothbart
    • M. Weiser
    Quantitative Defect Reconstruction in Active Thermography for Fiber-Reinforced Composites. In Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016). 2017.
    • S. Götschel
    • S. Kolkoori
    • S. Mitzscherling
    • J. Prager
    • M. Weiser
    Ray Tracing Boundary Value Problems: Simulation and SAFT Reconstruction for Ultrasonic Testing. In Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016). 2017.
    • P. Deuflhard
    • R. Kornhuber
    • O. Sander
    • A. Schiela
    • M. Weiser
    Mathematics cures virtual patients. In
    • P. Deuflhard
    • M. Grötschel
    • D. Hömberg
    • U. Horst
    • J. Kramer
    • V. Mehrmann
    • K. Polthier
    • F. Schmidt
    • C. Schütte
    • M. Skutella
    • J. Sprekels
    MATHEON - Mathematics for Key Technologies. pp. 7-25, EMS, 2014.
    • S. Götschel
    • M. Weiser
    • C. Maierhofer
    • R. Richter
    Data Enhancement for Active Thermography. In
    • G. Cardone
    Proceedings of 11th International Conference on Quantitative Infrared Thermography, Naples. 2012.
    • S. Götschel
    • M. Weiser
    State Trajectory Compression in Optimal Control. PAMM 10 (1): 579-580, 2010.
    • M. Weiser
    Delayed Residual Compensation for Bidomain Equations. AIP Conference Proceedings 1281 (1): 419-422, 2010.
    • M. Weiser
    • B. Erdmann
    • P. Deuflhard
    On Efficiency and Accuracy in Cardioelectric Simulation. In
    • E. Wilson
    • A. Fitt
    • H. Ockendon
    • J. Norbury
    Progress in Industrial Mathematics at ECMI 2008. pp. 371-376, Springer, 2010.
    • M. Wilhelms
    • G. Seemann
    • M. Weiser
    • O. Dössel
    Benchmarking Solvers of the Monodomain Equation in Cardiac Electrophysiological Modeling. Biomed. Engineer. 55: 99-102, 2010.
    • P. Wust
    • M. Weihrauch
    • M. Weiser
    • J. Gellermann
    • S. Eisenhardt
    • T. Chobrok
    • V. Budach
    Optimization of clinical radiofrequency hyperthermia by use of MR-thermography in a hybrid system. In
    • O. Dössel
    • W. Schlegel
    • R. Magjarevic
    World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. pp. 174-175, Springer, 2010.
    • J. Nadobny
    • M. Weihrauch
    • M. Weiser
    • J. Gellermann
    • W. Wlodarczyk
    • V. Budach
    • P. Wust
    Advances in the Planning and Control of the MR-guided Regional Hyperthermia Applications. In pp. 1010-1013, Proc. Int. Conf. Electromagnetics in Advanced Applications, ICEAA 2007, Torino, Italy . 2007.
    • S. Zachow
    • M. Weiser
    • H.-C. Hege
    • P. Deuflhard
    Soft Tissue Prediction in Computer Assisted Maxillofacial Surgery Planning: A Quantitative Evaluation of Histomechanical Modeling using Pre- and Postoperative CT-Data. In
    • Y. Payan
    Biomechanics Applied to Computer Assisted Surgery. pp. 277-298, Research Signpost, 2005.
    • M. Weiser
    • A. Schiela
    Function space interior point methods for PDE constrained optimization. PAMM 4 (1): 43-46, 2004.
    • G. Powell
    • M. Weiser
    Views, A new form of container adaptors. C/C++ Users Journal 18 (4): 40-51, 2000.

Preprints

    • M. Weiser
    • Y. Freytag
    • B. Erdmann
    Optimal Design of Experiments for Estimating the Time of Death in Forensic Medicine. ZIB Report 18-08, 2018.
    • P. Deuflhard
    • U. Nowak
    • M. Weiser
    Adaptive affine invariant Newton codes for discretized PDEs. ZIB Report 02-33, 2002.
    • M. Weiser
    Linear convergence of an interior point method for linear control constrained optimal control problems. ZIB Report 02-13, 2002.

Theses

    • M. Weiser
    Function Space Complementarity Methods for Optimal Control Problems. 2001.
    • M. Weiser
    Newton-artige Iterationsverfahren zur Minimierung strikt konvexer Funktionale. Freie Universität Berlin 1995. P. Deuflhard